File: memslot.c

package info (click to toggle)
spice 0.14.0-1.3%2Bdeb10u1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 9,008 kB
  • sloc: ansic: 74,895; sh: 4,580; python: 3,025; makefile: 629
file content (207 lines) | stat: -rw-r--r-- 6,755 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* -*- Mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
   Copyright (C) 2009,2010 Red Hat, Inc.

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <inttypes.h>

#include "memslot.h"

static unsigned long __get_clean_virt(RedMemSlotInfo *info, QXLPHYSICAL addr)
{
    return addr & info->memslot_clean_virt_mask;
}

static void print_memslots(RedMemSlotInfo *info)
{
    int i;
    int x;

    for (i = 0; i < info->num_memslots_groups; ++i) {
        for (x = 0; x < info->num_memslots; ++x) {
            if (!info->mem_slots[i][x].virt_start_addr &&
                !info->mem_slots[i][x].virt_end_addr) {
                continue;
            }
            printf("id %d, group %d, virt start %lx, virt end %lx, generation %u, delta %lx\n",
                   x, i, info->mem_slots[i][x].virt_start_addr,
                   info->mem_slots[i][x].virt_end_addr, info->mem_slots[i][x].generation,
                   info->mem_slots[i][x].address_delta);
            }
    }
}

/* return 1 if validation successfull, 0 otherwise */
int memslot_validate_virt(RedMemSlotInfo *info, unsigned long virt, int slot_id,
                          uint32_t add_size, uint32_t group_id)
{
    MemSlot *slot;

    slot = &info->mem_slots[group_id][slot_id];
    if ((virt + add_size) < virt) {
        spice_critical("virtual address overlap");
        return 0;
    }

    if (virt < slot->virt_start_addr || (virt + add_size) > slot->virt_end_addr) {
        print_memslots(info);
        spice_warning("virtual address out of range\n"
              "    virt=0x%lx+0x%x slot_id=%d group_id=%d\n"
              "    slot=0x%lx-0x%lx delta=0x%lx",
              virt, add_size, slot_id, group_id,
              slot->virt_start_addr, slot->virt_end_addr, slot->address_delta);
        return 0;
    }
    return 1;
}

unsigned long memslot_max_size_virt(RedMemSlotInfo *info,
                                    unsigned long virt, int slot_id,
                                    uint32_t group_id)
{
    MemSlot *slot;

    slot = &info->mem_slots[group_id][slot_id];

    if (virt < slot->virt_start_addr || virt > slot->virt_end_addr) {
        return 0;
    }
    return slot->virt_end_addr - virt;
}

/*
 * return virtual address if successful, which may be 0.
 * returns 0 and sets error to 1 if an error condition occurs.
 */
unsigned long memslot_get_virt(RedMemSlotInfo *info, QXLPHYSICAL addr, uint32_t add_size,
                               int group_id, int *error)
{
    int slot_id;
    int generation;
    unsigned long h_virt;

    MemSlot *slot;

    *error = 0;
    if (group_id >= info->num_memslots_groups) {
        spice_critical("group_id too big");
        *error = 1;
        return 0;
    }

    slot_id = memslot_get_id(info, addr);
    if (slot_id >= info->num_memslots) {
        print_memslots(info);
        spice_critical("slot_id %d too big, addr=%" PRIx64, slot_id, addr);
        *error = 1;
        return 0;
    }

    slot = &info->mem_slots[group_id][slot_id];

    generation = memslot_get_generation(info, addr);
    if (generation != slot->generation) {
        print_memslots(info);
        spice_critical("address generation is not valid, group_id %d, slot_id %d, gen %d, slot_gen %d\n",
              group_id, slot_id, generation, slot->generation);
        *error = 1;
        return 0;
    }

    h_virt = __get_clean_virt(info, addr);
    h_virt += slot->address_delta;

    if (!memslot_validate_virt(info, h_virt, slot_id, add_size, group_id)) {
        *error = 1;
        return 0;
    }

    return h_virt;
}

void memslot_info_init(RedMemSlotInfo *info,
                       uint32_t num_groups, uint32_t num_slots,
                       uint8_t generation_bits,
                       uint8_t id_bits,
                       uint8_t internal_groupslot_id)
{
    uint32_t i;

    spice_assert(num_slots > 0);
    spice_assert(num_groups > 0);

    info->num_memslots_groups = num_groups;
    info->num_memslots = num_slots;
    info->generation_bits = generation_bits;
    info->mem_slot_bits = id_bits;
    info->internal_groupslot_id = internal_groupslot_id;

    info->mem_slots = g_new(MemSlot *, num_groups);

    for (i = 0; i < num_groups; ++i) {
        info->mem_slots[i] = g_new0(MemSlot, num_slots);
    }

    /* TODO: use QXLPHYSICAL_BITS */
    info->memslot_id_shift = 64 - info->mem_slot_bits;
    info->memslot_gen_shift = 64 - (info->mem_slot_bits + info->generation_bits);
    info->memslot_gen_mask = ~((QXLPHYSICAL)-1 << info->generation_bits);
    info->memslot_clean_virt_mask = (((QXLPHYSICAL)(-1)) >>
                                       (info->mem_slot_bits + info->generation_bits));
}

void memslot_info_destroy(RedMemSlotInfo *info)
{
    uint32_t i;

    for (i = 0; i < info->num_memslots_groups; ++i) {
        g_free(info->mem_slots[i]);
    }
    g_free(info->mem_slots);
}

void memslot_info_add_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id,
                           uint64_t addr_delta, unsigned long virt_start, unsigned long virt_end,
                           uint32_t generation)
{
    spice_assert(info->num_memslots_groups > slot_group_id);
    spice_assert(info->num_memslots > slot_id);

    info->mem_slots[slot_group_id][slot_id].address_delta = addr_delta;
    info->mem_slots[slot_group_id][slot_id].virt_start_addr = virt_start;
    info->mem_slots[slot_group_id][slot_id].virt_end_addr = virt_end;
    info->mem_slots[slot_group_id][slot_id].generation = generation;
}

void memslot_info_del_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id)
{
    spice_return_if_fail(info->num_memslots_groups > slot_group_id);
    spice_return_if_fail(info->num_memslots > slot_id);

    info->mem_slots[slot_group_id][slot_id].virt_start_addr = 0;
    info->mem_slots[slot_group_id][slot_id].virt_end_addr = 0;
}

void memslot_info_reset(RedMemSlotInfo *info)
{
        uint32_t i;
        for (i = 0; i < info->num_memslots_groups; ++i) {
            memset(info->mem_slots[i], 0, sizeof(MemSlot) * info->num_memslots);
        }
}