1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
|
//===- OCLToSPIRV.cpp - Transform OCL to SPIR-V builtins --------*- C++ -*-===//
//
// The LLVM/SPIRV Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of Advanced Micro Devices, Inc., nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements preprocessing of OpenCL C built-in functions into SPIR-V
// friendly IR form for further translation into SPIR-V
//
//===----------------------------------------------------------------------===//
#include "OCLToSPIRV.h"
#include "OCLTypeToSPIRV.h"
#include "SPIRVInternal.h"
#include "libSPIRV/SPIRVDebug.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <regex>
#include <set>
#define DEBUG_TYPE "ocl-to-spv"
using namespace llvm;
using namespace PatternMatch;
using namespace SPIRV;
using namespace OCLUtil;
namespace SPIRV {
static size_t getOCLCpp11AtomicMaxNumOps(StringRef Name) {
return StringSwitch<size_t>(Name)
.Cases("load", "flag_test_and_set", "flag_clear", 3)
.Cases("store", "exchange", 4)
.StartsWith("compare_exchange", 6)
.StartsWith("fetch", 4)
.Default(0);
}
static Type *getBlockStructType(Value *Parameter) {
// In principle, this information should be passed to us from Clang via
// an elementtype attribute. However, said attribute requires that the
// function call be an intrinsic, which it is not. Instead, we rely on being
// able to trace this to the declaration of a variable: OpenCL C specification
// section 6.12.5 should guarantee that we can do this.
Value *UnderlyingObject = Parameter->stripPointerCasts();
Type *ParamType = nullptr;
if (auto *GV = dyn_cast<GlobalValue>(UnderlyingObject))
ParamType = GV->getValueType();
else if (auto *Alloca = dyn_cast<AllocaInst>(UnderlyingObject))
ParamType = Alloca->getAllocatedType();
else
llvm_unreachable("Blocks in OpenCL C must be traceable to allocation site");
return ParamType;
}
/// Return one of the SPIR-V 1.4 SignExtend or ZeroExtend image operands
/// for a demangled function name, or 0 if the function does not return an
/// integer type (e.g. read_imagef).
static unsigned getImageSignZeroExt(StringRef DemangledName) {
bool IsSigned = !DemangledName.ends_with("ui") && DemangledName.back() == 'i';
bool IsUnsigned = DemangledName.ends_with("ui");
if (IsSigned)
return ImageOperandsMask::ImageOperandsSignExtendMask;
if (IsUnsigned)
return ImageOperandsMask::ImageOperandsZeroExtendMask;
return 0;
}
bool OCLToSPIRVLegacy::runOnModule(Module &M) {
setOCLTypeToSPIRV(&getAnalysis<OCLTypeToSPIRVLegacy>());
return runOCLToSPIRV(M);
}
void OCLToSPIRVLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<OCLTypeToSPIRVLegacy>();
}
llvm::PreservedAnalyses OCLToSPIRVPass::run(llvm::Module &M,
llvm::ModuleAnalysisManager &MAM) {
setOCLTypeToSPIRV(&MAM.getResult<OCLTypeToSPIRVPass>(M));
return runOCLToSPIRV(M) ? llvm::PreservedAnalyses::none()
: llvm::PreservedAnalyses::all();
}
/// Get vector width from OpenCL vload* function name.
SPIRVWord OCLToSPIRVBase::getVecLoadWidth(const std::string &DemangledName) {
SPIRVWord Width = 0;
if (DemangledName == "vloada_half")
Width = 1;
else {
unsigned Loc = 5;
if (DemangledName.find("vload_half") == 0)
Loc = 10;
else if (DemangledName.find("vloada_half") == 0)
Loc = 11;
std::stringstream SS(DemangledName.substr(Loc));
SS >> Width;
}
return Width;
}
/// Transform OpenCL vload/vstore function name.
void OCLToSPIRVBase::transVecLoadStoreName(std::string &DemangledName,
const std::string &Stem,
bool AlwaysN) {
auto HalfStem = Stem + "_half";
auto HalfStemR = HalfStem + "_r";
if (!AlwaysN && DemangledName == HalfStem)
return;
if (!AlwaysN && DemangledName.find(HalfStemR) == 0) {
DemangledName = HalfStemR;
return;
}
if (DemangledName.find(HalfStem) == 0) {
auto OldName = DemangledName;
DemangledName = HalfStem + "n";
if (OldName.find("_r") != std::string::npos)
DemangledName += "_r";
return;
}
if (DemangledName.find(Stem) == 0) {
DemangledName = Stem + "n";
return;
}
}
char OCLToSPIRVLegacy::ID = 0;
bool OCLToSPIRVBase::runOCLToSPIRV(Module &Module) {
initialize(Module);
Ctx = &M->getContext();
auto Src = getSPIRVSource(&Module);
// This is a pre-processing pass, which transform LLVM IR module to a more
// suitable form for the SPIR-V translation: it is specifically designed to
// handle OpenCL C built-in functions and shouldn't be launched for other
// source languages
if (std::get<0>(Src) != spv::SourceLanguageOpenCL_C)
return false;
CLVer = std::get<1>(Src);
LLVM_DEBUG(dbgs() << "Enter OCLToSPIRV:\n");
visit(*M);
for (Instruction *I : ValuesToDelete)
I->eraseFromParent();
eraseUselessFunctions(M); // remove unused functions declarations
LLVM_DEBUG(dbgs() << "After OCLToSPIRV:\n" << *M);
verifyRegularizationPass(*M, "OCLToSPIRV");
return true;
}
// The order of handling OCL builtin functions is important.
// Workgroup functions need to be handled before pipe functions since
// there are functions fall into both categories.
void OCLToSPIRVBase::visitCallInst(CallInst &CI) {
LLVM_DEBUG(dbgs() << "[visistCallInst] " << CI << '\n');
auto *F = CI.getCalledFunction();
if (!F)
return;
auto MangledName = F->getName();
StringRef DemangledName;
if (!oclIsBuiltin(MangledName, DemangledName))
return;
LLVM_DEBUG(dbgs() << "DemangledName: " << DemangledName << '\n');
if (DemangledName.find(kOCLBuiltinName::NDRangePrefix) == 0) {
visitCallNDRange(&CI, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::All) {
visitCallAllAny(OpAll, &CI);
return;
}
if (DemangledName == kOCLBuiltinName::Any) {
visitCallAllAny(OpAny, &CI);
return;
}
if (DemangledName.find(kOCLBuiltinName::AsyncWorkGroupCopy) == 0 ||
DemangledName.find(kOCLBuiltinName::AsyncWorkGroupStridedCopy) == 0) {
visitCallAsyncWorkGroupCopy(&CI, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::AtomicPrefix) == 0 ||
DemangledName.find(kOCLBuiltinName::AtomPrefix) == 0) {
// Compute atomic builtins do not support floating types.
if (CI.getType()->isFloatingPointTy() &&
isComputeAtomicOCLBuiltin(DemangledName))
return;
auto *PCI = &CI;
if (DemangledName == kOCLBuiltinName::AtomicInit) {
visitCallAtomicInit(PCI);
return;
}
if (DemangledName == kOCLBuiltinName::AtomicWorkItemFence) {
visitCallAtomicWorkItemFence(PCI);
return;
}
if (DemangledName == kOCLBuiltinName::AtomicCmpXchgWeak ||
DemangledName == kOCLBuiltinName::AtomicCmpXchgStrong ||
DemangledName == kOCLBuiltinName::AtomicCmpXchgWeakExplicit ||
DemangledName == kOCLBuiltinName::AtomicCmpXchgStrongExplicit) {
assert((CLVer == kOCLVer::CL20 || CLVer == kOCLVer::CL30) &&
"Wrong version of OpenCL");
PCI = visitCallAtomicCmpXchg(PCI);
}
visitCallAtomicLegacy(PCI, MangledName, DemangledName);
visitCallAtomicCpp11(PCI, MangledName, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::ConvertPrefix) == 0) {
visitCallConvert(&CI, MangledName, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::GetImageWidth ||
DemangledName == kOCLBuiltinName::GetImageHeight ||
DemangledName == kOCLBuiltinName::GetImageDepth ||
DemangledName == kOCLBuiltinName::GetImageDim ||
DemangledName == kOCLBuiltinName::GetImageArraySize) {
visitCallGetImageSize(&CI, DemangledName);
return;
}
if ((DemangledName.find(kOCLBuiltinName::WorkGroupPrefix) == 0 &&
DemangledName != kOCLBuiltinName::WorkGroupBarrier) ||
DemangledName == kOCLBuiltinName::WaitGroupEvent ||
(DemangledName.find(kOCLBuiltinName::SubGroupPrefix) == 0 &&
DemangledName != kOCLBuiltinName::SubGroupBarrier)) {
visitCallGroupBuiltin(&CI, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::MemFence ||
DemangledName == kOCLBuiltinName::ReadMemFence ||
DemangledName == kOCLBuiltinName::WriteMemFence) {
visitCallMemFence(&CI, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::ReadImage) == 0) {
if (MangledName.find(kMangledName::Sampler) != StringRef::npos) {
visitCallReadImageWithSampler(&CI, MangledName, DemangledName);
return;
}
if (MangledName.find("msaa") != StringRef::npos) {
visitCallReadImageMSAA(&CI, MangledName);
return;
}
}
if (DemangledName.find(kOCLBuiltinName::ReadImage) == 0 ||
DemangledName.find(kOCLBuiltinName::WriteImage) == 0) {
visitCallReadWriteImage(&CI, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::ToGlobal ||
DemangledName == kOCLBuiltinName::ToLocal ||
DemangledName == kOCLBuiltinName::ToPrivate) {
visitCallToAddr(&CI, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::VLoadPrefix) == 0 ||
DemangledName.find(kOCLBuiltinName::VStorePrefix) == 0) {
visitCallVecLoadStore(&CI, MangledName, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::IsFinite ||
DemangledName == kOCLBuiltinName::IsInf ||
DemangledName == kOCLBuiltinName::IsNan ||
DemangledName == kOCLBuiltinName::IsNormal ||
DemangledName == kOCLBuiltinName::Signbit) {
visitCallRelational(&CI, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::WorkGroupBarrier ||
DemangledName == kOCLBuiltinName::Barrier ||
DemangledName == kOCLBuiltinName::SubGroupBarrier) {
visitCallBarrier(&CI);
return;
}
if (DemangledName == kOCLBuiltinName::GetFence) {
visitCallGetFence(&CI, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::Dot &&
CI.getOperand(0)->getType()->isFloatingPointTy()) {
visitCallDot(&CI);
return;
}
if (DemangledName == kOCLBuiltinName::Dot ||
DemangledName == kOCLBuiltinName::DotAccSat ||
DemangledName.starts_with(kOCLBuiltinName::Dot4x8PackedPrefix) ||
DemangledName.starts_with(kOCLBuiltinName::DotAccSat4x8PackedPrefix)) {
if (CI.getOperand(0)->getType()->isVectorTy()) {
auto *VT = (VectorType *)(CI.getOperand(0)->getType());
if (!isa<llvm::IntegerType>(VT->getElementType())) {
visitCallBuiltinSimple(&CI, MangledName, DemangledName);
return;
}
}
visitCallDot(&CI, MangledName, DemangledName);
return;
}
if (DemangledName.starts_with(kOCLBuiltinName::ClockReadPrefix)) {
visitCallClockRead(&CI, MangledName, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::FMin ||
DemangledName == kOCLBuiltinName::FMax ||
DemangledName == kOCLBuiltinName::Min ||
DemangledName == kOCLBuiltinName::Max ||
DemangledName == kOCLBuiltinName::Step ||
DemangledName == kOCLBuiltinName::SmoothStep ||
DemangledName == kOCLBuiltinName::Clamp ||
DemangledName == kOCLBuiltinName::Mix) {
visitCallScalToVec(&CI, MangledName, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::GetImageChannelDataType) {
visitCallGetImageChannel(&CI, DemangledName, OCLImageChannelDataTypeOffset);
return;
}
if (DemangledName == kOCLBuiltinName::GetImageChannelOrder) {
visitCallGetImageChannel(&CI, DemangledName, OCLImageChannelOrderOffset);
return;
}
if (isEnqueueKernelBI(MangledName)) {
visitCallEnqueueKernel(&CI, DemangledName);
return;
}
if (isKernelQueryBI(MangledName)) {
visitCallKernelQuery(&CI, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::SubgroupBlockReadINTELPrefix) == 0) {
visitSubgroupBlockReadINTEL(&CI);
return;
}
if (DemangledName.find(kOCLBuiltinName::SubgroupBlockWriteINTELPrefix) == 0) {
visitSubgroupBlockWriteINTEL(&CI);
return;
}
if (DemangledName.find(kOCLBuiltinName::SubgroupImageMediaBlockINTELPrefix) ==
0) {
visitSubgroupImageMediaBlockINTEL(&CI, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::SplitBarrierINTELPrefix) == 0) {
visitCallSplitBarrierINTEL(&CI, DemangledName);
return;
}
// Handle 'cl_intel_device_side_avc_motion_estimation' extension built-ins
if (DemangledName.find(kOCLSubgroupsAVCIntel::Prefix) == 0 ||
// Workaround for a bug in the extension specification
DemangledName.find("intel_sub_group_ime_ref_window_size") == 0) {
if (MangledName.find(kMangledName::Sampler) != StringRef::npos)
visitSubgroupAVCBuiltinCallWithSampler(&CI, DemangledName);
else
visitSubgroupAVCBuiltinCall(&CI, DemangledName);
return;
}
if (DemangledName.find(kOCLBuiltinName::LDEXP) == 0) {
visitCallLdexp(&CI, MangledName, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::ConvertBFloat16AsUShort ||
DemangledName == kOCLBuiltinName::ConvertBFloat162AsUShort2 ||
DemangledName == kOCLBuiltinName::ConvertBFloat163AsUShort3 ||
DemangledName == kOCLBuiltinName::ConvertBFloat164AsUShort4 ||
DemangledName == kOCLBuiltinName::ConvertBFloat168AsUShort8 ||
DemangledName == kOCLBuiltinName::ConvertBFloat1616AsUShort16) {
visitCallConvertBFloat16AsUshort(&CI, DemangledName);
return;
}
if (DemangledName == kOCLBuiltinName::ConvertAsBFloat16Float ||
DemangledName == kOCLBuiltinName::ConvertAsBFloat162Float2 ||
DemangledName == kOCLBuiltinName::ConvertAsBFloat163Float3 ||
DemangledName == kOCLBuiltinName::ConvertAsBFloat164Float4 ||
DemangledName == kOCLBuiltinName::ConvertAsBFloat168Float8 ||
DemangledName == kOCLBuiltinName::ConvertAsBFloat1616Float16) {
visitCallConvertAsBFloat16Float(&CI, DemangledName);
return;
}
visitCallBuiltinSimple(&CI, MangledName, DemangledName);
}
void OCLToSPIRVBase::visitCallNDRange(CallInst *CI, StringRef DemangledName) {
assert(DemangledName.find(kOCLBuiltinName::NDRangePrefix) == 0);
StringRef LenStr = DemangledName.substr(8, 1);
auto Len = atoi(LenStr.data());
assert(Len >= 1 && Len <= 3);
// Translate ndrange_ND into differently named SPIR-V
// decorated functions because they have array arugments
// of different dimension which mangled the same way.
std::string Postfix("_");
Postfix += LenStr;
Postfix += 'D';
std::string FuncName = getSPIRVFuncName(OpBuildNDRange, Postfix);
auto Mutator = mutateCallInst(CI, FuncName);
// SPIR-V ndrange structure requires 3 members in the following order:
// global work offset
// global work size
// local work size
// The arguments need to add missing members.
for (size_t I = 1, E = CI->arg_size(); I != E; ++I)
Mutator.mapArg(I, [=](Value *V) { return getScalarOrArray(V, Len, CI); });
switch (CI->arg_size()) {
case 2: {
// Has global work size.
auto *T = Mutator.getArg(1)->getType();
auto *C = getScalarOrArrayConstantInt(CI, T, Len, 0);
Mutator.appendArg(C);
Mutator.appendArg(C);
break;
}
case 3: {
// Has global and local work size.
auto *T = Mutator.getArg(1)->getType();
Mutator.appendArg(getScalarOrArrayConstantInt(CI, T, Len, 0));
break;
}
case 4: {
// Move offset arg to the end
Mutator.moveArg(1, CI->arg_size() - 1);
break;
}
default:
assert(0 && "Invalid number of arguments");
}
}
void OCLToSPIRVBase::visitCallAsyncWorkGroupCopy(CallInst *CI,
StringRef DemangledName) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
auto Mutator = mutateCallInst(CI, OpGroupAsyncCopy);
if (DemangledName == OCLUtil::kOCLBuiltinName::AsyncWorkGroupCopy)
Mutator.insertArg(3, addSizet(1));
Mutator.insertArg(0, addInt32(ScopeWorkgroup));
}
CallInst *OCLToSPIRVBase::visitCallAtomicCmpXchg(CallInst *CI) {
CallInst *NewCI = nullptr;
{
auto Mutator = mutateCallInst(CI, kOCLBuiltinName::AtomicCmpXchgStrong);
Value *Expected = Mutator.getArg(1);
Type *MemTy = Mutator.getArg(2)->getType();
if (MemTy->isFloatTy() || MemTy->isDoubleTy()) {
MemTy =
MemTy->isFloatTy() ? Type::getInt32Ty(*Ctx) : Type::getInt64Ty(*Ctx);
Mutator.replaceArg(
0,
{Mutator.getArg(0),
TypedPointerType::get(
MemTy, Mutator.getArg(0)->getType()->getPointerAddressSpace())});
Mutator.mapArg(2, [=](IRBuilder<> &Builder, Value *V) {
return Builder.CreateBitCast(V, MemTy);
});
}
assert(MemTy->isIntegerTy() &&
"In SPIR-V 1.0 arguments of OpAtomicCompareExchange must be "
"an integer type scalars");
Mutator.mapArg(1, [=](IRBuilder<> &Builder, Value *V) {
return Builder.CreateLoad(MemTy, V, "exp");
});
Mutator.changeReturnType(
MemTy, [Expected, &NewCI](IRBuilder<> &Builder, CallInst *NCI) {
NewCI = NCI;
Builder.CreateStore(NCI, Expected);
return Builder.CreateICmpEQ(NCI, NCI->getArgOperand(1));
});
}
return NewCI;
}
void OCLToSPIRVBase::visitCallAtomicInit(CallInst *CI) {
auto *ST = new StoreInst(CI->getArgOperand(1), CI->getArgOperand(0),
CI->getIterator());
ST->takeName(CI);
CI->dropAllReferences();
CI->eraseFromParent();
}
void OCLToSPIRVBase::visitCallAllAny(spv::Op OC, CallInst *CI) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
auto Args = getArguments(CI);
assert(Args.size() == 1);
auto *ArgTy = Args[0]->getType();
auto *Zero = Constant::getNullValue(Args[0]->getType());
auto *Cmp = CmpInst::Create(CmpInst::ICmp, CmpInst::ICMP_SLT, Args[0], Zero,
"cast", CI->getIterator());
if (!isa<VectorType>(ArgTy)) {
auto *Cast = CastInst::CreateZExtOrBitCast(
Cmp, Type::getInt32Ty(*Ctx), "", Cmp->getNextNode()->getIterator());
CI->replaceAllUsesWith(Cast);
CI->eraseFromParent();
} else {
mutateCallInst(CI, OC).setArgs({Cmp}).changeReturnType(
Type::getInt32Ty(*Ctx), [](IRBuilder<> &Builder, CallInst *CI) {
return Builder.CreateZExtOrBitCast(CI, Builder.getInt32Ty());
});
}
}
void OCLToSPIRVBase::visitCallAtomicWorkItemFence(CallInst *CI) {
transMemoryBarrier(CI, getAtomicWorkItemFenceLiterals(CI));
}
void OCLToSPIRVBase::visitCallMemFence(CallInst *CI, StringRef DemangledName) {
OCLMemOrderKind MO = StringSwitch<OCLMemOrderKind>(DemangledName)
.Case(kOCLBuiltinName::ReadMemFence, OCLMO_acquire)
.Case(kOCLBuiltinName::WriteMemFence, OCLMO_release)
.Default(OCLMO_acq_rel); // kOCLBuiltinName::MemFence
transMemoryBarrier(
CI,
std::make_tuple(cast<ConstantInt>(CI->getArgOperand(0))->getZExtValue(),
MO, OCLMS_work_group));
}
void OCLToSPIRVBase::transMemoryBarrier(CallInst *CI,
AtomicWorkItemFenceLiterals Lit) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
mutateCallInst(CI, OpMemoryBarrier)
.setArgs({addInt32(map<Scope>(std::get<2>(Lit))),
addInt32(mapOCLMemSemanticToSPIRV(std::get<0>(Lit),
std::get<1>(Lit)))});
}
void OCLToSPIRVBase::visitCallAtomicLegacy(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
StringRef Stem = DemangledName;
if (Stem.starts_with("atom_"))
Stem = Stem.drop_front(strlen("atom_"));
else if (Stem.starts_with("atomic_"))
Stem = Stem.drop_front(strlen("atomic_"));
else
return;
std::string Sign;
std::string Postfix;
std::string Prefix;
if (Stem == "add" || Stem == "sub" || Stem == "and" || Stem == "or" ||
Stem == "xor" || Stem == "min" || Stem == "max") {
if ((Stem == "min" || Stem == "max") &&
isMangledTypeUnsigned(MangledName.back()))
Sign = 'u';
Prefix = "fetch_";
Postfix = "_explicit";
} else if (Stem == "xchg") {
Stem = "exchange";
Postfix = "_explicit";
} else if (Stem == "cmpxchg") {
Stem = "compare_exchange_strong";
Postfix = "_explicit";
} else if (Stem == "inc" || Stem == "dec") {
// do nothing
} else
return;
OCLBuiltinTransInfo Info;
Info.UniqName = "atomic_" + Prefix + Sign + Stem.str() + Postfix;
std::vector<int> PostOps;
PostOps.push_back(OCLLegacyAtomicMemOrder);
if (Stem.starts_with("compare_exchange"))
PostOps.push_back(OCLLegacyAtomicMemOrder);
PostOps.push_back(OCLLegacyAtomicMemScope);
Info.PostProc = [=](BuiltinCallMutator &Mutator) {
for (auto &I : PostOps) {
Mutator.appendArg(addInt32(I));
}
};
transAtomicBuiltin(CI, Info);
}
void OCLToSPIRVBase::visitCallAtomicCpp11(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
StringRef Stem = DemangledName;
if (Stem.starts_with("atomic_"))
Stem = Stem.drop_front(strlen("atomic_"));
else
return;
std::string NewStem(Stem);
std::vector<int> PostOps;
if (Stem.starts_with("store") || Stem.starts_with("load") ||
Stem.starts_with("exchange") || Stem.starts_with("compare_exchange") ||
Stem.starts_with("fetch") || Stem.starts_with("flag")) {
if ((Stem.starts_with("fetch_min") || Stem.starts_with("fetch_max")) &&
containsUnsignedAtomicType(MangledName))
NewStem.insert(NewStem.begin() + strlen("fetch_"), 'u');
if (!Stem.ends_with("_explicit")) {
NewStem = NewStem + "_explicit";
PostOps.push_back(OCLMO_seq_cst);
if (Stem.starts_with("compare_exchange"))
PostOps.push_back(OCLMO_seq_cst);
PostOps.push_back(OCLMS_device);
} else {
auto MaxOps =
getOCLCpp11AtomicMaxNumOps(Stem.drop_back(strlen("_explicit")));
if (CI->arg_size() < MaxOps)
PostOps.push_back(OCLMS_device);
}
} else if (Stem == "work_item_fence") {
// do nothing
} else
return;
OCLBuiltinTransInfo Info;
Info.UniqName = std::string("atomic_") + NewStem;
Info.PostProc = [=](BuiltinCallMutator &Mutator) {
for (auto &I : PostOps) {
Mutator.appendArg(addInt32(I));
}
};
transAtomicBuiltin(CI, Info);
}
void OCLToSPIRVBase::transAtomicBuiltin(CallInst *CI,
OCLBuiltinTransInfo &Info) {
llvm::Type *AtomicBuiltinsReturnType = CI->getType();
auto SPIRVFunctionName =
getSPIRVFuncName(OCLSPIRVBuiltinMap::map(Info.UniqName));
bool NeedsNegate = false;
if (AtomicBuiltinsReturnType->isFloatingPointTy()) {
// Translate FP-typed atomic builtins. Currently we only need to
// translate atomic_fetch_[add, sub, max, min] and atomic_fetch_[add,
// sub, max, min]_explicit to related float instructions.
// Translate atomic_fetch_sub to OpAtomicFAddEXT with negative value
// operand
auto SPIRFunctionNameForFloatAtomics =
llvm::StringSwitch<std::string>(SPIRVFunctionName)
.Case("__spirv_AtomicIAdd", "__spirv_AtomicFAddEXT")
.Case("__spirv_AtomicISub", "__spirv_AtomicFAddEXT")
.Case("__spirv_AtomicSMax", "__spirv_AtomicFMaxEXT")
.Case("__spirv_AtomicSMin", "__spirv_AtomicFMinEXT")
.Default("others");
if (SPIRVFunctionName == "__spirv_AtomicISub") {
NeedsNegate = true;
}
if (SPIRFunctionNameForFloatAtomics != "others")
SPIRVFunctionName = SPIRFunctionNameForFloatAtomics;
}
auto Mutator = mutateCallInst(CI, SPIRVFunctionName);
Info.PostProc(Mutator);
// Order of args in OCL20:
// object, 0-2 other args, 1-2 order, scope
const size_t NumOrder = getAtomicBuiltinNumMemoryOrderArgs(Info.UniqName);
const size_t ArgsCount = Mutator.arg_size();
const size_t ScopeIdx = ArgsCount - 1;
const size_t OrderIdx = ScopeIdx - NumOrder;
if (NeedsNegate) {
Mutator.mapArg(1, [=](Value *V) {
IRBuilder<> IRB(CI);
return IRB.CreateFNeg(V);
});
}
Mutator.mapArg(ScopeIdx, [=](Value *V) {
return transOCLMemScopeIntoSPIRVScope(V, OCLMS_device, CI);
});
for (size_t I = 0; I < NumOrder; ++I) {
Mutator.mapArg(OrderIdx + I, [=](Value *V) {
return transOCLMemOrderIntoSPIRVMemorySemantics(V, OCLMO_seq_cst, CI);
});
}
// Order of args in SPIR-V:
// object, scope, 1-2 order, 0-2 other args
for (size_t I = 0; I < NumOrder; ++I) {
Mutator.moveArg(OrderIdx + I, I + 1);
}
Mutator.moveArg(ScopeIdx, 1);
if (Info.UniqName.find("atomic_compare_exchange") == 0) {
// For atomic_compare_exchange, the two "other args" are in the opposite
// order from the SPIR-V order. Swap these two arguments.
Mutator.moveArg(Mutator.arg_size() - 1, Mutator.arg_size() - 2);
}
}
void OCLToSPIRVBase::visitCallBarrier(CallInst *CI) {
auto Lit = getBarrierLiterals(CI);
// Use sequential consistent memory order by default.
// But if the flags argument is set to 0, we use
// None(Relaxed) memory order.
unsigned MemFenceFlag = std::get<0>(Lit);
OCLMemOrderKind MemOrder = MemFenceFlag ? OCLMO_seq_cst : OCLMO_relaxed;
mutateCallInst(CI, OpControlBarrier)
.setArgs({// Execution scope
addInt32(map<Scope>(std::get<2>(Lit))),
// Memory scope
addInt32(map<Scope>(std::get<1>(Lit))),
// Memory semantics
addInt32(mapOCLMemSemanticToSPIRV(MemFenceFlag, MemOrder))});
}
void OCLToSPIRVBase::visitCallConvert(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
// OpenCL Explicit Conversions (6.4.3) formed as below for scalars:
// destType convert_destType<_sat><_roundingMode>(sourceType)
// and for vector type:
// destTypeN convert_destTypeN<_sat><_roundingMode>(sourceTypeN)
// If the demangled name is not matching the suggested pattern and does not
// meet allowed destination type restrictions - this is not an OpenCL builtin,
// return from the function and translate such CallInst as a function call.
if (eraseUselessConvert(CI, MangledName, DemangledName))
return;
Op OC = OpNop;
auto *TargetTy = CI->getType();
auto *SrcTy = CI->getArgOperand(0)->getType();
if (auto *VecTy = dyn_cast<VectorType>(TargetTy))
TargetTy = VecTy->getElementType();
if (auto *VecTy = dyn_cast<VectorType>(SrcTy))
SrcTy = VecTy->getElementType();
auto IsTargetInt = isa<IntegerType>(TargetTy);
// Validate conversion function name and vector size if present
std::regex Expr(
"convert_(float|double|half|u?char|u?short|u?int|u?long)(2|3|4|8|16)*"
"(_sat)*(_rt[ezpn])*$");
std::smatch DestTyMatch;
std::string ConversionFunc(DemangledName.str());
if (!std::regex_match(ConversionFunc, DestTyMatch, Expr))
return;
// The first sub_match is the whole string; the next
// sub_matches are the parenthesized expressions.
enum { TypeIdx = 1, VecSizeIdx = 2, SatIdx = 3, RoundingIdx = 4 };
std::string DestTy = DestTyMatch[TypeIdx].str();
std::string VecSize = DestTyMatch[VecSizeIdx].str();
std::string Sat = DestTyMatch[SatIdx].str();
std::string Rounding = DestTyMatch[RoundingIdx].str();
bool TargetSigned = DestTy[0] != 'u';
if (isa<IntegerType>(SrcTy)) {
bool Signed = isLastFuncParamSigned(MangledName);
if (IsTargetInt) {
if (!Sat.empty() && TargetSigned != Signed) {
OC = Signed ? OpSatConvertSToU : OpSatConvertUToS;
Sat = "";
} else
OC = Signed ? OpSConvert : OpUConvert;
} else
OC = Signed ? OpConvertSToF : OpConvertUToF;
} else {
if (IsTargetInt) {
OC = TargetSigned ? OpConvertFToS : OpConvertFToU;
} else
OC = OpFConvert;
}
assert(CI->getCalledFunction() && "Unexpected indirect call");
mutateCallInst(
CI, getSPIRVFuncName(OC, "_R" + DestTy + VecSize + Sat + Rounding));
}
void OCLToSPIRVBase::visitCallGroupBuiltin(CallInst *CI,
StringRef OrigDemangledName) {
auto *F = CI->getCalledFunction();
std::vector<int> PreOps;
std::string DemangledName{OrigDemangledName};
if (DemangledName == kOCLBuiltinName::WorkGroupBarrier)
return;
if (DemangledName == kOCLBuiltinName::WaitGroupEvent) {
PreOps.push_back(ScopeWorkgroup);
} else if (DemangledName.find(kOCLBuiltinName::WorkGroupPrefix) == 0) {
DemangledName.erase(0, strlen(kOCLBuiltinName::WorkPrefix));
PreOps.push_back(ScopeWorkgroup);
} else if (DemangledName.find(kOCLBuiltinName::SubGroupPrefix) == 0) {
DemangledName.erase(0, strlen(kOCLBuiltinName::SubPrefix));
PreOps.push_back(ScopeSubgroup);
} else
return;
if (DemangledName != kOCLBuiltinName::WaitGroupEvent) {
StringRef FuncName = DemangledName;
FuncName = FuncName.drop_front(strlen(kSPIRVName::GroupPrefix));
SPIRSPIRVGroupOperationMap::foreachConditional(
[&](const std::string &S, SPIRVGroupOperationKind G) {
if (!FuncName.starts_with(S))
return true; // continue
PreOps.push_back(G);
StringRef Op =
StringSwitch<StringRef>(FuncName)
.StartsWith("ballot", "group_ballot_bit_count_")
.StartsWith("non_uniform", kSPIRVName::GroupNonUniformPrefix)
.Default(kSPIRVName::GroupPrefix);
// clustered functions are handled with non uniform group opcodes
StringRef ClusteredOp =
FuncName.contains("clustered_") ? "non_uniform_" : "";
StringRef LogicalOp = FuncName.contains("logical_") ? "logical_" : "";
StringRef GroupOp = StringSwitch<StringRef>(FuncName)
.Case("ballot_bit_count", "add")
.Case("ballot_inclusive_scan", "add")
.Case("ballot_exclusive_scan", "add")
.Default(FuncName.take_back(
3)); // assumes op is three characters
(void)(GroupOp.consume_front("_")); // when op is two characters
assert(!GroupOp.empty() && "Invalid OpenCL group builtin function");
char OpTyC = 0;
auto *OpTy = F->getReturnType();
if (OpTy->isFloatingPointTy())
OpTyC = 'f';
else if (OpTy->isIntegerTy()) {
auto NeedSign = GroupOp == "max" || GroupOp == "min";
if (!NeedSign)
OpTyC = 'i';
else {
// clustered reduce args are (type, uint)
// other operation args are (type)
auto MangledName = F->getName();
auto MangledTyC = ClusteredOp.empty()
? MangledName.back()
: MangledName.take_back(2).front();
if (isMangledTypeSigned(MangledTyC))
OpTyC = 's';
else
OpTyC = 'u';
}
} else
llvm_unreachable("Invalid OpenCL group builtin argument type");
DemangledName = Op.str() + ClusteredOp.str() + LogicalOp.str() +
OpTyC + GroupOp.str();
return false; // break out of loop
});
}
const bool IsElect = DemangledName == "group_elect";
const bool IsAllOrAny = (DemangledName.find("_all") != std::string::npos ||
DemangledName.find("_any") != std::string::npos);
const bool IsAllEqual = DemangledName.find("_all_equal") != std::string::npos;
const bool IsBallot = DemangledName == "group_ballot";
const bool IsInverseBallot = DemangledName == "group_inverse_ballot";
const bool IsBallotBitExtract = DemangledName == "group_ballot_bit_extract";
const bool IsLogical = DemangledName.find("_logical") != std::string::npos;
const bool HasBoolReturnType = IsElect || IsAllOrAny || IsAllEqual ||
IsInverseBallot || IsBallotBitExtract ||
IsLogical;
const bool HasBoolArg = (IsAllOrAny && !IsAllEqual) || IsBallot || IsLogical;
auto Consts = getInt32(M, PreOps);
OCLBuiltinTransInfo Info;
if (HasBoolReturnType)
Info.RetTy = Type::getInt1Ty(*Ctx);
Info.UniqName = DemangledName;
Info.PostProc = [=](BuiltinCallMutator &Mutator) {
if (HasBoolArg) {
Mutator.mapArg(0, [&](Value *V) {
IRBuilder<> IRB(CI);
return IRB.CreateICmpNE(V, IRB.getInt32(0));
});
}
size_t E = Mutator.arg_size();
if (DemangledName == "group_broadcast" && E > 2) {
assert(E == 3 || E == 4);
std::vector<Value *> Ops = getArguments(CI);
makeVector(CI, Ops, std::make_pair(Ops.begin() + 1, Ops.end()));
while (Mutator.arg_size() > 1)
Mutator.removeArg(1);
Mutator.appendArg(Ops.back());
}
for (unsigned I = 0; I < Consts.size(); I++)
Mutator.insertArg(I, Consts[I]);
};
transBuiltin(CI, Info);
}
void OCLToSPIRVBase::transBuiltin(CallInst *CI, OCLBuiltinTransInfo &Info) {
Op OC = OpNop;
unsigned ExtOp = ~0U;
SPIRVBuiltinVariableKind BVKind = BuiltInMax;
if (StringRef(Info.UniqName).starts_with(kSPIRVName::Prefix))
return;
if (OCLSPIRVBuiltinMap::find(Info.UniqName, &OC)) {
if (OC == OpImageRead) {
// There are several read_image* functions defined by OpenCL C spec, but
// all of them use the same SPIR-V Instruction - some of them might only
// differ by return type, so, we need to include return type into the
// mangling scheme to get them differentiated.
//
// Example: int4 read_imagei(image2d_t, sampler_t, int2)
// uint4 read_imageui(image2d_t, sampler_t, int2)
// Both functions above are represented by the same SPIR-V
// instruction: argument types are the same, only return type is
// different
Info.UniqName = getSPIRVFuncName(OC, CI->getType());
} else {
Info.UniqName = getSPIRVFuncName(OC);
}
} else if ((ExtOp = getExtOp(Info.MangledName, Info.UniqName)) != ~0U)
Info.UniqName = getSPIRVExtFuncName(SPIRVEIS_OpenCL, ExtOp);
else if (SPIRSPIRVBuiltinVariableMap::find(Info.UniqName, &BVKind)) {
// Map OCL work item builtins to SPV-IR work item builtins.
// e.g. get_global_id() --> __spirv_BuiltinGlobalInvocationId()
Info.UniqName = getSPIRVFuncName(BVKind);
} else
return;
BuiltinCallMutator Mutator = mutateCallInst(CI, Info.UniqName + Info.Postfix);
Info.PostProc(Mutator);
if (Info.RetTy) {
Type *OldRetTy = CI->getType();
Mutator.changeReturnType(
Info.RetTy, [OldRetTy, &Info](IRBuilder<> &Builder, CallInst *NewCI) {
if (Info.RetTy->isIntegerTy() && OldRetTy->isIntegerTy()) {
return Builder.CreateIntCast(NewCI, OldRetTy, false);
}
return Builder.CreatePointerBitCastOrAddrSpaceCast(NewCI, OldRetTy);
});
}
}
void OCLToSPIRVBase::visitCallReadImageMSAA(CallInst *CI,
StringRef MangledName) {
assert(MangledName.find("msaa") != StringRef::npos);
mutateCallInst(
CI, getSPIRVFuncName(OpImageRead, std::string(kSPIRVPostfix::ExtDivider) +
getPostfixForReturnType(CI)))
.insertArg(2, getInt32(M, ImageOperandsSampleMask));
}
void OCLToSPIRVBase::visitCallReadImageWithSampler(CallInst *CI,
StringRef MangledName,
StringRef DemangledName) {
assert(MangledName.find(kMangledName::Sampler) != StringRef::npos);
assert(CI->getCalledFunction() && "Unexpected indirect call");
Function *Func = CI->getCalledFunction();
bool IsRetScalar = !CI->getType()->isVectorTy();
Type *Ret = CI->getType();
auto *ImageTy = OCLTypeToSPIRVPtr->getAdaptedArgumentType(Func, 0);
if (!ImageTy)
ImageTy = getCallValueType(CI, 0);
auto Mutator = mutateCallInst(
CI, getSPIRVFuncName(OpImageSampleExplicitLod,
std::string(kSPIRVPostfix::ExtDivider) +
getPostfixForReturnType(Ret)));
Mutator.mapArg(0, [&](IRBuilder<> &Builder, Value *ImgArg, Type *ImgType) {
auto *SampledImgTy = adjustImageType(ImageTy, kSPIRVTypeName::Image,
kSPIRVTypeName::SampledImg);
Value *SampledImgArgs[] = {CI->getArgOperand(0), CI->getArgOperand(1)};
return addSPIRVCallPair(Builder, OpSampledImage, SampledImgTy,
SampledImgArgs, {ImgType, Mutator.getType(1)},
kSPIRVName::TempSampledImage);
});
Mutator.removeArg(1);
unsigned ImgOpMask = getImageSignZeroExt(DemangledName);
unsigned ImgOpMaskInsIndex = Mutator.arg_size();
switch (Mutator.arg_size()) {
case 2: // no lod
ImgOpMask |= ImageOperandsMask::ImageOperandsLodMask;
ImgOpMaskInsIndex = Mutator.arg_size();
Mutator.appendArg(getFloat32(M, 0.f));
break;
case 3: // explicit lod
ImgOpMask |= ImageOperandsMask::ImageOperandsLodMask;
ImgOpMaskInsIndex = 2;
break;
case 4: // gradient
ImgOpMask |= ImageOperandsMask::ImageOperandsGradMask;
ImgOpMaskInsIndex = 2;
break;
default:
assert(0 && "read_image* with unhandled number of args!");
}
Mutator.insertArg(ImgOpMaskInsIndex, getInt32(M, ImgOpMask));
// SPIR-V instruction always returns 4-element vector
if (IsRetScalar)
Mutator.changeReturnType(FixedVectorType::get(Ret, 4),
[=](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateExtractElement(
NewCI, getSizet(M, 0));
});
}
void OCLToSPIRVBase::visitCallGetImageSize(CallInst *CI,
StringRef DemangledName) {
auto Desc = getImageDescriptor(getCallValueType(CI, 0));
unsigned Dim = getImageDimension(Desc.Dim) + Desc.Arrayed;
assert(Dim > 0 && "Invalid image dimension.");
assert(CI->arg_size() == 1);
Type *NewRet = CI->getType()->isIntegerTy(64) ? Type::getInt64Ty(*Ctx)
: Type::getInt32Ty(*Ctx);
if (Dim > 1)
NewRet = FixedVectorType::get(NewRet, Dim);
auto Mutator = mutateCallInst(CI, getSPIRVFuncName(Desc.Dim == DimBuffer
? OpImageQuerySize
: OpImageQuerySizeLod,
CI->getType()));
if (Desc.Dim != DimBuffer)
Mutator.appendArg(getInt32(M, 0));
Mutator.changeReturnType(
NewRet, [&](IRBuilder<> &, CallInst *NCI) -> Value * {
if (Dim == 1)
return NCI;
if (DemangledName == kOCLBuiltinName::GetImageDim) {
if (Desc.Dim == Dim3D) {
auto *ZeroVec = ConstantVector::getSplat(
ElementCount::getFixed(3),
Constant::getNullValue(
cast<VectorType>(NCI->getType())->getElementType()));
Constant *Index[] = {getInt32(M, 0), getInt32(M, 1), getInt32(M, 2),
getInt32(M, 3)};
return new ShuffleVectorInst(NCI, ZeroVec,
ConstantVector::get(Index), "",
CI->getIterator());
} else if (Desc.Dim == Dim2D && Desc.Arrayed) {
Constant *Index[] = {getInt32(M, 0), getInt32(M, 1)};
Constant *Mask = ConstantVector::get(Index);
return new ShuffleVectorInst(NCI, UndefValue::get(NCI->getType()),
Mask, NCI->getName(),
CI->getIterator());
}
return NCI;
}
unsigned I = StringSwitch<unsigned>(DemangledName)
.Case(kOCLBuiltinName::GetImageWidth, 0)
.Case(kOCLBuiltinName::GetImageHeight, 1)
.Case(kOCLBuiltinName::GetImageDepth, 2)
.Case(kOCLBuiltinName::GetImageArraySize, Dim - 1);
return ExtractElementInst::Create(NCI, getUInt32(M, I), "",
NCI->getNextNode()->getIterator());
});
}
/// Remove trivial conversion functions
bool OCLToSPIRVBase::eraseUselessConvert(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
auto *TargetTy = CI->getType();
auto *SrcTy = CI->getArgOperand(0)->getType();
if (auto *VecTy = dyn_cast<VectorType>(TargetTy))
TargetTy = VecTy->getElementType();
if (auto *VecTy = dyn_cast<VectorType>(SrcTy))
SrcTy = VecTy->getElementType();
if (TargetTy == SrcTy) {
if (isa<IntegerType>(TargetTy) &&
DemangledName.find("_sat") != StringRef::npos &&
isLastFuncParamSigned(MangledName) != (DemangledName[8] != 'u'))
return false;
CI->getArgOperand(0)->takeName(CI);
SPIRVDBG(dbgs() << "[regularizeOCLConvert] " << *CI << " <- "
<< *CI->getArgOperand(0) << '\n');
CI->replaceAllUsesWith(CI->getArgOperand(0));
ValuesToDelete.insert(CI);
return true;
}
return false;
}
void OCLToSPIRVBase::visitCallBuiltinSimple(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
OCLBuiltinTransInfo Info;
Info.MangledName = MangledName.str();
Info.UniqName = DemangledName.str();
transBuiltin(CI, Info);
}
void OCLToSPIRVBase::visitCallReadWriteImage(CallInst *CI,
StringRef DemangledName) {
OCLBuiltinTransInfo Info;
if (DemangledName.find(kOCLBuiltinName::ReadImage) == 0) {
Info.UniqName = kOCLBuiltinName::ReadImage;
unsigned ImgOpMask = getImageSignZeroExt(DemangledName);
if (ImgOpMask) {
Module *Mod = M;
Info.PostProc = [ImgOpMask, Mod](BuiltinCallMutator &Mutator) {
Mutator.appendArg(getInt32(Mod, ImgOpMask));
};
}
}
if (DemangledName.find(kOCLBuiltinName::WriteImage) == 0) {
Info.UniqName = kOCLBuiltinName::WriteImage;
Info.PostProc = [&](BuiltinCallMutator &Mutator) {
unsigned ImgOpMask = getImageSignZeroExt(DemangledName);
unsigned ImgOpMaskInsIndex = Mutator.arg_size();
if (Mutator.arg_size() == 4) // write with lod
{
ImgOpMask |= ImageOperandsMask::ImageOperandsLodMask;
ImgOpMaskInsIndex = Mutator.arg_size() - 1;
Mutator.moveArg(2, Mutator.arg_size() - 1);
}
if (ImgOpMask) {
Mutator.insertArg(ImgOpMaskInsIndex, getInt32(M, ImgOpMask));
}
};
}
transBuiltin(CI, Info);
}
void OCLToSPIRVBase::visitCallToAddr(CallInst *CI, StringRef DemangledName) {
auto AddrSpace =
static_cast<SPIRAddressSpace>(CI->getType()->getPointerAddressSpace());
OCLBuiltinTransInfo Info;
Info.UniqName = DemangledName.str();
Info.Postfix = std::string(kSPIRVPostfix::Divider) + "To" +
SPIRAddrSpaceCapitalizedNameMap::map(AddrSpace);
auto *StorageClass = addInt32(SPIRSPIRVAddrSpaceMap::map(AddrSpace));
Info.RetTy = getInt8PtrTy(cast<PointerType>(CI->getType()));
Info.PostProc = [=](BuiltinCallMutator &Mutator) {
Mutator
.mapArg(Mutator.arg_size() - 1,
[&](Value *V) {
return std::make_pair(
castToInt8Ptr(V, CI),
TypedPointerType::get(Type::getInt8Ty(V->getContext()),
SPIRAS_Generic));
})
.appendArg(StorageClass);
};
transBuiltin(CI, Info);
}
void OCLToSPIRVBase::visitCallRelational(CallInst *CI,
StringRef DemangledName) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
Op OC = OpNop;
OCLSPIRVBuiltinMap::find(DemangledName.str(), &OC);
// i1 or <i1 x N>, depending on whether it returns a vector type.
Type *BoolTy = CI->getType()->getWithNewType(Type::getInt1Ty(*Ctx));
mutateCallInst(CI, OC).changeReturnType(
BoolTy, [=](IRBuilder<> &Builder, CallInst *NewCI) {
Value *TrueOp = CI->getType()->isVectorTy()
? Constant::getAllOnesValue(CI->getType())
: getInt32(M, 1);
return Builder.CreateSelect(NewCI, TrueOp,
Constant::getNullValue(CI->getType()));
});
}
void OCLToSPIRVBase::visitCallVecLoadStore(CallInst *CI, StringRef MangledName,
StringRef OrigDemangledName) {
std::vector<int> PreOps;
std::string DemangledName{OrigDemangledName};
if (DemangledName.find(kOCLBuiltinName::VLoadPrefix) == 0 &&
DemangledName != kOCLBuiltinName::VLoadHalf) {
SPIRVWord Width = getVecLoadWidth(DemangledName);
SPIRVDBG(spvdbgs() << "[visitCallVecLoadStore] DemangledName: "
<< DemangledName << " Width: " << Width << '\n');
PreOps.push_back(Width);
} else if (DemangledName.find(kOCLBuiltinName::RoundingPrefix) !=
std::string::npos) {
auto R = SPIRSPIRVFPRoundingModeMap::map(DemangledName.substr(
DemangledName.find(kOCLBuiltinName::RoundingPrefix) + 1, 3));
PreOps.push_back(R);
}
if (DemangledName.find(kOCLBuiltinName::VLoadAPrefix) == 0)
transVecLoadStoreName(DemangledName, kOCLBuiltinName::VLoadAPrefix, true);
else
transVecLoadStoreName(DemangledName, kOCLBuiltinName::VLoadPrefix, false);
if (DemangledName.find(kOCLBuiltinName::VStoreAPrefix) == 0)
transVecLoadStoreName(DemangledName, kOCLBuiltinName::VStoreAPrefix, true);
else
transVecLoadStoreName(DemangledName, kOCLBuiltinName::VStorePrefix, false);
auto Consts = getInt32(M, PreOps);
OCLBuiltinTransInfo Info;
Info.MangledName = MangledName.str();
Info.UniqName = DemangledName;
if (DemangledName.find(kOCLBuiltinName::VLoadPrefix) == 0)
Info.Postfix =
std::string(kSPIRVPostfix::ExtDivider) + getPostfixForReturnType(CI);
Info.PostProc = [=](BuiltinCallMutator &Mutator) {
for (auto *Value : Consts)
Mutator.appendArg(Value);
};
transBuiltin(CI, Info);
}
void OCLToSPIRVBase::visitCallGetFence(CallInst *CI, StringRef DemangledName) {
Op OC = OpNop;
OCLSPIRVBuiltinMap::find(DemangledName.str(), &OC);
mutateCallInst(CI, OC).changeReturnType(
CI->getType(), [](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateLShr(NewCI, Builder.getInt32(8));
});
}
void OCLToSPIRVBase::visitCallDot(CallInst *CI) {
IRBuilder<> Builder(CI);
Value *FMulVal = Builder.CreateFMul(CI->getOperand(0), CI->getOperand(1));
CI->replaceAllUsesWith(FMulVal);
CI->eraseFromParent();
}
void OCLToSPIRVBase::visitCallDot(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
// translation for dot function calls,
// to differentiate between integer dot products
bool IsFirstSigned, IsSecondSigned;
bool IsDot = DemangledName == kOCLBuiltinName::Dot;
bool IsAccSat = DemangledName.contains(kOCLBuiltinName::DotAccSat);
bool IsPacked = CI->getOperand(0)->getType()->isIntegerTy();
if (!IsPacked) {
if (IsDot) {
// dot(char4, char4) _Z3dotDv4_cS_
// dot(char4, uchar4) _Z3dotDv4_cDv4_h
// dot(uchar4, char4) _Z3dotDv4_hDv4_c
// dot(uchar4, uchar4) _Z3dotDv4_hS_
// or
// dot(short2, short2) _Z3dotDv2_sS_
// dot(short2, ushort2) _Z3dotDv2_sDv2_t
// dot(ushort2, short2) _Z3dotDv2_tDv2_s
// dot(ushort2, ushort2) _Z3dotDv2_tS_
assert(MangledName.starts_with("_Z3dotDv"));
if (MangledName[MangledName.size() - 1] == '_') {
IsFirstSigned = ((MangledName[MangledName.size() - 3] == 'c') ||
(MangledName[MangledName.size() - 3] == 's'));
IsSecondSigned = IsFirstSigned;
} else {
IsFirstSigned = ((MangledName[MangledName.size() - 6] == 'c') ||
(MangledName[MangledName.size() - 6] == 's'));
IsSecondSigned = ((MangledName[MangledName.size() - 1] == 'c') ||
(MangledName[MangledName.size() - 1] == 's'));
}
} else {
// dot_acc_sat(char4, char4, int) _Z11dot_acc_satDv4_cS_i
// dot_acc_sat(char4, uchar4, int) _Z11dot_acc_satDv4_cDv4_hi
// dot_acc_sat(uchar4, char4, int) _Z11dot_acc_satDv4_hDv4_ci
// dot_acc_sat(uchar4, uchar4, uint) _Z11dot_acc_satDv4_hS_j
// or
// dot_acc_sat(short2, short2, int) _Z11dot_acc_satDv4_sS_i
// dot_acc_sat(short2, ushort2, int) _Z11dot_acc_satDv4_sDv4_ti
// dot_acc_sat(ushort2, short2, int) _Z11dot_acc_satDv4_tDv4_si
// dot_acc_sat(ushort2, ushort2, uint) _Z11dot_acc_satDv4_tS_j
assert(MangledName.starts_with("_Z11dot_acc_satDv"));
IsFirstSigned = ((MangledName[19] == 'c') || (MangledName[19] == 's'));
IsSecondSigned = (MangledName[20] == 'S'
? IsFirstSigned
: ((MangledName[MangledName.size() - 2] == 'c') ||
(MangledName[MangledName.size() - 2] == 's')));
}
} else {
// for packed format
// dot_4x8packed_ss_int(uint, uint) _Z20dot_4x8packed_ss_intjj
// dot_4x8packed_su_int(uint, uint) _Z20dot_4x8packed_su_intjj
// dot_4x8packed_us_int(uint, uint) _Z20dot_4x8packed_us_intjj
// dot_4x8packed_uu_uint(uint, uint) _Z21dot_4x8packed_uu_uintjj
// or
// dot_acc_sat_4x8packed_ss_int(uint, uint, int)
// _Z28dot_acc_sat_4x8packed_ss_intjji
// dot_acc_sat_4x8packed_su_int(uint, uint, int)
// _Z28dot_acc_sat_4x8packed_su_intjji
// dot_acc_sat_4x8packed_us_int(uint, uint, int)
// _Z28dot_acc_sat_4x8packed_us_intjji
// dot_acc_sat_4x8packed_uu_uint(uint, uint, uint)
// _Z29dot_acc_sat_4x8packed_uu_uintjjj
assert(MangledName.starts_with("_Z20dot_4x8packed") ||
MangledName.starts_with("_Z21dot_4x8packed") ||
MangledName.starts_with("_Z28dot_acc_sat_4x8packed") ||
MangledName.starts_with("_Z29dot_acc_sat_4x8packed"));
size_t SignIndex = IsAccSat
? strlen(kOCLBuiltinName::DotAccSat4x8PackedPrefix)
: strlen(kOCLBuiltinName::Dot4x8PackedPrefix);
IsFirstSigned = DemangledName[SignIndex] == 's';
IsSecondSigned = DemangledName[SignIndex + 1] == 's';
}
Op OC;
if (!IsAccSat) {
OC =
(IsFirstSigned != IsSecondSigned ? OpSUDot
: ((IsFirstSigned) ? OpSDot : OpUDot));
} else {
OC = (IsFirstSigned != IsSecondSigned
? OpSUDotAccSat
: ((IsFirstSigned) ? OpSDotAccSat : OpUDotAccSat));
}
auto Mutator = mutateCallInst(CI, OC);
// If arguments are in order unsigned -> signed
// then the translator should swap them,
// so that the OpSUDotKHR can be used properly
if (IsFirstSigned == false && IsSecondSigned == true) {
Mutator.moveArg(1, 0);
}
if (IsPacked) {
// As per SPIRV specification the dot OpCodes
// which use scalar integers to represent
// packed vectors need additional argument
// specified - the Packed Vector Format
Mutator.appendArg(
getInt32(M, PackedVectorFormatPackedVectorFormat4x8BitKHR));
}
}
void OCLToSPIRVBase::visitCallClockRead(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
// The builtin returns i64 or <2 x i32>, but both variants are mapped to the
// same instruction; hence include the return type.
std::string OpName = getSPIRVFuncName(OpReadClockKHR, CI->getType());
// Scope is part of the OpenCL builtin name.
Scope ScopeArg = StringSwitch<Scope>(DemangledName)
.EndsWith("device", ScopeDevice)
.EndsWith("work_group", ScopeWorkgroup)
.EndsWith("sub_group", ScopeSubgroup)
.Default(ScopeMax);
auto Mutator = mutateCallInst(CI, OpName);
Mutator.appendArg(getInt32(M, ScopeArg));
}
void OCLToSPIRVBase::visitCallScalToVec(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
// Check if all arguments have the same type - it's simple case.
auto Uniform = true;
auto IsArg0Vector = isa<VectorType>(CI->getOperand(0)->getType());
for (unsigned I = 1, E = CI->arg_size(); Uniform && (I != E); ++I) {
Uniform = isa<VectorType>(CI->getOperand(I)->getType()) == IsArg0Vector;
}
if (Uniform) {
visitCallBuiltinSimple(CI, MangledName, DemangledName);
return;
}
std::vector<unsigned int> VecPos;
std::vector<unsigned int> ScalarPos;
if (DemangledName == kOCLBuiltinName::FMin ||
DemangledName == kOCLBuiltinName::FMax ||
DemangledName == kOCLBuiltinName::Min ||
DemangledName == kOCLBuiltinName::Max) {
VecPos.push_back(0);
ScalarPos.push_back(1);
} else if (DemangledName == kOCLBuiltinName::Clamp) {
VecPos.push_back(0);
ScalarPos.push_back(1);
ScalarPos.push_back(2);
} else if (DemangledName == kOCLBuiltinName::Mix) {
VecPos.push_back(0);
VecPos.push_back(1);
ScalarPos.push_back(2);
} else if (DemangledName == kOCLBuiltinName::Step) {
VecPos.push_back(1);
ScalarPos.push_back(0);
} else if (DemangledName == kOCLBuiltinName::SmoothStep) {
VecPos.push_back(2);
ScalarPos.push_back(0);
ScalarPos.push_back(1);
}
assert(CI->arg_size() == VecPos.size() + ScalarPos.size() &&
"Argument counts do not match up.");
Type *VecTy = CI->getOperand(VecPos[0])->getType();
auto VecElemCount = cast<VectorType>(VecTy)->getElementCount();
auto Mutator = mutateCallInst(
CI, getSPIRVExtFuncName(SPIRVEIS_OpenCL,
getExtOp(MangledName, DemangledName)));
for (auto I : ScalarPos)
Mutator.mapArg(I, [&](Value *V) {
Instruction *Inst = InsertElementInst::Create(
UndefValue::get(VecTy), V, getInt32(M, 0), "", CI->getIterator());
return new ShuffleVectorInst(
Inst, UndefValue::get(VecTy),
ConstantVector::getSplat(VecElemCount, getInt32(M, 0)), "",
CI->getIterator());
});
}
namespace {
// Return true if any users of the CallInst use any of the constants
// introduced by the SPV_EXT_image_raw10_raw12 extension.
bool usesSpvExtImageRaw10Raw12Constants(const CallInst *CI) {
const std::array ExtConstants{
OCLImageChannelDataTypeOffset + ImageChannelDataTypeUnsignedIntRaw10EXT,
OCLImageChannelDataTypeOffset + ImageChannelDataTypeUnsignedIntRaw12EXT};
// The return values for `OpImageQueryFormat` added by the extension are
// integer constants that may appear anywhere in LLVM IR. Only detect some
// common use patterns here.
for (auto *U : CI->users()) {
for (auto C : ExtConstants) {
ICmpInst::Predicate Pred;
if (match(U, m_c_ICmp(Pred, m_Value(), m_SpecificInt(C)))) {
return true;
}
if (auto *Switch = dyn_cast<SwitchInst>(U)) {
if (any_of(Switch->cases(), [C](const auto &Case) {
return Case.getCaseValue()->equalsInt(C);
})) {
return true;
}
}
}
}
return false;
}
} // anonymous namespace
void OCLToSPIRVBase::visitCallGetImageChannel(CallInst *CI,
StringRef DemangledName,
unsigned int Offset) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
if (Offset == OCLImageChannelDataTypeOffset) {
// See if any of the SPV_EXT_image_raw10_raw12 constants are used, and
// add the extension if not already there.
if (usesSpvExtImageRaw10Raw12Constants(CI)) {
const char *ExtStr = "SPV_EXT_image_raw10_raw12";
NamedMDNode *NMD = M->getOrInsertNamedMetadata(kSPIRVMD::Extension);
if (none_of(NMD->operands(), [ExtStr](MDNode *N) {
return N->getOperand(0).equalsStr(ExtStr);
})) {
MDString *MDS = MDString::get(*Ctx, ExtStr);
NMD->addOperand(MDNode::get(*Ctx, MDS));
}
}
}
Op OC = OpNop;
OCLSPIRVBuiltinMap::find(DemangledName.str(), &OC);
mutateCallInst(CI, OC).changeReturnType(
CI->getType(), [=](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateAdd(NewCI, Builder.getInt32(Offset));
});
}
void OCLToSPIRVBase::visitCallEnqueueKernel(CallInst *CI,
StringRef DemangledName) {
const DataLayout &DL = M->getDataLayout();
bool HasEvents = DemangledName.find("events") != StringRef::npos;
// SPIRV OpEnqueueKernel instruction has 10+ arguments.
SmallVector<Value *, 16> Args;
// Copy all arguments before block invoke function pointer
// which match with what Clang 6.0 produced
const unsigned BlockFIdx = HasEvents ? 6 : 3;
Args.assign(CI->arg_begin(), CI->arg_begin() + BlockFIdx);
// If no event arguments in original call, add dummy ones
if (!HasEvents) {
Args.push_back(getInt32(M, 0)); // dummy num events
Value *Null = Constant::getNullValue(PointerType::get(
getSPIRVType(OpTypeDeviceEvent, true), SPIRAS_Generic));
Args.push_back(Null); // dummy wait events
Args.push_back(Null); // dummy ret event
}
// Invoke: Pointer to invoke function
Value *BlockFunc = CI->getArgOperand(BlockFIdx);
Args.push_back(cast<Function>(getUnderlyingObject(BlockFunc)));
// Param: Pointer to block literal
Value *BlockLiteral = CI->getArgOperand(BlockFIdx + 1);
Args.push_back(BlockLiteral);
// Param Size: Size of block literal structure
// Param Aligment: Aligment of block literal structure
// TODO: these numbers should be obtained from block literal structure
Type *ParamType = getBlockStructType(BlockLiteral);
Args.push_back(getInt32(M, DL.getTypeStoreSize(ParamType)));
Args.push_back(getInt32(M, DL.getPrefTypeAlign(ParamType).value()));
// Local sizes arguments: Sizes of block invoke arguments
// Clang 6.0 and higher generates local size operands as an array,
// so we need to unpack them
if (DemangledName.find("_varargs") != StringRef::npos) {
const unsigned LocalSizeArrayIdx = HasEvents ? 9 : 6;
auto *LocalSizeArray =
cast<GetElementPtrInst>(CI->getArgOperand(LocalSizeArrayIdx));
auto *LocalSizeArrayTy =
cast<ArrayType>(LocalSizeArray->getSourceElementType());
const uint64_t LocalSizeNum = LocalSizeArrayTy->getNumElements();
for (unsigned I = 0; I < LocalSizeNum; ++I)
Args.push_back(GetElementPtrInst::Create(
LocalSizeArray->getSourceElementType(), // Pointee type
LocalSizeArray->getPointerOperand(), // Alloca
{getInt32(M, 0), getInt32(M, I)}, // Indices
"", CI->getIterator()));
}
StringRef NewName = "__spirv_EnqueueKernel__";
FunctionType *FT = FunctionType::get(
CI->getType(), getTypes(ArrayRef<Value *>(Args)), false /*isVarArg*/);
Function *NewF =
Function::Create(FT, GlobalValue::ExternalLinkage, NewName, M);
NewF->setCallingConv(CallingConv::SPIR_FUNC);
CallInst *NewCall = CallInst::Create(NewF, Args, "", CI->getIterator());
NewCall->setCallingConv(NewF->getCallingConv());
CI->replaceAllUsesWith(NewCall);
CI->eraseFromParent();
}
void OCLToSPIRVBase::visitCallKernelQuery(CallInst *CI,
StringRef DemangledName) {
const DataLayout &DL = M->getDataLayout();
bool HasNDRange = DemangledName.find("_for_ndrange_impl") != StringRef::npos;
// BIs with "_for_ndrange_impl" suffix has NDRange argument first, and
// Invoke argument following. For other BIs Invoke function is the first arg
const unsigned BlockFIdx = HasNDRange ? 1 : 0;
Value *BlockFVal = CI->getArgOperand(BlockFIdx)->stripPointerCasts();
auto *BlockF = cast<Function>(getUnderlyingObject(BlockFVal));
AttributeList Attrs = CI->getCalledFunction()->getAttributes();
::mutateCallInst(
M, CI,
[=](CallInst *CI, std::vector<Value *> &Args) {
Value *Param = *Args.rbegin();
Type *ParamType = getBlockStructType(Param);
// Last arg corresponds to SPIRV Param operand.
// Insert Invoke in front of Param.
// Add Param Size and Param Align at the end.
Args[BlockFIdx] = BlockF;
Args.push_back(getInt32(M, DL.getTypeStoreSize(ParamType)));
Args.push_back(getInt32(M, DL.getPrefTypeAlign(ParamType).value()));
Op Opcode = OCLSPIRVBuiltinMap::map(DemangledName.str());
// Adding "__" postfix, so in case we have multiple such
// functions and their names will have numerical postfix,
// then the numerical postfix will be droped and we will get
// correct function name.
return getSPIRVFuncName(Opcode, kSPIRVName::Postfix);
},
/*BuiltinFuncMangleInfo*/ nullptr, &Attrs);
}
// Add postfix to overloaded intel subgroup block read/write builtins
// so new functions can be distinguished.
void OCLToSPIRVBase::processSubgroupBlockReadWriteINTEL(
CallInst *CI, OCLBuiltinTransInfo &Info, const Type *DataTy) {
unsigned VectorNumElements = 1;
if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy))
VectorNumElements = VecTy->getNumElements();
unsigned ElementBitSize = DataTy->getScalarSizeInBits();
Info.Postfix = "_";
Info.Postfix +=
getIntelSubgroupBlockDataPostfix(ElementBitSize, VectorNumElements);
assert(CI->getCalledFunction() && "Unexpected indirect call");
mutateCallInst(CI, Info.UniqName + Info.Postfix);
}
// The intel_sub_group_block_read built-ins are overloaded to support both
// buffers and images, but need to be mapped to distinct SPIR-V instructions.
// Additionally, for block reads, need to distinguish between scalar block
// reads and vector block reads.
void OCLToSPIRVBase::visitSubgroupBlockReadINTEL(CallInst *CI) {
OCLBuiltinTransInfo Info;
if (isOCLImageType(getCallValueType(CI, 0)))
Info.UniqName = getSPIRVFuncName(spv::OpSubgroupImageBlockReadINTEL);
else
Info.UniqName = getSPIRVFuncName(spv::OpSubgroupBlockReadINTEL);
Type *DataTy = CI->getType();
processSubgroupBlockReadWriteINTEL(CI, Info, DataTy);
}
// The intel_sub_group_block_write built-ins are similarly overloaded to support
// both buffers and images but need to be mapped to distinct SPIR-V
// instructions.
void OCLToSPIRVBase::visitSubgroupBlockWriteINTEL(CallInst *CI) {
OCLBuiltinTransInfo Info;
if (isOCLImageType(getCallValueType(CI, 0)))
Info.UniqName = getSPIRVFuncName(spv::OpSubgroupImageBlockWriteINTEL);
else
Info.UniqName = getSPIRVFuncName(spv::OpSubgroupBlockWriteINTEL);
assert(!CI->arg_empty() &&
"Intel subgroup block write should have arguments");
unsigned DataArg = CI->arg_size() - 1;
Type *DataTy = CI->getArgOperand(DataArg)->getType();
processSubgroupBlockReadWriteINTEL(CI, Info, DataTy);
}
void OCLToSPIRVBase::visitSubgroupImageMediaBlockINTEL(
CallInst *CI, StringRef DemangledName) {
spv::Op OpCode = DemangledName.rfind("read") != StringRef::npos
? spv::OpSubgroupImageMediaBlockReadINTEL
: spv::OpSubgroupImageMediaBlockWriteINTEL;
// Move the last argument to the beginning.
mutateCallInst(CI, getSPIRVFuncName(OpCode, CI->getType()))
.moveArg(CI->arg_size() - 1, 0);
}
static const char *getSubgroupAVCIntelOpKind(StringRef Name) {
return StringSwitch<const char *>(Name.data())
.StartsWith(kOCLSubgroupsAVCIntel::IMEPrefix, "ime")
.StartsWith(kOCLSubgroupsAVCIntel::REFPrefix, "ref")
.StartsWith(kOCLSubgroupsAVCIntel::SICPrefix, "sic");
}
static const char *getSubgroupAVCIntelTyKind(StringRef MangledName) {
// We're looking for the type name of the last parameter, which will be at the
// very end of the mangled name. Since we only care about the ending of the
// name, we don't need to be any more clever than this.
return MangledName.ends_with("_payload_t") ? "payload" : "result";
}
static Type *getSubgroupAVCIntelMCEType(Module *M, std::string &TName) {
auto *Ty = StructType::getTypeByName(M->getContext(), TName);
if (Ty)
return Ty;
return StructType::create(M->getContext(), TName);
}
static Op getSubgroupAVCIntelMCEOpCodeForWrapper(StringRef DemangledName) {
if (DemangledName.size() <= strlen(kOCLSubgroupsAVCIntel::MCEPrefix))
return OpNop; // this is not a VME built-in
std::string MCEName{DemangledName};
MCEName.replace(0, strlen(kOCLSubgroupsAVCIntel::MCEPrefix),
kOCLSubgroupsAVCIntel::MCEPrefix);
Op MCEOC = OpNop;
OCLSPIRVSubgroupAVCIntelBuiltinMap::find(MCEName, &MCEOC);
return MCEOC;
}
// Handles Subgroup AVC Intel extension generic built-ins.
void OCLToSPIRVBase::visitSubgroupAVCBuiltinCall(CallInst *CI,
StringRef DemangledName) {
Op OC = OpNop;
std::string FName{DemangledName};
std::string Prefix = kOCLSubgroupsAVCIntel::Prefix;
// Update names for built-ins mapped on two or more SPIRV instructions
if (FName.find(Prefix + "ime_get_streamout_major_shape_") == 0) {
// _single_reference functions have 2 arguments, _dual_reference have 3
// arguments.
FName += (CI->arg_size() == 2) ? "_single_reference" : "_dual_reference";
} else if (FName.find(Prefix + "sic_configure_ipe") == 0) {
FName += (CI->arg_size() == 8) ? "_luma" : "_luma_chroma";
}
OCLSPIRVSubgroupAVCIntelBuiltinMap::find(FName, &OC);
if (OC == OpNop) {
if (Op MCEOC = getSubgroupAVCIntelMCEOpCodeForWrapper(DemangledName))
// The called function is a VME wrapper built-in
return visitSubgroupAVCWrapperBuiltinCall(CI, MCEOC, DemangledName);
else
// The called function isn't a VME built-in
return;
}
mutateCallInst(CI, OC);
}
// Handles Subgroup AVC Intel extension wrapper built-ins.
// 'IME', 'REF' and 'SIC' sets contain wrapper built-ins which don't have
// corresponded instructions in SPIRV and should be translated to a
// conterpart from 'MCE' with conversion for an argument and result (if needed).
void OCLToSPIRVBase::visitSubgroupAVCWrapperBuiltinCall(
CallInst *CI, Op WrappedOC, StringRef DemangledName) {
std::string Prefix = kOCLSubgroupsAVCIntel::Prefix;
// Find 'to_mce' conversion function.
// The operand required conversion is always the last one.
const char *OpKind = getSubgroupAVCIntelOpKind(DemangledName);
const char *TyKind =
getSubgroupAVCIntelTyKind(CI->getCalledFunction()->getName());
std::string MCETName =
std::string(kOCLSubgroupsAVCIntel::TypePrefix) + "mce_" + TyKind + "_t";
auto *MCESTy = getSubgroupAVCIntelMCEType(M, MCETName);
auto *MCETy = TypedPointerType::get(MCESTy, SPIRAS_Private);
std::string ToMCEFName = Prefix + OpKind + "_convert_to_mce_" + TyKind;
Op ToMCEOC = OpNop;
OCLSPIRVSubgroupAVCIntelBuiltinMap::find(ToMCEFName, &ToMCEOC);
assert(ToMCEOC != OpNop && "Invalid Subgroup AVC Intel built-in call");
if (std::strcmp(TyKind, "payload") == 0) {
// Wrapper built-ins which take the 'payload_t' argument return it as
// the result: two conversion calls required.
std::string FromMCEFName =
Prefix + "mce_convert_to_" + OpKind + "_" + TyKind;
Op FromMCEOC = OpNop;
OCLSPIRVSubgroupAVCIntelBuiltinMap::find(FromMCEFName, &FromMCEOC);
assert(FromMCEOC != OpNop && "Invalid Subgroup AVC Intel built-in call");
mutateCallInst(CI, WrappedOC)
.mapArg(CI->arg_size() - 1,
[&](IRBuilder<> &Builder, Value *Arg, Type *ParamTy) {
// Create conversion function call for the last operand
return addSPIRVCallPair(Builder, ToMCEOC, MCETy, {Arg},
{ParamTy});
})
.changeReturnType(MCETy, [&](IRBuilder<> &Builder, CallInst *NewCI) {
// Create conversion function call for the return result
return addSPIRVCall(Builder, FromMCEOC, CI->getType(), {NewCI},
{MCETy});
});
} else {
// Wrapper built-ins which take the 'result_t' argument requires only one
// conversion for the argument
mutateCallInst(CI, WrappedOC)
.mapArg(CI->arg_size() - 1, [&](IRBuilder<> &Builder, Value *Arg,
Type *ParamTy) {
// Create conversion function call for the last operand
return addSPIRVCallPair(Builder, ToMCEOC, MCETy, {Arg}, {ParamTy});
});
}
}
// Handles Subgroup AVC Intel extension built-ins which take sampler as
// an argument (their SPIR-V counterparts take OpTypeVmeImageIntel instead)
void OCLToSPIRVBase::visitSubgroupAVCBuiltinCallWithSampler(
CallInst *CI, StringRef DemangledName) {
std::string FName{DemangledName};
std::string Prefix = kOCLSubgroupsAVCIntel::Prefix;
// Update names for built-ins mapped on two or more SPIRV instructions
if (FName.find(Prefix + "ref_evaluate_with_multi_reference") == 0 ||
FName.find(Prefix + "sic_evaluate_with_multi_reference") == 0) {
FName += (CI->arg_size() == 5) ? "_interlaced" : "";
}
Op OC = OpNop;
OCLSPIRVSubgroupAVCIntelBuiltinMap::find(FName, &OC);
if (OC == OpNop)
return; // this is not a VME built-in
SmallVector<Type *, 4> ParamTys;
[[maybe_unused]] bool DidDemangle =
getParameterTypes(CI->getCalledFunction(), ParamTys);
assert(DidDemangle && "Expected SPIR-V builtins to be properly mangled");
auto *TyIt = std::find_if(ParamTys.begin(), ParamTys.end(), isSamplerTy);
assert(TyIt != ParamTys.end() && "Invalid Subgroup AVC Intel built-in call");
unsigned SamplerIndex = TyIt - ParamTys.begin();
Value *SamplerVal = CI->getOperand(SamplerIndex);
Type *SamplerTy = ParamTys[SamplerIndex];
SmallVector<Type *, 4> AdaptedTys;
for (unsigned I = 0; I < CI->arg_size(); I++)
AdaptedTys.push_back(
OCLTypeToSPIRVPtr->getAdaptedArgumentType(CI->getCalledFunction(), I));
auto *AdaptedIter = AdaptedTys.begin();
mutateCallInst(CI, OC)
.mapArgs([&](IRBuilder<> &Builder, Value *Arg, Type *ArgTy) {
if (!isOCLImageType(ArgTy))
return BuiltinCallMutator::ValueTypePair(Arg, ArgTy);
auto *ImageTy = *AdaptedIter++;
if (!ImageTy)
ImageTy = ArgTy;
auto *SampledImgTy = adjustImageType(ImageTy, kSPIRVTypeName::Image,
kSPIRVTypeName::VmeImageINTEL);
Value *SampledImgArgs[] = {Arg, SamplerVal};
return addSPIRVCallPair(Builder, OpVmeImageINTEL, SampledImgTy,
SampledImgArgs, {ArgTy, SamplerTy},
kSPIRVName::TempSampledImage);
})
.removeArg(SamplerIndex);
}
void OCLToSPIRVBase::visitCallSplitBarrierINTEL(CallInst *CI,
StringRef DemangledName) {
auto Lit = getBarrierLiterals(CI);
Op OpCode =
StringSwitch<Op>(DemangledName)
.Case("intel_work_group_barrier_arrive", OpControlBarrierArriveINTEL)
.Case("intel_work_group_barrier_wait", OpControlBarrierWaitINTEL)
.Default(OpNop);
// Map memory semantics as follows:
// OpControlBarrierArriveINTEL -> Release,
// OpControlBarrierWaitINTEL -> Acquire
unsigned MemFenceFlag = std::get<0>(Lit);
OCLMemOrderKind MemOrder =
OpCode == OpControlBarrierArriveINTEL ? OCLMO_release : OCLMO_acquire;
mutateCallInst(CI, OpCode)
.removeArgs(0, CI->arg_size())
// Execution scope
.appendArg(addInt32(map<Scope>(std::get<2>(Lit))))
// Memory scope
.appendArg(addInt32(map<Scope>(std::get<1>(Lit))))
// Memory semantics
.appendArg(addInt32(mapOCLMemSemanticToSPIRV(MemFenceFlag, MemOrder)));
}
void OCLToSPIRVBase::visitCallLdexp(CallInst *CI, StringRef MangledName,
StringRef DemangledName) {
auto Args = getArguments(CI);
if (Args.size() == 2) {
Type *Type0 = Args[0]->getType();
Type *Type1 = Args[1]->getType();
// For OpenCL built-in math functions 'halfn ldexp(halfn x, int k)',
// 'floatn ldexp(floatn x, int k)' and 'doublen ldexp (doublen x, int k)',
// convert scalar arg to vector to keep consistency with SPIRV spec.
// Regarding to SPIRV OpenCL Extended Instruction set, k operand must have
// the same component count as Result Type and x operands
if (auto *FixedVecType0 = dyn_cast<FixedVectorType>(Type0)) {
auto ScalarTypeID = Type0->getScalarType()->getTypeID();
if ((ScalarTypeID == llvm::Type::FloatTyID ||
ScalarTypeID == llvm::Type::DoubleTyID ||
ScalarTypeID == llvm::Type::HalfTyID) &&
Type1->isIntegerTy()) {
IRBuilder<> IRB(CI);
unsigned Width = FixedVecType0->getNumElements();
CI->setOperand(1, IRB.CreateVectorSplat(Width, CI->getArgOperand(1)));
}
}
}
visitCallBuiltinSimple(CI, MangledName, DemangledName);
}
void OCLToSPIRVBase::visitCallConvertBFloat16AsUshort(CallInst *CI,
StringRef DemangledName) {
Type *RetTy = CI->getType();
Type *ArgTy = CI->getOperand(0)->getType();
if (DemangledName == kOCLBuiltinName::ConvertBFloat16AsUShort) {
if (!RetTy->isIntegerTy(16U) || !ArgTy->isFloatTy())
report_fatal_error(
"OpConvertBFloat16AsUShort must be of i16 and take float");
} else {
FixedVectorType *RetTyVec = cast<FixedVectorType>(RetTy);
FixedVectorType *ArgTyVec = cast<FixedVectorType>(ArgTy);
if (!RetTyVec || !RetTyVec->getElementType()->isIntegerTy(16U) ||
!ArgTyVec || !ArgTyVec->getElementType()->isFloatTy())
report_fatal_error("OpConvertBFloat16NAsUShortN must be of <N x i16> and "
"take <N x float>");
unsigned RetTyVecSize = RetTyVec->getNumElements();
unsigned ArgTyVecSize = ArgTyVec->getNumElements();
if (DemangledName == kOCLBuiltinName::ConvertBFloat162AsUShort2) {
if (RetTyVecSize != 2 || ArgTyVecSize != 2)
report_fatal_error("ConvertBFloat162AsUShort2 must be of <2 x i16> and "
"take <2 x float>");
} else if (DemangledName == kOCLBuiltinName::ConvertBFloat163AsUShort3) {
if (RetTyVecSize != 3 || ArgTyVecSize != 3)
report_fatal_error("ConvertBFloat163AsUShort3 must be of <3 x i16> and "
"take <3 x float>");
} else if (DemangledName == kOCLBuiltinName::ConvertBFloat164AsUShort4) {
if (RetTyVecSize != 4 || ArgTyVecSize != 4)
report_fatal_error("ConvertBFloat164AsUShort4 must be of <4 x i16> and "
"take <4 x float>");
} else if (DemangledName == kOCLBuiltinName::ConvertBFloat168AsUShort8) {
if (RetTyVecSize != 8 || ArgTyVecSize != 8)
report_fatal_error("ConvertBFloat168AsUShort8 must be of <8 x i16> and "
"take <8 x float>");
} else if (DemangledName == kOCLBuiltinName::ConvertBFloat1616AsUShort16) {
if (RetTyVecSize != 16 || ArgTyVecSize != 16)
report_fatal_error("ConvertBFloat1616AsUShort16 must be of <16 x i16> "
"and take <16 x float>");
}
}
mutateCallInst(CI, internal::OpConvertFToBF16INTEL);
}
void OCLToSPIRVBase::visitCallConvertAsBFloat16Float(CallInst *CI,
StringRef DemangledName) {
Type *RetTy = CI->getType();
Type *ArgTy = CI->getOperand(0)->getType();
if (DemangledName == kOCLBuiltinName::ConvertAsBFloat16Float) {
if (!RetTy->isFloatTy() || !ArgTy->isIntegerTy(16U))
report_fatal_error(
"OpConvertAsBFloat16Float must be of float and take i16");
} else {
FixedVectorType *RetTyVec = cast<FixedVectorType>(RetTy);
FixedVectorType *ArgTyVec = cast<FixedVectorType>(ArgTy);
if (!RetTyVec || !RetTyVec->getElementType()->isFloatTy() || !ArgTyVec ||
!ArgTyVec->getElementType()->isIntegerTy(16U))
report_fatal_error("OpConvertAsBFloat16NFloatN must be of <N x float> "
"and take <N x i16>");
unsigned RetTyVecSize = RetTyVec->getNumElements();
unsigned ArgTyVecSize = ArgTyVec->getNumElements();
if (DemangledName == kOCLBuiltinName::ConvertAsBFloat162Float2) {
if (RetTyVecSize != 2 || ArgTyVecSize != 2)
report_fatal_error("ConvertAsBFloat162Float2 must be of <2 x float> "
"and take <2 x i16>");
} else if (DemangledName == kOCLBuiltinName::ConvertAsBFloat163Float3) {
if (RetTyVecSize != 3 || ArgTyVecSize != 3)
report_fatal_error("ConvertAsBFloat163Float3 must be of <3 x float> "
"and take <3 x i16>");
} else if (DemangledName == kOCLBuiltinName::ConvertAsBFloat164Float4) {
if (RetTyVecSize != 4 || ArgTyVecSize != 4)
report_fatal_error("ConvertAsBFloat164Float4 must be of <4 x float> "
"and take <4 x i16>");
} else if (DemangledName == kOCLBuiltinName::ConvertAsBFloat168Float8) {
if (RetTyVecSize != 8 || ArgTyVecSize != 8)
report_fatal_error("ConvertAsBFloat168Float8 must be of <8 x float> "
"and take <8 x i16>");
} else if (DemangledName == kOCLBuiltinName::ConvertAsBFloat1616Float16) {
if (RetTyVecSize != 16 || ArgTyVecSize != 16)
report_fatal_error("ConvertAsBFloat1616Float16 must be of <16 x float> "
"and take <16 x i16>");
}
}
mutateCallInst(CI, internal::OpConvertBF16ToFINTEL);
}
} // namespace SPIRV
INITIALIZE_PASS_BEGIN(OCLToSPIRVLegacy, "ocl-to-spv",
"Transform OCL 2.0 to SPIR-V", false, false)
INITIALIZE_PASS_DEPENDENCY(OCLTypeToSPIRVLegacy)
INITIALIZE_PASS_END(OCLToSPIRVLegacy, "ocl-to-spv",
"Transform OCL 2.0 to SPIR-V", false, false)
ModulePass *llvm::createOCLToSPIRVLegacy() { return new OCLToSPIRVLegacy(); }
|