File: data.c

package info (click to toggle)
spim 8.0%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,736 kB
  • sloc: asm: 8,560; ansic: 8,437; yacc: 2,298; makefile: 1,107; lex: 706; sh: 219
file content (343 lines) | stat: -rw-r--r-- 7,644 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/* SPIM S20 MIPS simulator.
   Code to manipulate data segment directives.

   Copyright (c) 1990-2010, James R. Larus.
   All rights reserved.

   Redistribution and use in source and binary forms, with or without modification,
   are permitted provided that the following conditions are met:

   Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

   Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation and/or
   other materials provided with the distribution.

   Neither the name of the James R. Larus nor the names of its contributors may be
   used to endorse or promote products derived from this software without specific
   prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
   GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/


#include "spim.h"
#include "string-stream.h"
#include "spim-utils.h"
#include "inst.h"
#include "reg.h"
#include "mem.h"
#include "sym-tbl.h"
#include "parser.h"
#include "run.h"
#include "data.h"


/* The first 64K of the data segment are dedicated to small data
   segment, which is pointed to by $gp. This register points to the
   middle of the segment, so we can use the full offset field in an
   instruction. */

static mem_addr next_data_pc;	/* Location for next datum in user process */

static mem_addr next_k_data_pc;	/* Location for next datum in kernel */

static int in_kernel = 0;	/* Non-zero => data goes to kdata, not data */

#define DATA_PC (in_kernel ? next_k_data_pc : next_data_pc)

#define BUMP_DATA_PC(DELTA) {if (in_kernel) \
				next_k_data_pc += DELTA; \
				else {next_data_pc += DELTA;}}

static mem_addr next_gp_item_addr; /* Address of next item accessed off $gp */

static int auto_alignment = 1;	/* Non-zero => align literal to natural bound*/



/* If TO_KERNEL is non-zero, subsequent data will be placed in the
   kernel data segment.  If it is zero, data will go to the user's data
   segment.*/

void
user_kernel_data_segment (int to_kernel)
{
    in_kernel = to_kernel;
}


void
end_of_assembly_file ()
{
  in_kernel = 0;
  auto_alignment = 1;
}


/* Set the point at which the first datum is stored to be ADDRESS +
   64K.	 The 64K increment allocates an area pointed to by register
   $gp, which is initialized. */

void
data_begins_at_point (mem_addr addr)
{
  if (bare_machine)
    next_data_pc = addr;
  else
    {
      next_gp_item_addr = addr;
      gp_midpoint = addr + 32*K;
      R[REG_GP] = gp_midpoint;
      next_data_pc = addr + 64 * K;
    }
}


/* Set the point at which the first datum is stored in the kernel's
   data segment. */

void
k_data_begins_at_point (mem_addr addr)
{
    next_k_data_pc = addr;
}


/* Arrange that the next datum is stored on a memory boundary with its
   low ALIGNMENT bits equal to 0.  If argument is 0, disable automatic
   alignment.*/

void
align_data (int alignment)
{
  if (alignment == 0)
    auto_alignment = 0;
  else if (in_kernel)
    {
      next_k_data_pc =
	(next_k_data_pc + (1 << alignment) - 1) & (-1 << alignment);
      fix_current_label_address (next_k_data_pc);
    }
  else
    {
      next_data_pc = (next_data_pc + (1 << alignment) - 1) & (-1 << alignment);
      fix_current_label_address (next_data_pc);
    }
}


void
set_data_alignment (int alignment)
{
  if (auto_alignment)
    align_data (alignment);
}


void
enable_data_alignment ()
{
  auto_alignment = 1;
}


/* Set the location (in user or kernel data space) for the next datum. */

void
set_data_pc (mem_addr addr)
{
  if (in_kernel)
    next_k_data_pc = addr;
  else
    next_data_pc = addr;
}


/* Return the address at which the next datum will be stored.  */

mem_addr
current_data_pc ()
{
  return (DATA_PC);
}


/* Bump the address at which the next data will be stored by VALUE
   bytes. */

void
increment_data_pc (int value)
{
  BUMP_DATA_PC (value);
}


/* Process a .extern NAME SIZE directive. */

void
extern_directive (char *name, int size)
{
  label *sym = make_label_global (name);

  if (!bare_machine
      && size > 0 && size <= SMALL_DATA_SEG_MAX_SIZE
      && next_gp_item_addr + size < gp_midpoint + 32*K)
    {
      sym->gp_flag = 1;
      sym->addr = next_gp_item_addr;
      next_gp_item_addr += size;
    }
}


/* Process a .lcomm NAME SIZE directive. */

void
lcomm_directive (char *name, int size)
{
  if (!bare_machine
      && size > 0 && size <= SMALL_DATA_SEG_MAX_SIZE
      && next_gp_item_addr + size < gp_midpoint + 32*K)
    {
      label *sym = record_label (name, next_gp_item_addr, 1);
      sym->gp_flag = 1;

      next_gp_item_addr += size;
      /* Don't need to initialize since memory starts with 0's */
    }
  else
    {
      (void)record_label (name, next_data_pc, 1);

      for ( ; size > 0; size --)
	{
	  set_mem_byte (DATA_PC, 0);
	  BUMP_DATA_PC(1);
	}
    }
}


/* Process a .ascii STRING or .asciiz STRING directive. */

void
store_string (char *string, int length, int null_terminate)
{
  for ( ; length > 0; string ++, length --) {
    set_mem_byte (DATA_PC, *string);
    BUMP_DATA_PC(1);
  }
  if (null_terminate)
    {
      set_mem_byte (DATA_PC, 0);
      BUMP_DATA_PC(1);
    }
}


/* Process a .byte EXPR directive. */

void
store_byte (int value)
{
  set_mem_byte (DATA_PC, value);
  BUMP_DATA_PC (1);
}


/* Process a .half EXPR directive. */

void
store_half (int value)
{
  if ((DATA_PC & 0x1) != 0)
    {
#ifdef BIGENDIAN
      store_byte ((value >> 8) & 0xff);
      store_byte (value & 0xff);
#else
      store_byte (value & 0xff);
      store_byte ((value >> 8) & 0xff);
#endif
    }
  else
    {
      set_mem_half (DATA_PC, value);
      BUMP_DATA_PC (BYTES_PER_WORD / 2);
    }
}


/* Process a .word EXPR directive. */

void
store_word (int value)
{
  if ((DATA_PC & 0x3) != 0)
    {
#ifdef BIGENDIAN
      store_half ((value >> 16) & 0xffff);
      store_half (value & 0xffff);
#else
      store_half (value & 0xffff);
      store_half ((value >> 16) & 0xffff);
#endif
    }
  else
    {
      set_mem_word (DATA_PC, value);
      BUMP_DATA_PC (BYTES_PER_WORD);
    }
}


/* Process a .double EXPR directive. */

void
store_double (double *value)
{
  if ((DATA_PC & 0x7) != 0)
    {
      store_word (* ((mem_word *) value));
      store_word (* (((mem_word *) value) + 1));
    }
  else
    {
      set_mem_word (DATA_PC, *((mem_word *) value));
      BUMP_DATA_PC (BYTES_PER_WORD);
      set_mem_word (DATA_PC, *(((mem_word *) value) + 1));
      BUMP_DATA_PC (BYTES_PER_WORD);
    }
}


/* Process a .float EXPR directive. */

void
store_float (double *value)
{
  float val = (float)*value;
  float *vp = &val;

  if ((DATA_PC & 0x3) != 0)
    {
      store_half (*(mem_word *) vp & 0xffff);
      store_half ((*(mem_word *) vp >> 16) & 0xffff);
    }
  else
    {
      set_mem_word (DATA_PC, *((mem_word *) vp));
      BUMP_DATA_PC (BYTES_PER_WORD);
    }
}