File: run.c

package info (click to toggle)
spim 8.0%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,736 kB
  • sloc: asm: 8,560; ansic: 8,437; yacc: 2,298; makefile: 1,107; lex: 706; sh: 219
file content (1866 lines) | stat: -rw-r--r-- 41,946 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
/* SPIM S20 MIPS simulator.
   Execute SPIM instructions.

   Copyright (c) 1990-2010, James R. Larus.
   All rights reserved.

   Redistribution and use in source and binary forms, with or without modification,
   are permitted provided that the following conditions are met:

   Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

   Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation and/or
   other materials provided with the distribution.

   Neither the name of the James R. Larus nor the names of its contributors may be
   used to endorse or promote products derived from this software without specific
   prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
   GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/


#define NaN(X) ((X) != (X))

#include <math.h>
#include <stdio.h>

#ifdef WIN32
#define _WIN32_WINDOWS 0x0500
#define VC_EXTRALEAN
#include <Windows.h>
#else
#include <errno.h>
#include <signal.h>
#include <sys/time.h>
#endif

#include "spim.h"
#include "string-stream.h"
#include "spim-utils.h"
#include "inst.h"
#include "reg.h"
#include "mem.h"
#include "sym-tbl.h"
#include "y.tab.h"
#include "syscall.h"
#include "run.h"

int force_break = 0;	/* For the execution env. to force an execution break */

#ifndef _MSC_VER
extern int errno;
long atol (const char *);
#endif




/* Local functions: */

static void bump_CP0_timer ();
static void set_fpu_cc (int cond, int cc, int less, int equal, int unordered);
static void signed_multiply (reg_word v1, reg_word v2);
static void start_CP0_timer ();
#ifdef WIN32
void CALLBACK timer_completion_routine(LPVOID lpArgToCompletionRoutine,
				       DWORD dwTimerLowValue, DWORD dwTimerHighValue);
#endif
static void unsigned_multiply (reg_word v1, reg_word v2);


#define SIGN_BIT(X) ((X) & 0x80000000)

#define ARITH_OVFL(RESULT, OP1, OP2) (SIGN_BIT (OP1) == SIGN_BIT (OP2) \
				      && SIGN_BIT (OP1) != SIGN_BIT (RESULT))



/* True when delayed_branches is true and instruction is executing in delay
slot of another instruction. */
static int running_in_delay_slot = 0;


/* Executed delayed branch and jump instructions by running the
   instruction from the delay slot before transfering control.  Note,
   in branches that don't jump, the instruction in the delay slot is
   executed by falling through normally.

   We take advantage of the MIPS architecture, which leaves undefined
   the result of executing a delayed instruction in a delay slot.  Here
   we execute the second branch. */

#define BRANCH_INST(TEST, TARGET, NULLIFY)			\
		{						\
		  if (TEST)					\
		    {						\
		      mem_addr target = (TARGET);		\
		      if (delayed_branches)			\
			{					\
			  /* +4 since jump in delay slot */	\
			  target += BYTES_PER_WORD;		\
			}					\
		      JUMP_INST(target)				\
		     }						\
		  else if (NULLIFY)				\
		    {						\
		      /* If test fails and nullify bit set, skip\
			 instruction in delay slot. */		\
		      PC += BYTES_PER_WORD;			\
		    }						\
		 }


#define JUMP_INST(TARGET)					\
		{						\
		  if (delayed_branches)				\
		    {						\
		      running_in_delay_slot = 1;		\
		      run_spim (PC + BYTES_PER_WORD, 1, display);\
		      running_in_delay_slot = 0;		\
		    }						\
		    /* -4 since PC is bumped after this inst */	\
		    PC = (TARGET) - BYTES_PER_WORD;		\
		 }


/* If the delayed_load flag is false, the result from a load is available
   immediate.  If the delayed_load flag is true, the result from a load is
   not available until the subsequent instruction has executed (as in the
   real machine). We need a two element shift register for the value and its
   destination, as the instruction following the load can itself be a load
   instruction. */

#define LOAD_INST(DEST_A, LD, MASK)				\
		 {						\
		  LOAD_INST_BASE (DEST_A, (LD & (MASK)))	\
		 }


#define LOAD_INST_BASE(DEST_A, VALUE)				\
		{						\
		  if (delayed_loads)				\
		    {						\
		      delayed_load_addr1 = (DEST_A);		\
		      delayed_load_value1 = (VALUE); 		\
		    }						\
		    else					\
		    {						\
		      *(DEST_A) = (VALUE);			\
		    }						\
		 }


#define DO_DELAYED_UPDATE()					\
		if (delayed_loads)				\
		  {						\
		    /* Check for delayed updates */		\
		    if (delayed_load_addr2 != NULL)		\
		      {						\
			*delayed_load_addr2 = delayed_load_value2; \
		      }						\
		    delayed_load_addr2 = delayed_load_addr1;	\
		    delayed_load_value2 = delayed_load_value1;	\
		    delayed_load_addr1 = NULL;			\
		   }



/* Run the program stored in memory, starting at address PC for
   STEPS_TO_RUN instruction executions.  If flag DISPLAY is non-zero, print
   each instruction before it executes. Return non-zero if program's
   execution can continue. */

int
run_spim (mem_addr initial_PC, int steps_to_run, int display)
{
  instruction *inst;
  static reg_word *delayed_load_addr1 = NULL, delayed_load_value1;
  static reg_word *delayed_load_addr2 = NULL, delayed_load_value2;
  int step, step_size, next_step;

  PC = initial_PC;
  if (!bare_machine && mapped_io)
    next_step = IO_INTERVAL;
  else
    next_step = steps_to_run;	/* Run to completion */

  /* Start a timer running */
  start_CP0_timer();

  for (step_size = MIN (next_step, steps_to_run);
       steps_to_run > 0;
       steps_to_run -= step_size, step_size = MIN (next_step, steps_to_run))
    {
      if (!bare_machine && mapped_io)
	/* Every IO_INTERVAL steps, check if memory-mapped IO registers
	   have changed. */
	check_memory_mapped_IO ();
      /* else run inner loop for all steps */

      if ((CP0_Status & CP0_Status_IE)
	  && !(CP0_Status & CP0_Status_EXL)
	  && ((CP0_Cause & CP0_Cause_IP) & (CP0_Status & CP0_Status_IM)))
	{
	  /* There is an interrupt to process if IE bit set, EXL bit not
	     set, and non-masked IP bit set */
	  raise_exception (ExcCode_Int);
	  /* Handle interrupt now, before instruction executes, so that
	     EPC points to unexecuted instructions, which is the one to
	     return to. */
	  handle_exception ();
	}

      for (step = 0; step < step_size; step += 1)
	{
	  if (force_break)
	    {
	      force_break = 0;
	      return (1);
	    }

	  R[0] = 0;		/* Maintain invariant value */

#ifdef WIN32
	  SleepEx(0, TRUE);	      /* Put thread in awaitable state for WaitableTimer */
#else
	  {
	    /* Poll for timer expiration */
	    struct itimerval time;
	    if (-1 == getitimer (ITIMER_REAL, &time))
	      {
		perror ("getitmer failed");
	      }
	    if (time.it_value.tv_usec == 0 && time.it_value.tv_sec == 0)
	      {
		/* Timer expired.*/
		bump_CP0_timer ();

		/* Restart timer for next interval. */
		time.it_interval.tv_sec = 0;
		time.it_interval.tv_usec = 0;
		time.it_value.tv_sec = 0;
		time.it_value.tv_usec = TIMER_TICK_MS * 1000;
		if (-1 == setitimer (ITIMER_REAL, &time, NULL))
		  {
		    perror ("setitmer failed");
		  }
	      }
	  }
#endif

	  exception_occurred = 0;
	  inst = read_mem_inst (PC);
	  if (exception_occurred) /* In reading instruction */
	    {
	      exception_occurred = 0;
	      handle_exception ();
	      continue;
	    }
	  else if (inst == NULL)
	    {
	      run_error ("Attempt to execute non-instruction at 0x%08x\n", PC);
	      return (0);
	    }
	  else if (EXPR (inst) != NULL
		   && EXPR (inst)->symbol != NULL
		   && EXPR (inst)->symbol->addr == 0)
	    {
	      error ("Instruction references undefined symbol at 0x%08x\n", PC);
	      print_inst (PC);
	      run_error ("");
	      return (0);
	    }

	  if (display)
	    print_inst (PC);

#ifdef TEST_ASM
	  test_assembly (inst);
#endif

	  DO_DELAYED_UPDATE ();

	  switch (OPCODE (inst))
	    {
	    case Y_ADD_OP:
	      {
		reg_word vs = R[RS (inst)], vt = R[RT (inst)];
		reg_word sum = vs + vt;

		if (ARITH_OVFL (sum, vs, vt))
		  RAISE_EXCEPTION (ExcCode_Ov, break);
		R[RD (inst)] = sum;
		break;
	      }

	    case Y_ADDI_OP:
	      {
		reg_word vs = R[RS (inst)], imm = (short) IMM (inst);
		reg_word sum = vs + imm;

		if (ARITH_OVFL (sum, vs, imm))
		  RAISE_EXCEPTION (ExcCode_Ov, break);
		R[RT (inst)] = sum;
		break;
	      }

	    case Y_ADDIU_OP:
	      R[RT (inst)] = R[RS (inst)] + (short) IMM (inst);
	      break;

	    case Y_ADDU_OP:
	      R[RD (inst)] = R[RS (inst)] + R[RT (inst)];
	      break;

	    case Y_AND_OP:
	      R[RD (inst)] = R[RS (inst)] & R[RT (inst)];
	      break;

	    case Y_ANDI_OP:
	      R[RT (inst)] = R[RS (inst)] & (0xffff & IMM (inst));
	      break;

	    case Y_BC2F_OP:
	    case Y_BC2FL_OP:
	    case Y_BC2T_OP:
	    case Y_BC2TL_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_BEQ_OP:
	      BRANCH_INST (R[RS (inst)] == R[RT (inst)],
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BEQL_OP:
	      BRANCH_INST (R[RS (inst)] == R[RT (inst)],
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BGEZ_OP:
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) == 0,
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BGEZL_OP:
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) == 0,
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BGEZAL_OP:
	      R[31] = PC + (delayed_branches ? 2 * BYTES_PER_WORD : BYTES_PER_WORD);
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) == 0,
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BGEZALL_OP:
	      R[31] = PC + (delayed_branches ? 2 * BYTES_PER_WORD : BYTES_PER_WORD);
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) == 0,
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BGTZ_OP:
	      BRANCH_INST (R[RS (inst)] != 0 && SIGN_BIT (R[RS (inst)]) == 0,
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BGTZL_OP:
	      BRANCH_INST (R[RS (inst)] != 0 && SIGN_BIT (R[RS (inst)]) == 0,
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BLEZ_OP:
	      BRANCH_INST (R[RS (inst)] == 0 || SIGN_BIT (R[RS (inst)]) != 0,
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BLEZL_OP:
	      BRANCH_INST (R[RS (inst)] == 0 || SIGN_BIT (R[RS (inst)]) != 0,
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BLTZ_OP:
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) != 0,
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BLTZL_OP:
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) != 0,
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BLTZAL_OP:
	      R[31] = PC + (delayed_branches ? 2 * BYTES_PER_WORD : BYTES_PER_WORD);
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) != 0,
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BLTZALL_OP:
	      R[31] = PC + (delayed_branches ? 2 * BYTES_PER_WORD : BYTES_PER_WORD);
	      BRANCH_INST (SIGN_BIT (R[RS (inst)]) != 0,
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BNE_OP:
	      BRANCH_INST (R[RS (inst)] != R[RT (inst)],
			   PC + IDISP (inst),
			   0);
	      break;

	    case Y_BNEL_OP:
	      BRANCH_INST (R[RS (inst)] != R[RT (inst)],
			   PC + IDISP (inst),
			   1);
	      break;

	    case Y_BREAK_OP:
	      if (RD (inst) == 1)
		/* Debugger breakpoint */
		RAISE_EXCEPTION (ExcCode_Bp, return (1))
	      else
		RAISE_EXCEPTION (ExcCode_Bp, break);

	    case Y_CACHE_OP:
	      break;		/* Memory details not implemented */

	    case Y_CFC0_OP:
	      R[RT (inst)] = CCR[0][RD (inst)];
	      break;

	    case Y_CFC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_CLO_OP:
	      {
		reg_word val = R[RS (inst)];
		int i;
		for (i = 31; 0 <= i; i -= 1)
		  if (((val >> i) & 0x1) == 0) break;

		R[RD (inst) ] = 31 - i;
		break;
	      }

	    case Y_CLZ_OP:
	      {
		reg_word val = R[RS (inst)];
		int i;
		for (i = 31; 0 <= i; i -= 1)
		  if (((val >> i) & 0x1) == 1) break;

		R[RD (inst) ] = 31 - i;
		break;
	      }

	    case Y_COP2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_CTC0_OP:
	      CCR[0][RD (inst)] = R[RT (inst)];
	      break;

	    case Y_CTC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_DIV_OP:
	      /* The behavior of this instruction is undefined on divide by
		 zero or overflow. */
	      if (R[RT (inst)] != 0
		  && !(R[RS (inst)] == 0x80000000 && R[RT (inst)] == 0xffffffff))
		{
		  LO = (reg_word) R[RS (inst)] / (reg_word) R[RT (inst)];
		  HI = (reg_word) R[RS (inst)] % (reg_word) R[RT (inst)];
		}
	      break;

	    case Y_DIVU_OP:
	      /* The behavior of this instruction is undefined on divide by
		 zero or overflow. */
	      if (R[RT (inst)] != 0
		  && !(R[RS (inst)] == 0x80000000 && R[RT (inst)] == 0xffffffff))
		{
		  LO = (u_reg_word) R[RS (inst)] / (u_reg_word) R[RT (inst)];
		  HI = (u_reg_word) R[RS (inst)] % (u_reg_word) R[RT (inst)];
		}
	      break;

	    case Y_ERET_OP:
	      {
		CP0_Status &= ~CP0_Status_EXL;	/* Clear EXL bit */
		JUMP_INST (CP0_EPC); 		/* Jump to EPC */
	      }
	      break;

	    case Y_J_OP:
	      JUMP_INST (((PC & 0xf0000000) | TARGET (inst) << 2));
	      break;

	    case Y_JAL_OP:
	      if (delayed_branches)
		R[31] = PC + 2 * BYTES_PER_WORD;
	      else
		R[31] = PC + BYTES_PER_WORD;
	      JUMP_INST (((PC & 0xf0000000) | (TARGET (inst) << 2)));
	      break;

	    case Y_JALR_OP:
	      {
		mem_addr tmp = R[RS (inst)];

		if (delayed_branches)
		  R[RD (inst)] = PC + 2 * BYTES_PER_WORD;
		else
		  R[RD (inst)] = PC + BYTES_PER_WORD;
		JUMP_INST (tmp);
	      }
	      break;

	    case Y_JR_OP:
	      {
		mem_addr tmp = R[RS (inst)];

		JUMP_INST (tmp);
	      }
	      break;

	    case Y_LB_OP:
	      LOAD_INST (&R[RT (inst)],
			 read_mem_byte (R[BASE (inst)] + IOFFSET (inst)),
			 0xffffffff);
	      break;

	    case Y_LBU_OP:
	      LOAD_INST (&R[RT (inst)],
			 read_mem_byte (R[BASE (inst)] + IOFFSET (inst)),
			 0xff);
	      break;

	    case Y_LH_OP:
	      LOAD_INST (&R[RT (inst)],
			 read_mem_half (R[BASE (inst)] + IOFFSET (inst)),
			 0xffffffff);
	      break;

	    case Y_LHU_OP:
	      LOAD_INST (&R[RT (inst)],
			 read_mem_half (R[BASE (inst)] + IOFFSET (inst)),
			 0xffff);
	      break;

	    case Y_LL_OP:
	      /* Uniprocess, so this instruction is just a load */
	      LOAD_INST (&R[RT (inst)],
			 read_mem_word (R[BASE (inst)] + IOFFSET (inst)),
			 0xffffffff);
	      break;

	    case Y_LUI_OP:
	      R[RT (inst)] = (IMM (inst) << 16) & 0xffff0000;
	      break;

	    case Y_LW_OP:
	      LOAD_INST (&R[RT (inst)],
			 read_mem_word (R[BASE (inst)] + IOFFSET (inst)),
			 0xffffffff);
	      break;

	    case Y_LDC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_LWC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_LWL_OP:
	      {
		mem_addr addr = R[BASE (inst)] + IOFFSET (inst);
		reg_word word;	/* Can't be register */
		int byte = addr & 0x3;
		reg_word reg_val = R[RT (inst)];

		word = read_mem_word (addr & 0xfffffffc);
		if (!exception_occurred)
#ifdef BIGENDIAN
		  switch (byte)
		    {
		    case 0:
		      word = word;
		      break;

		    case 1:
		      word = ((word & 0xffffff) << 8) | (reg_val & 0xff);
		      break;

		    case 2:
		      word = ((word & 0xffff) << 16) | (reg_val & 0xffff);
		      break;

		    case 3:
		      word = ((word & 0xff) << 24) | (reg_val & 0xffffff);
		      break;
		    }
#else
		switch (byte)
		  {
		  case 0:
		    word = ((word & 0xff) << 24) | (reg_val & 0xffffff);
		    break;

		  case 1:
		    word = ((word & 0xffff) << 16) | (reg_val & 0xffff);
		    break;

		  case 2:
		    word = ((word & 0xffffff) << 8) | (reg_val & 0xff);
		    break;

		  case 3:
		    word = word;
		    break;
		  }
#endif
		LOAD_INST_BASE (&R[RT (inst)], word);
		break;
	      }

	    case Y_LWR_OP:
	      {
		mem_addr addr = R[BASE (inst)] + IOFFSET (inst);
		reg_word word;	/* Can't be register */
		int byte = addr & 0x3;
		reg_word reg_val = R[RT (inst)];

		word = read_mem_word (addr & 0xfffffffc);
		if (!exception_occurred)
#ifdef BIGENDIAN
		  switch (byte)
		    {
		    case 0:
		      word = (reg_val & 0xffffff00) | ((unsigned)(word & 0xff000000) >> 24);
		      break;

		    case 1:
		      word = (reg_val & 0xffff0000) | ((unsigned)(word & 0xffff0000) >> 16);
		      break;

		    case 2:
		      word = (reg_val & 0xff000000) | ((unsigned)(word & 0xffffff00) >> 8);
		      break;

		    case 3:
		      word = word;
		      break;
		    }
#else
		switch (byte)
		  {
		  case 0:
		    word = word;
		    break;

		  case 1:
		    word = (reg_val & 0xff000000) | ((word & 0xffffff00) >> 8);
		    break;

		  case 2:
		    word = (reg_val & 0xffff0000) | ((word & 0xffff0000) >> 16);
		    break;

		  case 3:
		    word = (reg_val & 0xffffff00) | ((word & 0xff000000) >> 24);
		    break;
		  }
#endif
		LOAD_INST_BASE (&R[RT (inst)], word);
		break;
	      }

	    case Y_MADD_OP:
	    case Y_MADDU_OP:
	      {
		reg_word lo = LO, hi = HI;
		reg_word tmp;
		if (OPCODE (inst) == Y_MADD_OP)
		  {
		    signed_multiply(R[RS (inst)], R[RT (inst)]);
		  }
		else		/* Y_MADDU_OP */
		  {
		    unsigned_multiply(R[RS (inst)], R[RT (inst)]);
		  }
		tmp = lo + LO;
		if ((unsigned)tmp < (unsigned)LO || (unsigned)tmp < (unsigned)lo)
		  {
		    /* Addition of low-order word overflows */
		    hi += 1;
		  }
		LO = tmp;
		HI = hi + HI;
		break;
	      }

	    case Y_MFC0_OP:
	      R[RT (inst)] = CPR[0][FS (inst)];
	      break;

	    case Y_MFC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_MFHI_OP:
	      R[RD (inst)] = HI;
	      break;

	    case Y_MFLO_OP:
	      R[RD (inst)] = LO;
	      break;

	    case Y_MOVN_OP:
	      if (R[RT (inst)] != 0)
		R[RD (inst)] = R[RS (inst)];
	      break;

	    case Y_MOVZ_OP:
	      if (R[RT (inst)] == 0)
		R[RD (inst)] = R[RS (inst)];
	      break;

	    case Y_MSUB_OP:
	    case Y_MSUBU_OP:
	      {
		reg_word lo = LO, hi = HI;
		reg_word tmp;

		if (OPCODE (inst) == Y_MSUB_OP)
		  {
		    signed_multiply(R[RS (inst)], R[RT (inst)]);
		  }
		else		/* Y_MSUBU_OP */
		  {
		    unsigned_multiply(R[RS (inst)], R[RT (inst)]);
		  }

		tmp = lo - LO;
		if ((unsigned)LO > (unsigned)lo)
		  {
		    /* Subtraction of low-order word borrows */
		    hi -= 1;
		  }
		LO = tmp;
		HI = hi - HI;
		break;
	      }

	    case Y_MTC0_OP:
	      CPR[0][FS (inst)] = R[RT (inst)];
	      switch (FS (inst))
		{
		case CP0_Compare_Reg:
		  CP0_Cause &= ~CP0_Cause_IP7;	/* Writing clears HW interrupt 5 */
		  break;

		case CP0_Status_Reg:
		  CP0_Status &= CP0_Status_Mask;
		  CP0_Status |= ((CP0_Status_CU & 0x30000000) | CP0_Status_UM);
		  break;

		case CP0_Cause_Reg:
		  CPR[0][FS (inst)] &= CP0_Cause_Mask;
		  break;

		case CP0_Config_Reg:
		  CPR[0][FS (inst)] &= CP0_Config_Mask;
		  break;

		default:
		  break;
		}
	      break;

	    case Y_MTC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_MTHI_OP:
	      HI = R[RS (inst)];
	      break;

	    case Y_MTLO_OP:
	      LO = R[RS (inst)];
	      break;

	    case Y_MUL_OP:
	      signed_multiply(R[RS (inst)], R[RT (inst)]);
	      R[RD (inst)] = LO;
	      break;

	    case Y_MULT_OP:
	      signed_multiply(R[RS (inst)], R[RT (inst)]);
	      break;

	    case Y_MULTU_OP:
	      unsigned_multiply (R[RS (inst)], R[RT (inst)]);
	      break;

	    case Y_NOR_OP:
	      R[RD (inst)] = ~ (R[RS (inst)] | R[RT (inst)]);
	      break;

	    case Y_OR_OP:
	      R[RD (inst)] = R[RS (inst)] | R[RT (inst)];
	      break;

	    case Y_ORI_OP:
	      R[RT (inst)] = R[RS (inst)] | (0xffff & IMM (inst));
	      break;

	    case Y_PREF_OP:
	      break;		/* Memory details not implemented */

	    case Y_RFE_OP:
#ifdef MIPS1
	      /* This is MIPS-I, not compatible with MIPS32 or the
		 definition of the bits in the CP0 Status register in that
		 architecture. */
	      CP0_Status = (CP0_Status & 0xfffffff0) | ((CP0_Status & 0x3c) >> 2);
#else
	      RAISE_EXCEPTION (ExcCode_RI, {}); /* Not MIPS32 instruction */
#endif
	      break;

	    case Y_SB_OP:
	      set_mem_byte (R[BASE (inst)] + IOFFSET (inst), R[RT (inst)]);
	      break;

	    case Y_SC_OP:
	      /* Uniprocessor, so instruction is just a store */
	      set_mem_word (R[BASE (inst)] + IOFFSET (inst), R[RT (inst)]);
	      break;

	    case Y_SDC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_SH_OP:
	      set_mem_half (R[BASE (inst)] + IOFFSET (inst), R[RT (inst)]);
	      break;

	    case Y_SLL_OP:
	      {
		int shamt = SHAMT (inst);

		if (shamt >= 0 && shamt < 32)
		  R[RD (inst)] = R[RT (inst)] << shamt;
		else
		  R[RD (inst)] = R[RT (inst)];
		break;
	      }

	    case Y_SLLV_OP:
	      {
		int shamt = (R[RS (inst)] & 0x1f);

		if (shamt >= 0 && shamt < 32)
		  R[RD (inst)] = R[RT (inst)] << shamt;
		else
		  R[RD (inst)] = R[RT (inst)];
		break;
	      }

	    case Y_SLT_OP:
	      if (R[RS (inst)] < R[RT (inst)])
		R[RD (inst)] = 1;
	      else
		R[RD (inst)] = 0;
	      break;

	    case Y_SLTI_OP:
	      if (R[RS (inst)] < (short) IMM (inst))
		R[RT (inst)] = 1;
	      else
		R[RT (inst)] = 0;
	      break;

	    case Y_SLTIU_OP:
	      {
		int x = (short) IMM (inst);

		if ((u_reg_word) R[RS (inst)] < (u_reg_word) x)
		  R[RT (inst)] = 1;
		else
		  R[RT (inst)] = 0;
		break;
	      }

	    case Y_SLTU_OP:
	      if ((u_reg_word) R[RS (inst)] < (u_reg_word) R[RT (inst)])
		R[RD (inst)] = 1;
	      else
		R[RD (inst)] = 0;
	      break;

	    case Y_SRA_OP:
	      {
		int shamt = SHAMT (inst);
		reg_word val = R[RT (inst)];

		if (shamt >= 0 && shamt < 32)
		  R[RD (inst)] = val >> shamt;
		else
		  R[RD (inst)] = val;
		break;
	      }

	    case Y_SRAV_OP:
	      {
		int shamt = R[RS (inst)] & 0x1f;
		reg_word val = R[RT (inst)];

		if (shamt >= 0 && shamt < 32)
		  R[RD (inst)] = val >> shamt;
		else
		  R[RD (inst)] = val;
		break;
	      }

	    case Y_SRL_OP:
	      {
		int shamt = SHAMT (inst);
		u_reg_word val = R[RT (inst)];

		if (shamt >= 0 && shamt < 32)
		  R[RD (inst)] = val >> shamt;
		else
		  R[RD (inst)] = val;
		break;
	      }

	    case Y_SRLV_OP:
	      {
		int shamt = R[RS (inst)] & 0x1f;
		u_reg_word val = R[RT (inst)];

		if (shamt >= 0 && shamt < 32)
		  R[RD (inst)] = val >> shamt;
		else
		  R[RD (inst)] = val;
		break;
	      }

	    case Y_SUB_OP:
	      {
		reg_word vs = R[RS (inst)], vt = R[RT (inst)];
		reg_word diff = vs - vt;

		if (SIGN_BIT (vs) != SIGN_BIT (vt)
		    && SIGN_BIT (vs) != SIGN_BIT (diff))
		  RAISE_EXCEPTION (ExcCode_Ov, break);
		R[RD (inst)] = diff;
		break;
	      }

	    case Y_SUBU_OP:
	      R[RD (inst)] = (u_reg_word)R[RS (inst)]-(u_reg_word)R[RT (inst)];
	      break;

	    case Y_SW_OP:
	      set_mem_word (R[BASE (inst)] + IOFFSET (inst), R[RT (inst)]);
	      break;

	    case Y_SWC2_OP:
	      RAISE_EXCEPTION (ExcCode_CpU, {}); /* No Coprocessor 2 */
	      break;

	    case Y_SWL_OP:
	      {
		mem_addr addr = R[BASE (inst)] + IOFFSET (inst);
		mem_word data;
		reg_word reg = R[RT (inst)];
		int byte = addr & 0x3;

		data = read_mem_word (addr & 0xfffffffc);
#ifdef BIGENDIAN
		switch (byte)
		  {
		  case 0:
		    data = reg;
		    break;

		  case 1:
		    data = (data & 0xff000000) | (reg >> 8 & 0xffffff);
		    break;

		  case 2:
		    data = (data & 0xffff0000) | (reg >> 16 & 0xffff);
		    break;

		  case 3:
		    data = (data & 0xffffff00) | (reg >> 24 & 0xff);
		    break;
		  }
#else
		switch (byte)
		  {
		  case 0:
		    data = (data & 0xffffff00) | (reg >> 24 & 0xff);
		    break;

		  case 1:
		    data = (data & 0xffff0000) | (reg >> 16 & 0xffff);
		    break;

		  case 2:
		    data = (data & 0xff000000) | (reg >> 8 & 0xffffff);
		    break;

		  case 3:
		    data = reg;
		    break;
		  }
#endif
		set_mem_word (addr & 0xfffffffc, data);
		break;
	      }

	    case Y_SWR_OP:
	      {
		mem_addr addr = R[BASE (inst)] + IOFFSET (inst);
		mem_word data;
		reg_word reg = R[RT (inst)];
		int byte = addr & 0x3;

		data = read_mem_word (addr & 0xfffffffc);
#ifdef BIGENDIAN
		switch (byte)
		  {
		  case 0:
		    data = ((reg << 24) & 0xff000000) | (data & 0xffffff);
		    break;

		  case 1:
		    data = ((reg << 16) & 0xffff0000) | (data & 0xffff);
		    break;

		  case 2:
		    data = ((reg << 8) & 0xffffff00) | (data & 0xff) ;
		    break;

		  case 3:
		    data = reg;
		    break;
		  }
#else
		switch (byte)
		  {
		  case 0:
		    data = reg;
		    break;

		  case 1:
		    data = ((reg << 8) & 0xffffff00) | (data & 0xff) ;
		    break;

		  case 2:
		    data = ((reg << 16) & 0xffff0000) | (data & 0xffff);
		    break;

		  case 3:
		    data = ((reg << 24) & 0xff000000) | (data & 0xffffff);
		    break;
		  }
#endif
		set_mem_word (addr & 0xfffffffc, data);
		break;
	      }

	    case Y_SYNC_OP:
	      break;		/* Memory details not implemented */

	    case Y_SYSCALL_OP:
	      if (!do_syscall ())
		return (0);
	      break;

	    case Y_TEQ_OP:
	      if (R[RS (inst)] == R[RT (inst)])
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TEQI_OP:
	      if (R[RS (inst)] == IMM (inst))
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TGE_OP:
	      if (R[RS (inst)] >= R[RT (inst)])
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TGEI_OP:
	      if (R[RS (inst)] >= IMM (inst))
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TGEIU_OP:
	      if ((u_reg_word)R[RS (inst)] >= (u_reg_word)IMM (inst))
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TGEU_OP:
	      if ((u_reg_word)R[RS (inst)] >= (u_reg_word)R[RT (inst)])
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TLBP_OP:
	      RAISE_EXCEPTION(ExcCode_RI, {}); /* TLB not implemented */
	      break;

	    case Y_TLBR_OP:
	      RAISE_EXCEPTION(ExcCode_RI, {}); /* TLB not implemented */
	      break;

	    case Y_TLBWI_OP:
	      RAISE_EXCEPTION(ExcCode_RI, {}); /* TLB not implemented */
	      break;

	    case Y_TLBWR_OP:
	      RAISE_EXCEPTION(ExcCode_RI, {}); /* TLB not implemented */
	      break;

	    case Y_TLT_OP:
	      if (R[RS (inst)] < R[RT (inst)])
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TLTI_OP:
	      if (R[RS (inst)] < IMM (inst))
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TLTIU_OP:
	      if ((u_reg_word)R[RS (inst)] < (u_reg_word)IMM (inst))
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TLTU_OP:
	      if ((u_reg_word)R[RS (inst)] < (u_reg_word)R[RT (inst)])
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TNE_OP:
	      if (R[RS (inst)] != R[RT (inst)])
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_TNEI_OP:
	      if (R[RS (inst)] != IMM (inst))
		RAISE_EXCEPTION(ExcCode_Tr, {});
	      break;

	    case Y_XOR_OP:
	      R[RD (inst)] = R[RS (inst)] ^ R[RT (inst)];
	      break;

	    case Y_XORI_OP:
	      R[RT (inst)] = R[RS (inst)] ^ (0xffff & IMM (inst));
	      break;


	      /* FPA Operations */

	    case Y_ABS_S_OP:
	      SET_FPR_S (FD (inst), fabs (FPR_S (FS (inst))));
	      break;

	    case Y_ABS_D_OP:
	      SET_FPR_D (FD (inst), fabs (FPR_D (FS (inst))));
	      break;

	    case Y_ADD_S_OP:
	      SET_FPR_S (FD (inst), FPR_S (FS (inst)) + FPR_S (FT (inst)));
	      /* Should trap on inexact/overflow/underflow */
	      break;

	    case Y_ADD_D_OP:
	      SET_FPR_D (FD (inst), FPR_D (FS (inst)) + FPR_D (FT (inst)));
	      /* Should trap on inexact/overflow/underflow */
	      break;

	    case Y_BC1F_OP:
	    case Y_BC1FL_OP:
	    case Y_BC1T_OP:
	    case Y_BC1TL_OP:
	      {
		int cc = CC (inst);
		int nd = ND (inst);	/* 1 => nullify */
		int tf = TF (inst);	/* 0 => BC1F, 1 => BC1T */
		BRANCH_INST ((FCCR & (1 << cc)) == (tf << cc),
			     PC + IDISP (inst),
			     nd);
		break;
	      }

	    case Y_C_F_S_OP:
	    case Y_C_UN_S_OP:
	    case Y_C_EQ_S_OP:
	    case Y_C_UEQ_S_OP:
	    case Y_C_OLT_S_OP:
	    case Y_C_OLE_S_OP:
	    case Y_C_ULT_S_OP:
	    case Y_C_ULE_S_OP:
	    case Y_C_SF_S_OP:
	    case Y_C_NGLE_S_OP:
	    case Y_C_SEQ_S_OP:
	    case Y_C_NGL_S_OP:
	    case Y_C_LT_S_OP:
	    case Y_C_NGE_S_OP:
	    case Y_C_LE_S_OP:
	    case Y_C_NGT_S_OP:
	      {
		float v1 = FPR_S (FS (inst)), v2 = FPR_S (FT (inst));
		double dv1 = v1, dv2 = v2;
		int cond = COND (inst);
		int cc = FD (inst);

		if (NaN (dv1) || NaN (dv2))
		  {
		    if (cond & COND_IN)
		      {
			RAISE_EXCEPTION (ExcCode_FPE, break);
		      }
		    set_fpu_cc (cond, cc, 0, 0, 1);
		  }
		else
		  {
		    set_fpu_cc (cond, cc, v1 < v2, v1 == v2, 0);
		  }
	      }
	      break;

	    case Y_C_F_D_OP:
	    case Y_C_UN_D_OP:
	    case Y_C_EQ_D_OP:
	    case Y_C_UEQ_D_OP:
	    case Y_C_OLT_D_OP:
	    case Y_C_OLE_D_OP:
	    case Y_C_ULT_D_OP:
	    case Y_C_ULE_D_OP:
	    case Y_C_SF_D_OP:
	    case Y_C_NGLE_D_OP:
	    case Y_C_SEQ_D_OP:
	    case Y_C_NGL_D_OP:
	    case Y_C_LT_D_OP:
	    case Y_C_NGE_D_OP:
	    case Y_C_LE_D_OP:
	    case Y_C_NGT_D_OP:
	      {
		double v1 = FPR_D (FS (inst)), v2 = FPR_D (FT (inst));
		int cond = COND (inst);
		int cc = FD (inst);

		if (NaN (v1) || NaN (v2))
		  {
		    if (cond & COND_IN)
		      {
			RAISE_EXCEPTION (ExcCode_FPE, break);
		      }
		    set_fpu_cc (cond, cc, 0, 0, 1);
		  }
		else
		  {
		    set_fpu_cc (cond, cc, v1 < v2, v1 == v2, 0);
		  }
	      }
	      break;

	    case Y_CFC1_OP:
	      R[RT (inst)] = FCR[FS (inst)];
	      break;

	    case Y_CTC1_OP:
	      FCR[FS (inst)] = R[RT (inst)];

	      if (FIR_REG == FS (inst))
		{
		  /* Read only register */
		  FIR = FIR_MASK;
		}
	      else if (FCCR_REG == FS (inst))
		{
		  /* FCC bits in FCSR and FCCR linked */
		  FCSR = (FCSR & ~0xfe400000)
		    | ((FCCR & 0xfe) << 24)
		    | ((FCCR & 0x1) << 23);
		  FCCR &= FCCR_MASK;
		}
	      else if (FCSR_REG == FS (inst))
		{
		  /* FCC bits in FCSR and FCCR linked */
		  FCCR = ((FCSR >> 24) & 0xfe) | ((FCSR >> 23) & 0x1);
		  FCSR &= FCSR_MASK;
		  if ((R[RT (inst)] & ~FCSR_MASK) != 0)
		    /* Trying to set unsupported mode */
		    RAISE_EXCEPTION (ExcCode_FPE, {});
		}
	      break;

	    case Y_CEIL_W_D_OP:
	      {
		double val = FPR_D (FS (inst));

		SET_FPR_W (FD (inst), (int32)ceil (val));
		break;
	      }

	    case Y_CEIL_W_S_OP:
	      {
		double val = (double)FPR_S (FS (inst));

		SET_FPR_W (FD (inst), (int32)ceil (val));
		break;
	      }

	    case Y_CVT_D_S_OP:
	      {
		double val = FPR_S (FS (inst));

		SET_FPR_D (FD (inst), val);
		break;
	      }

	    case Y_CVT_D_W_OP:
	      {
		double val = (double)FPR_W (FS (inst));

		SET_FPR_D (FD (inst), val);
		break;
	      }

	    case Y_CVT_S_D_OP:
	      {
		float val = (float)FPR_D (FS (inst));

		SET_FPR_S (FD (inst), val);
		break;
	      }

	    case Y_CVT_S_W_OP:
	      {
		float val = (float)FPR_W (FS (inst));

		SET_FPR_S (FD (inst), val);
		break;
	      }

	    case Y_CVT_W_D_OP:
	      {
		int val = (int32)FPR_D (FS (inst));

		SET_FPR_W (FD (inst), val);
		break;
	      }

	    case Y_CVT_W_S_OP:
	      {
		int val = (int32)FPR_S (FS (inst));

		SET_FPR_W (FD (inst), val);
		break;
	      }

	    case Y_DIV_S_OP:
	      SET_FPR_S (FD (inst), FPR_S (FS (inst)) / FPR_S (FT (inst)));
	      break;

	    case Y_DIV_D_OP:
	      SET_FPR_D (FD (inst), FPR_D (FS (inst)) / FPR_D (FT (inst)));
	      break;

	    case Y_FLOOR_W_D_OP:
	      {
		double val = FPR_D (FS (inst));

		SET_FPR_W (FD (inst), (int32)floor (val));
		break;
	      }

	    case Y_FLOOR_W_S_OP:
	      {
		double val = (double)FPR_S (FS (inst));

		SET_FPR_W (FD (inst), (int32)floor (val));
		break;
	      }

	    case Y_LDC1_OP:
	      {
		mem_addr addr = R[BASE (inst)] + IOFFSET (inst);
		if ((addr & 0x3) != 0)
		  RAISE_EXCEPTION (ExcCode_AdEL, CP0_BadVAddr = addr);

		LOAD_INST ((reg_word *) &FPR_S(FT (inst)),
			   read_mem_word (addr),
			   0xffffffff);
		LOAD_INST ((reg_word *) &FPR_S(FT (inst) + 1),
			   read_mem_word (addr + sizeof(mem_word)),
			   0xffffffff);
		break;
	      }

	    case Y_LWC1_OP:
	      LOAD_INST ((reg_word *) &FPR_S(FT (inst)),
			 read_mem_word (R[BASE (inst)] + IOFFSET (inst)),
			 0xffffffff);
	      break;

	    case Y_MFC1_OP:
	      {
		float val = FPR_S(FS (inst));
		reg_word *vp = (reg_word *) &val;

		R[RT (inst)] = *vp; /* Fool coercion */
		break;
	      }

	    case Y_MOV_S_OP:
	      SET_FPR_S (FD (inst), FPR_S (FS (inst)));
	      break;

	    case Y_MOV_D_OP:
	      SET_FPR_D (FD (inst), FPR_D (FS (inst)));
	      break;

	    case Y_MOVF_OP:
	      {
		int cc = CC (inst);
		if ((FCCR & (1 << cc)) == 0)
		  R[RD (inst)] = R[RS (inst)];
		break;
	      }

	    case Y_MOVF_D_OP:
	      {
		int cc = CC (inst);
		if ((FCCR & (1 << cc)) == 0)
		  SET_FPR_D (FD (inst), FPR_D (FS (inst)));
		break;
	      }

	    case Y_MOVF_S_OP:
	      {
		int cc = CC (inst);
		if ((FCCR & (1 << cc)) == 0)
		  SET_FPR_S (FD (inst), FPR_S (FS (inst)));
		break;

	      }

	    case Y_MOVN_D_OP:
	      {
		if (R[RT (inst)] != 0)
		  SET_FPR_D (FD (inst), FPR_D (FS (inst)));
		break;
	      }

	    case Y_MOVN_S_OP:
	      {
		if (R[RT (inst)] != 0)
		  SET_FPR_S (FD (inst), FPR_S (FS (inst)));
		break;
	      }

	    case Y_MOVT_OP:
	      {
		int cc = CC (inst);
		if ((FCCR & (1 << cc)) != 0)
		  R[RD (inst)] = R[RS (inst)];
		break;
	      }

	    case Y_MOVT_D_OP:
	      {
		int cc = CC (inst);
		if ((FCCR & (1 << cc)) != 0)
		  SET_FPR_D (FD (inst), FPR_D (FS (inst)));
		break;
	      }

	    case Y_MOVT_S_OP:
	      {
		int cc = CC (inst);
		if ((FCCR & (1 << cc)) != 0)
		  SET_FPR_S (FD (inst), FPR_S (FS (inst)));
		break;

	      }

	    case Y_MOVZ_D_OP:
	      {
		if (R[RT (inst)] == 0)
		  SET_FPR_D (FD (inst), FPR_D (FS (inst)));
		break;
	      }

	    case Y_MOVZ_S_OP:
	      {
		if (R[RT (inst)] == 0)
		  SET_FPR_S (FD (inst), FPR_S (FS (inst)));
		break;

	      }

	    case Y_MTC1_OP:
	      {
		reg_word word = R[RT (inst)];
		float *wp = (float *) &word;

		SET_FPR_S(FS (inst), *wp); /* fool coercion */
		break;
	      }

	    case Y_MUL_S_OP:
	      SET_FPR_S (FD (inst), FPR_S (FS (inst)) * FPR_S (FT (inst)));
	      break;

	    case Y_MUL_D_OP:
	      SET_FPR_D (FD (inst), FPR_D (FS (inst)) * FPR_D (FT (inst)));
	      break;

	    case Y_NEG_S_OP:
	      SET_FPR_S (FD (inst), -FPR_S (FS (inst)));
	      break;

	    case Y_NEG_D_OP:
	      SET_FPR_D (FD (inst), -FPR_D (FS (inst)));
	      break;

	    case Y_ROUND_W_D_OP:
	      {
		double val = FPR_D (FS (inst));

		SET_FPR_W (FD (inst), (int32)(val + 0.5)); /* Casting truncates */
		break;
	      }

	    case Y_ROUND_W_S_OP:
	      {
		double val = (double)FPR_S (FS (inst));

		SET_FPR_W (FD (inst), (int32)(val + 0.5)); /* Casting truncates */
		break;
	      }

	    case Y_SDC1_OP:
	      {
		double val = FPR_D (RT (inst));
		reg_word *vp = (reg_word *) &val;
		mem_addr addr = R[BASE (inst)] + IOFFSET (inst);
		if ((addr & 0x3) != 0)
		  RAISE_EXCEPTION (ExcCode_AdEL, CP0_BadVAddr = addr);

		set_mem_word (addr, *vp);
		set_mem_word (addr + sizeof(mem_word), *(vp + 1));
		break;
	      }

	    case Y_SQRT_D_OP:
	      SET_FPR_D (FD (inst), sqrt (FPR_D (FS (inst))));
	      break;

	    case Y_SQRT_S_OP:
	      SET_FPR_S (FD (inst), sqrt (FPR_S (FS (inst))));
	      break;

	    case Y_SUB_S_OP:
	      SET_FPR_S (FD (inst), FPR_S (FS (inst)) - FPR_S (FT (inst)));
	      break;

	    case Y_SUB_D_OP:
	      SET_FPR_D (FD (inst), FPR_D (FS (inst)) - FPR_D (FT (inst)));
	      break;

	    case Y_SWC1_OP:
	      {
		float val = FPR_S(RT (inst));
		reg_word *vp = (reg_word *) &val;

		set_mem_word (R[BASE (inst)] + IOFFSET (inst), *vp);
		break;
	      }

	    case Y_TRUNC_W_D_OP:
	      {
		double val = FPR_D (FS (inst));

		SET_FPR_W (FD (inst), (int32)val); /* Casting truncates */
		break;
	      }

	    case Y_TRUNC_W_S_OP:
	      {
		double val = (double)FPR_S (FS (inst));

		SET_FPR_W (FD (inst), (int32)val); /* Casting truncates */
		break;
	      }

	    default:
	      fatal_error ("Unknown instruction type: %d\n", OPCODE (inst));
	      break;
	    }

	  /* After instruction executes: */
	  PC += BYTES_PER_WORD;

	  if (exception_occurred)
	    {
	      handle_exception ();
	    }
	}			/* End: for (step = 0; ... */
    }				/* End: for ( ; steps_to_run > 0 ... */

  /* Executed enought steps, return, but are able to continue. */
  return (1);
}


#ifdef WIN32
static void CALLBACK
timer_completion_routine(LPVOID lpArgToCompletionRoutine, DWORD dwTimerLowValue, DWORD dwTimerHighValue)
{
  bump_CP0_timer ();
}
#endif


/* Increment CP0 Count register and test if it matches the Compare
   register. If so, cause an interrupt. */

static void
bump_CP0_timer ()
{
  CP0_Count += 1;
  if (CP0_Count == CP0_Compare)
    {
      RAISE_INTERRUPT (7);
    }
}


static void
start_CP0_timer ()
{
#ifdef WIN32
  HANDLE timer = CreateWaitableTimer(NULL, TRUE, "SPIMTimer");
  if (NULL == timer)
    {
      error ("CreateWaitableTimer failed");
    }
  else
    {
      LARGE_INTEGER interval;
      interval.QuadPart = -10000 * TIMER_TICK_MS;  /* Unit is 100 nsec */

      if (!SetWaitableTimer (timer, &interval, 1, timer_completion_routine, 0, FALSE))
	{
	  error ("SetWaitableTimer failed");
	}
    }
#else
  /* Should use ITIMER_VIRTUAL delivering SIGVTALRM, but that does not seem
     to work under Cygwin, so we'll adopt the lowest common denominator.

     We ignore these signals, however, and read the timer with getitimer,
     since signals interrupt I/O calls, such as read, and make user
     interaction with SPIM work very poorly. Since speed isn't an important
     aspect of SPIM, polling isn't a big deal. */
  if (-1 == (int)signal (SIGALRM, SIG_IGN))
    {
      perror ("signal failed");
    }
  else
    {
      /* Start a non-periodic timer for TIMER_TICK_MS microseconds. */
      struct itimerval time;
      time.it_interval.tv_sec = 0;
      time.it_interval.tv_usec = 0;
      time.it_value.tv_sec = 0;
      time.it_value.tv_usec = TIMER_TICK_MS * 1000;
      if (-1 == setitimer (ITIMER_REAL, &time, NULL))
	{
	  perror ("setitmer failed");
	}
    }
#endif
}


/* Multiply two 32-bit numbers, V1 and V2, to produce a 64 bit result in
   the HI/LO registers.	 The algorithm is high-school math:

	 A B
       x C D
       ------
       AD || BD
 AC || CB || 0

 where A and B are the high and low short words of V1, C and D are the short
 words of V2, AD is the product of A and D, and X || Y is (X << 16) + Y.
 Since the algorithm is programmed in C, we need to be careful not to
 overflow. */

static void
unsigned_multiply (reg_word v1, reg_word v2)
{
  u_reg_word a, b, c, d;
  u_reg_word bd, ad, cb, ac;
  u_reg_word mid, mid2, carry_mid = 0;

  a = (v1 >> 16) & 0xffff;
  b = v1 & 0xffff;
  c = (v2 >> 16) & 0xffff;
  d = v2 & 0xffff;

  bd = b * d;
  ad = a * d;
  cb = c * b;
  ac = a * c;

  mid = ad + cb;
  if (mid < ad || mid < cb)
    /* Arithmetic overflow or carry-out */
    carry_mid = 1;

  mid2 = mid + ((bd >> 16) & 0xffff);
  if (mid2 < mid || mid2 < ((bd >> 16) & 0xffff))
    /* Arithmetic overflow or carry-out */
    carry_mid += 1;

  LO = (bd & 0xffff) | ((mid2 & 0xffff) << 16);
  HI = ac + (carry_mid << 16) + ((mid2 >> 16) & 0xffff);
}


static void
signed_multiply (reg_word v1, reg_word v2)
{
  int neg_sign = 0;

  if (v1 < 0)
    {
      v1 = - v1;
      neg_sign = 1;
    }
  if (v2 < 0)
    {
      v2 = - v2;
      neg_sign = ! neg_sign;
    }

  unsigned_multiply (v1, v2);
  if (neg_sign)
    {
      LO = ~ LO;
      HI = ~ HI;
      LO += 1;
      if (LO == 0)
	HI += 1;
    }
}

static void
set_fpu_cc (int cond, int cc, int less, int equal, int unordered)
{
  int result;
  int fcsr_bit;

  result = 0;
  if (cond & COND_LT) result |= less;
  if (cond & COND_EQ) result |= equal;
  if (cond & COND_UN) result |= unordered;

  FCCR = (FCCR & ~(1 << cc)) | (result << cc);
  if (0 == cc)
    {
      fcsr_bit = 23;
    }
  else
    {
      fcsr_bit = 24 + cc;
    }
  FCSR = (FCSR & ~(1 << fcsr_bit)) | (result << fcsr_bit);
}


void
raise_exception (int excode)
{
  if (ExcCode_Int != excode
      || ((CP0_Status & CP0_Status_IE) /* Allow interrupt if IE and !EXL */
	  && !(CP0_Status & CP0_Status_EXL)))
    {
      /* Ignore interrupt exception when interrupts disabled.  */
      exception_occurred = 1;
      if (running_in_delay_slot)
	{
	  /* In delay slot */
	  if ((CP0_Status & CP0_Status_EXL) == 0)
	    {
	      /* Branch's addr */
	      CP0_EPC = ROUND_DOWN (PC - BYTES_PER_WORD, BYTES_PER_WORD);
	      /* Set BD bit to record that instruction is in delay slot */
	      CP0_Cause |= CP0_Cause_BD;
	    }
	}
      else
	{
	  /* Not in delay slot */
	  if ((CP0_Status & CP0_Status_EXL) == 0)
	    {
	      /* Faulting instruction's address */
	      CP0_EPC = ROUND_DOWN (PC, BYTES_PER_WORD);
	    }
	}
      /* ToDo: set CE field of Cause register to coprocessor causing exception */

      /* Record cause of exception */
      CP0_Cause = (CP0_Cause & ~CP0_Cause_ExcCode) | (excode << 2);

      /* Turn on EXL bit to prevent subsequent interrupts from affecting EPC */
      CP0_Status |= CP0_Status_EXL;

#ifdef MIPS1
      CP0_Status = (CP0_Status & 0xffffffc0) | ((CP0_Status & 0xf) << 2);
#endif
    }
}