File: data.c

package info (click to toggle)
spim 6.1-3
  • links: PTS
  • area: non-free
  • in suites: hamm, slink
  • size: 1,944 kB
  • ctags: 2,839
  • sloc: asm: 10,339; ansic: 9,404; yacc: 1,867; makefile: 713; lex: 583; sh: 95
file content (435 lines) | stat: -rw-r--r-- 8,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* SPIM S20 MIPS simulator.
   Code to manipulate data segment directives.

   Copyright (C) 1990-1994 by James Larus (larus@cs.wisc.edu).
   ALL RIGHTS RESERVED.

   SPIM is distributed under the following conditions:

     You may make copies of SPIM for your own use and modify those copies.

     All copies of SPIM must retain my name and copyright notice.

     You may not sell SPIM or distributed SPIM in conjunction with a
     commerical product or service without the expressed written consent of
     James Larus.

   THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
   IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
   WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   PURPOSE. */


/* $Header: /u/l/a/larus/Software/SPIM/src/RCS/data.c,v 3.16 1998/01/14 20:57:44 larus Exp $
*/


#include "spim.h"
#include "spim-utils.h"
#include "inst.h"
#include "mem.h"
#include "reg.h"
#include "sym-tbl.h"
#include "parser.h"
#include "run.h"
#include "data.h"


/* The first 64K of the data segment are dedicated to small data
   segment, which is pointed to by $gp. This register points to the
   middle of the segment, so we can use the full offset field in an
   instruction. */

static mem_addr next_data_pc;	/* Location for next datum in user process */

static mem_addr next_k_data_pc;	/* Location for next datum in kernel */

static int in_kernel = 0;	/* Non-zero => data goes to kdata, not data */

#define DATA_PC (in_kernel ? next_k_data_pc : next_data_pc)

#define BUMP_DATA_PC(DELTA) {if (in_kernel) \
				next_k_data_pc += DELTA; \
				else {next_data_pc += DELTA;}}

static mem_addr next_gp_item_addr; /* Address of next item accessed off $gp */

static int auto_alignment = 1;	/* Non-zero => align literal to natural bound*/



/* If TO_KERNEL is non-zero, subsequent data will be placed in the
   kernel data segment.  If it is zero, data will go to the user's data
   segment.*/

#ifdef __STDC__
void
user_kernel_data_segment (int to_kernel)
#else
void
user_kernel_data_segment (to_kernel)
int to_kernel;
#endif
{
    in_kernel = to_kernel;
}


#ifdef __STDC__
void
end_of_assembly_file (void)
#else
void
end_of_assembly_file ()
#endif
{
  in_kernel = 0;
  auto_alignment = 1;
}


/* Set the point at which the first datum is stored to be ADDRESS +
   64K.	 The 64K increment allocates an area pointed to by register
   $gp, which is initialized. */

#ifdef __STDC__
void
data_begins_at_point (mem_addr addr)
#else
void
data_begins_at_point (addr)
     mem_addr addr;
#endif
{
  if (bare_machine)
    next_data_pc = addr;
  else
    {
      next_gp_item_addr = addr;
      gp_midpoint = addr + 32*K;
      R[REG_GP] = gp_midpoint;
      next_data_pc = addr + 64 * K;
    }
}


/* Set the point at which the first datum is stored in the kernel's
   data segment. */

#ifdef __STDC__
void
k_data_begins_at_point (mem_addr addr)
#else
void
k_data_begins_at_point (addr)
     mem_addr addr;
#endif
{
    next_k_data_pc = addr;
}


/* Arrange that the next datum is stored on a memory boundary with its
   low ALIGNMENT bits equal to 0.  If argument is 0, disable automatic
   alignment.*/

#ifdef __STDC__
void
align_data (int alignment)
#else
void
align_data (alignment)
     int alignment;
#endif
{
  if (alignment == 0)
    auto_alignment = 0;
  else if (in_kernel)
    {
      next_k_data_pc =
	(next_k_data_pc + (1 << alignment) - 1) & (-1 << alignment);
      fix_current_label_address (next_k_data_pc);
    }
  else
    {
      next_data_pc = (next_data_pc + (1 << alignment) - 1) & (-1 << alignment);
      fix_current_label_address (next_data_pc);
    }
}


#ifdef __STDC__
void
set_data_alignment (int alignment)
#else
void
set_data_alignment (alignment)
     int alignment;
#endif
{
  if (auto_alignment)
    align_data (alignment);
}


#ifdef __STDC__
void
enable_data_alignment (void)
#else
void
enable_data_alignment ()
#endif
{
  auto_alignment = 1;
}


/* Set the location (in user or kernel data space) for the next datum. */

#ifdef __STDC__
void
set_data_pc (mem_addr addr)
#else
void
set_data_pc (addr)
     mem_addr addr;
#endif
{
  if (in_kernel)
    next_k_data_pc = addr;
  else
    next_data_pc = addr;
}


/* Return the address at which the next datum will be stored.  */

#ifdef __STDC__
mem_addr
current_data_pc (void)
#else
mem_addr
current_data_pc ()
#endif
{
  return (DATA_PC);
}


/* Bump the address at which the next data will be stored by VALUE
   bytes. */

#ifdef __STDC__
void
increment_data_pc (int value)
#else
void
increment_data_pc (value)
     int value;
#endif
{
  BUMP_DATA_PC (value);
}


/* Process a .extern NAME SIZE directive. */

#ifdef __STDC__
void
extern_directive (char *name, int size)
#else
void
extern_directive (name, size)
     char *name;
     int size;
#endif
{
  label *sym = make_label_global (name);

  if (!bare_machine
      && size > 0 && size <= SMALL_DATA_SEG_MAX_SIZE
      && next_gp_item_addr + size < gp_midpoint + 32*K)
    {
      sym->gp_flag = 1;
      sym->addr = next_gp_item_addr;
      next_gp_item_addr += size;
    }
}


/* Process a .lcomm NAME SIZE directive. */

#ifdef __STDC__
void
lcomm_directive (char *name, int size)
#else
void
lcomm_directive (name, size)
     char *name;
     int size;
#endif
{
  label *sym = lookup_label (name);

  if (!bare_machine
      && size > 0 && size <= SMALL_DATA_SEG_MAX_SIZE
      && next_gp_item_addr + size < gp_midpoint + 32*K)
    {
      sym->gp_flag = 1;
      sym->addr = next_gp_item_addr;
      next_gp_item_addr += size;
    }
  /* Don't need to initialize since memory starts with 0's */
}


/* Process a .ascii STRING or .asciiz STRING directive. */

#ifdef __STDC__
void
store_string (char *string, int length, int null_terminate)
#else
void
store_string (string, length, null_terminate)
     char *string;
     int length;
     int null_terminate;
#endif
{
  for ( ; length > 0; string ++, length --) {
    SET_MEM_BYTE (DATA_PC, *string);
    BUMP_DATA_PC(1);
  }
  if (null_terminate)
    {
      SET_MEM_BYTE (DATA_PC, 0);
      BUMP_DATA_PC(1);
    }
}


/* Process a .byte EXPR directive. */

#ifdef __STDC__
void
store_byte (int value)
#else
void
store_byte (value)
     int value;
#endif
{
  SET_MEM_BYTE (DATA_PC, value);
  BUMP_DATA_PC (1);
}


/* Process a .half EXPR directive. */

#ifdef __STDC__
void
store_half (int value)
#else
void
store_half (value)
     int value;
#endif
{
  if (DATA_PC & 0x1)
    {
#ifdef BIGENDIAN
      store_byte ((value >> 8) & 0xff);
      store_byte (value & 0xff);
#else
      store_byte (value & 0xff);
      store_byte ((value >> 8) & 0xff);
#endif
    }
  else
    {
      SET_MEM_HALF (DATA_PC, value);
      BUMP_DATA_PC (BYTES_PER_WORD / 2);
    }
}


/* Process a .word EXPR directive. */

#ifdef __STDC__
void
store_word (int value)
#else
void
store_word (value)
     int value;
#endif
{
  if (DATA_PC & 0x3)
    {
#ifdef BIGENDIAN
      store_half ((value >> 16) & 0xffff);
      store_half (value & 0xffff);
#else
      store_half (value & 0xffff);
      store_half ((value >> 16) & 0xffff);
#endif
    }
  else
    {
      SET_MEM_WORD (DATA_PC, value);
      BUMP_DATA_PC (BYTES_PER_WORD);
    }
}


/* Process a .double EXPR directive. */

#ifdef __STDC__
void
store_double (double *value)
#else
void
store_double (value)
     double *value;
#endif
{
  if (DATA_PC & 0x7)
    {
      store_word (* ((mem_word *) value));
      store_word (* (((mem_word *) value) + 1));
    }
  else
    {
      SET_MEM_WORD (DATA_PC, * ((mem_word *) value));
      BUMP_DATA_PC (BYTES_PER_WORD);
      SET_MEM_WORD (DATA_PC, * (((mem_word *) value) + 1));
      BUMP_DATA_PC (BYTES_PER_WORD);
    }
}


/* Process a .float EXPR directive. */

#ifdef __STDC__
void
store_float (double *value)
#else
void
store_float (value)
     double *value;
#endif
{
  float val = (float)*value;
  float *vp = &val;

  if (DATA_PC & 0x3)
    {
      store_half (*(mem_word *) vp & 0xffff);
      store_half ((*(mem_word *) vp >> 16) & 0xffff);
    }
  else
    {
      SET_MEM_WORD (DATA_PC, *((mem_word *) vp));
      BUMP_DATA_PC (BYTES_PER_WORD);
    }
}