1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
#!/usr/bin/env python
# Copyright (c) 2010 Carnegie Mellon University
#
# You may copy and modify this freely under the same terms as
# Sphinx-III
"""
FST utility functions
"""
__author__ = "David Huggins-Daines <dhuggins@cs.cmu.edu>"
__version__ = "$Revision $"
import sys
import os
import tempfile
import openfst
import sphinxbase
import subprocess
class AutoFst(openfst.StdVectorFst):
"""
FST class which automatically adds states, input and output symbols as required.
This is meant to behave somewhat like the Dot language.
"""
def __init__(self, isyms=None, osyms=None, ssyms=None):
openfst.StdVectorFst.__init__(self)
if isyms == None:
isyms = openfst.SymbolTable("inputs")
isyms.AddSymbol("ε")
if osyms == None:
osyms = openfst.SymbolTable("outputs")
osyms.AddSymbol("ε")
if ssyms == None:
ssyms = openfst.SymbolTable("states")
ssyms.AddSymbol("__START__")
self.ssyms = ssyms
self.SetInputSymbols(isyms)
self.SetOutputSymbols(osyms)
self.SetStart(self.AddState())
def AddArc(self, src, isym, osym, weight, dest):
if not isinstance(isym, int):
isym = self.isyms.AddSymbol(isym)
if not isinstance(osym, int):
osym = self.osyms.AddSymbol(osym)
if not isinstance(src, int):
src = self.ssyms.AddSymbol(src)
if not isinstance(dest, int):
dest = self.ssyms.AddSymbol(dest)
while src >= self.NumStates():
self.AddState()
while dest >= self.NumStates():
self.AddState()
openfst.StdVectorFst.AddArc(self, src, isym, osym, weight, dest)
def Write(self, *args):
openfst.StdVectorFst.SetInputSymbols(self, self.isyms)
openfst.StdVectorFst.SetOutputSymbols(self, self.osyms)
openfst.StdVectorFst.Write(self, *args)
def SetFinal(self, state, weight=0):
if not isinstance(state, int):
state = self.ssyms.AddSymbol(state)
openfst.StdVectorFst.SetFinal(self, state, weight)
def SetInputSymbols(self, isyms):
self.isyms = isyms
openfst.StdVectorFst.SetInputSymbols(self, self.isyms)
def SetOutputSymbols(self, osyms):
self.osyms = osyms
openfst.StdVectorFst.SetOutputSymbols(self, self.osyms)
def add_mgram_states(fst, symtab, lm, m, sidtab, bo_label=0):
"""
Add states and arcs for all M-grams in the language model, where M<N.
"""
for mg in lm.mgrams(m):
wsym = symtab.Find(mg.words[m])
if wsym == -1:
continue # skip mgrams ending in OOV
if m > 0 and mg.words[0] == '</s>':
continue # skip >1-grams starting with </s>
if m == 0:
src = 0 # 1-grams start in backoff state
elif tuple(mg.words[0:m]) not in sidtab:
continue # this means it has an OOV
else:
src = sidtab[tuple(mg.words[0:m])]
if mg.words[m] == '</s>':
# only one final state is allowed
final = True
newstate = False
if ('</s>',) in sidtab:
dest = sidtab[('</s>',)]
else:
dest = fst.AddState()
fst.SetFinal(dest, 0)
sidtab[('</s>',)] = dest
#print "Final state", dest
#print "Entered state ID mapping (</s>,) =>", dest
else:
final = False
newstate = True
dest = fst.AddState()
if mg.words[m] == '<s>':
# <s> is a non-event
if m == 0:
# The destination state will be the initial state
fst.SetStart(dest)
#print "Initial state", dest
else:
fst.AddArc(src, openfst.StdArc(wsym, wsym, -mg.log_prob, dest))
#print "Added %d-gram arc %d => %d %s/%.4f" % (m+1, src, dest,
#mg.words[m], -mg.log_prob)
if newstate:
# Add a new state to the mapping if needed
sidtab[tuple(mg.words)] = dest
#print "Entered state ID mapping", tuple(mg.words), "=>", dest
if not final:
# Create a backoff arc to the suffix M-1-gram
# Note taht if mg.log_bowt == 0 it's particularly important to do this!
if m == 0:
bo_state = 0 # backoff state
elif tuple(mg.words[1:]) in sidtab:
bo_state = sidtab[tuple(mg.words[1:])]
else:
continue # Not a 1-gram, no suffix M-gram
fst.AddArc(dest, openfst.StdArc(bo_label, bo_label, -mg.log_bowt, bo_state))
#print "Adding backoff arc %d => %d %.4f" % (dest, bo_state, -mg.log_bowt)
def add_ngram_arcs(fst, symtab, lm, n, sidtab):
"""
Add states and arcs for all N-grams in the language model, where
N=N (the order of the model, that is).
"""
for ng in lm.mgrams(n-1):
wsym = symtab.Find(ng.words[n-1])
if wsym == -1: # OOV
continue
if ng.words[n-1] == '<s>': # non-event
continue
if '</s>' in ng.words[0:n-1]:
continue
for w in ng.words[:n-1]: # skip OOVs
if symtab.Find(w) == -1:
#print w, "not found"
continue
src = sidtab[tuple(ng.words[:n-1])]
# Find longest suffix N-gram that exists
spos = 1
while tuple(ng.words[spos:]) not in sidtab:
spos += 1
if spos == n:
raise RuntimeError, "Unable to find suffix N-gram for", ng.wids
dest = sidtab[tuple(ng.words[spos:])]
fst.AddArc(src, openfst.StdArc(wsym, wsym, -ng.log_prob, dest))
#print "Adding %d-gram arc %d => %d %s/%.4f" % (n, src, dest, ng.words[n-1], -ng.log_prob)
def build_lmfst(lm, use_phi=False):
"""
Build an FST recognizer from an N-gram backoff language model.
"""
fst = openfst.StdVectorFst()
symtab = openfst.SymbolTable("words")
epsilon = symtab.AddSymbol("ε")
if use_phi:
phi = symtab.AddSymbol("φ")
bo_label = phi
else:
bo_label = epsilon
for ug in lm.mgrams(0):
wsym = symtab.AddSymbol(ug.words[0])
fst.SetInputSymbols(symtab)
fst.SetOutputSymbols(symtab)
# The algorithm goes like this:
#
# Create a backoff state
# For M in 1 to N-1:
# For each M-gram w(1,M):
# Create a state q(1,M)
# Create an arc from state q(1,M-1) to q(1,M) with weight P(w(1,M))
# Create an arc from state q(1,M) to q(2,M) with weight bowt(w(1,M-1))
# For each N-gram w(1,N):
# Create an arc from state q(1,N-1) to q(2,N) with weight P(w(1,N))
# Table holding M-gram to state mappings
sidtab = {}
fst.AddState() # guaranteed to be zero (we hope)
for m in range(lm.get_size() - 1):
add_mgram_states(fst, symtab, lm, m, sidtab, bo_label)
add_ngram_arcs(fst, symtab, lm, lm.get_size(), sidtab)
# Connect and arc-sort the resulting FST
openfst.Connect(fst)
openfst.ArcSortInput(fst)
return fst
class SphinxProbdef(object):
"""
Probability definition file used for Sphinx class language models.
"""
def __init__(self, infile=None):
self.classes = {}
if infile != None:
self.read(infile)
def read(self, infile):
"""
Read probability definition from a file.
"""
if not isinstance(infile, file):
infile = file(infile)
inclass = None
for spam in infile:
spam = spam.strip()
if spam.startswith('#') or spam.startswith(';'):
continue
if spam == "":
continue
if inclass:
parts = spam.split()
if len(parts) == 2 \
and parts[0] == "END" and parts[1] == classname:
inclass = None
else:
prob = 1.0
if len(parts) > 1:
prob = float(parts[1])
self.add_class_word(inclass, parts[0], prob)
else:
if spam.startswith('LMCLASS'):
foo, classname = spam.split()
self.add_class(classname)
inclass = classname
def add_class(self, name):
"""
Add a class to this probability definition.
"""
self.classes[name] = {}
def add_class_word(self, name, word, prob):
"""
Add a word to a class in this probability definition.
"""
self.classes[name][word] = prob
def write(self, outfile):
"""
Write out probability definition to a file.
"""
if not isinstance(outfile, file):
outfile = file(outfile)
for c in self.classes:
outfile.write("LMCLASS %s\n" % c)
for word, prob in self.classes[c]:
outfile.write("%s %g\n" % (word, prob))
outfile.write("END %s\n" % c)
outfile.write("\n")
def normalize(self):
"""
Normalize probabilities.
"""
for c in self.classes:
t = sum(self.classes[c].itervalues())
if t != 0:
for w in self.classes[c]:
self.classes[c][w] /= t
def build_classfst(probdef, isyms=None):
"""
Build an FST from the classes in a Sphinx probability definition
file. This transducer maps words to classes, and can either be
composed with the input, or pre-composed with the language model.
In the latter case you can project the resulting transducer to its
input to obtain an equivalent non-class-based model.
"""
if not isinstance(probdef, SphinxProbdef):
probdef = SphinxProbdef(probdef)
fst = openfst.StdVectorFst()
if isyms:
symtab = isyms
else:
symtab = openfst.SymbolTable("words")
symtab.AddSymbol("ε")
st = fst.AddState()
fst.SetStart(st)
fst.SetFinal(st, 0)
for word, label in symtab:
if label == openfst.epsilon:
continue
fst.AddArc(st, label, label, 0, st)
for c in probdef.classes:
clabel = symtab.AddSymbol(c)
for word, prob in probdef.classes[c].iteritems():
wlabel = symtab.AddSymbol(word)
fst.AddArc(st, wlabel, clabel, -math.log(prob), st)
fst.SetOutputSymbols(symtab)
fst.SetInputSymbols(symtab)
return fst
def build_class_lmfst(lm, probdef, use_phi=False):
"""
Build an FST from a class-based language model. By default this
returns the lazy composition of the class definition transducer
and the language model. To obtain the full language model, create
a VectorFst from it and project it to its input.
"""
lmfst = build_lmfst(lm, use_phi)
classfst = build_classfst(probdef, lmfst.InputSymbols())
openfst.ArcSortInput(lmfst)
openfst.ArcSortInput(classfst)
return openfst.StdComposeFst(classfst, lmfst)
def build_dictfst(lmfst):
"""
Build a character-to-word FST based on the symbol table of lmfst.
"""
insym = openfst.SymbolTable("letters")
insym.AddSymbol("ε")
outsym = lmfst.InputSymbols()
fst = openfst.StdVectorFst()
start = fst.AddState()
fst.SetStart(start)
final = fst.AddState()
fst.SetFinal(final, 0)
for w, wsym in outsym:
if wsym == 0: continue
# Use a single symbol for end-of-sentence
if w == '</s>':
w = [w,]
for c in w:
csym = insym.AddSymbol(c)
for w, wsym in outsym:
if wsym == 0: continue
wsym = outsym.Find(w)
# Add an epsilon:word arc to the first state of this word
prev = fst.AddState()
fst.AddArc(start, openfst.StdArc(0, wsym, 0, prev))
# Use a single symbol for end-of-sentence
if w == '</s>':
w = [w,]
for c in w:
csym = insym.Find(c)
next = fst.AddState()
fst.AddArc(prev, openfst.StdArc(csym, 0, 0, next))
prev = next
# And an epsilon arc to the final state
fst.AddArc(prev, openfst.StdArc(0, 0, 0, final))
fst.SetInputSymbols(insym)
fst.SetOutputSymbols(outsym)
return fst
def fst2pdf(fst, outfile, acceptor=False):
"""
Draw an FST as a PDF using fstdraw and dot.
"""
tempdir = tempfile.mkdtemp()
fstfile = os.path.join(tempdir, "output.fst")
fst.Write(fstfile)
if acceptor:
acceptor = "--acceptor"
else:
acceptor = ""
rv = os.system("fstdraw %s '%s' | dot -Tpdf > '%s'"
% (acceptor, fstfile, outfile))
os.unlink(fstfile)
os.rmdir(tempdir)
return rv
def sent2fst(txt, fstclass=openfst.StdVectorFst, isyms=None, omitstart=True):
"""
Convert a list of words, or a string of whitespace-separated
tokens, to a sentence FST.
"""
fst = fstclass()
start = fst.AddState()
fst.SetStart(start)
if isyms:
symtab = isyms
else:
symtab = openfst.SymbolTable("words")
symtab.AddSymbol("ε")
prev = start
if isinstance(txt, str):
txt = txt.split()
for c in txt:
if omitstart and c == '<s>':
continue
nxt = fst.AddState()
if isyms:
sym = isyms.Find(c)
if sym == -1:
#print "Warning, unknown word", c
continue
else:
sym = symtab.AddSymbol(c)
#print prev, sym, nxt
fst.AddArc(prev, sym, sym, 0, nxt)
prev = nxt
fst.SetFinal(nxt, 0)
fst.SetInputSymbols(symtab)
fst.SetOutputSymbols(symtab)
return fst
def str2fst(txt, fstclass=openfst.StdVectorFst):
"""
Convert a text string to an FST.
"""
fst = fstclass()
start = fst.AddState()
fst.SetStart(start)
symtab = openfst.SymbolTable("chars")
symtab.AddSymbol("ε")
prev = start
for c in txt:
nxt = fst.AddState()
sym = symtab.AddSymbol(c)
fst.AddArc(prev, sym, sym, 0, nxt)
prev = nxt
fst.SetFinal(nxt, 0)
fst.SetInputSymbols(symtab)
fst.SetOutputSymbols(symtab)
return fst
def strset2fst(strs, fstclass=openfst.StdVectorFst):
"""
Build a dictionary lookup FST for a set of strings.
"""
fst = fstclass()
isyms = openfst.SymbolTable("chars")
osyms = openfst.SymbolTable("words")
isyms.AddSymbol("ε")
osyms.AddSymbol("ε")
start = fst.AddState()
fst.SetStart(start)
for s in strs:
prev = start
for c in s:
nxt = fst.AddState()
isym = isyms.AddSymbol(c)
fst.AddArc(prev, isym, 0, 0, nxt)
prev = nxt
nxt = fst.AddState()
osym = osyms.AddSymbol(s)
fst.AddArc(prev, 0, osym, 0, nxt)
fst.SetFinal(nxt, 0)
dfst = fstclass()
openfst.Determinize(fst, dfst)
openfst.RmEpsilon(dfst)
dfst.SetInputSymbols(isyms)
dfst.SetOutputSymbols(osyms)
return dfst
import math
def lmfst_eval(lmfst, sent):
sentfst = sent2fst(sent, openfst.StdVectorFst, lmfst.InputSymbols())
phi = lmfst.InputSymbols().Find("φ")
if phi != -1:
opts = openfst.StdPhiComposeOptions()
opts.matcher1 = openfst.StdPhiMatcher(sentfst, openfst.MATCH_NONE)
opts.matcher2 = openfst.StdPhiMatcher(lmfst, openfst.MATCH_INPUT, phi)
c = openfst.StdComposeFst(sentfst, lmfst, opts)
else:
c = openfst.StdComposeFst(sentfst, lmfst)
o = openfst.StdVectorFst()
openfst.ShortestPath(c, o, 1)
st = o.Start()
ll = 0
while st != -1 and o.NumArcs(st):
a = o.GetArc(st, 0)
# print o.InputSymbols().Find(a.ilabel), \
# o.OutputSymbols().Find(a.olabel), \
# -a.weight.Value() / math.log(10)
ll -= a.weight.Value()
st = a.nextstate
return ll
def lm_eval(lm, sent):
sent = [x for x in sent.split() if not x.startswith('++')]
ll = 0
for i in xrange(len(sent)):
if sent[i] == '<s>':
continue
prob = lm.prob(sent[i::-1])
#print sent[i::-1], prob / math.log(10), bo
ll += prob
return ll
if __name__ == '__main__':
lmf, fstf = sys.argv[1:]
lm = sphinxbase.NGramModel(lmf)
fst = build_lmfst(lm)
fst.Write(fstf)
|