1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
//===- PreprocessMetadata.cpp - - C++ -*-===//
//
// The LLVM/SPIRV Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of Advanced Micro Devices, Inc., nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements preprocessing of LLVM IR metadata in order to perform
// further translation to SPIR-V.
//
//===----------------------------------------------------------------------===//
#include "PreprocessMetadata.h"
#include "OCLUtil.h"
#include "SPIRVInternal.h"
#include "SPIRVMDBuilder.h"
#include "SPIRVMDWalker.h"
#include "VectorComputeUtil.h"
#include "libSPIRV/SPIRVDebug.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TargetParser/Triple.h"
#define DEBUG_TYPE "clmdtospv"
using namespace llvm;
using namespace SPIRV;
using namespace OCLUtil;
namespace SPIRV {
cl::opt<bool> EraseOCLMD("spirv-erase-cl-md", cl::init(true),
cl::desc("Erase OpenCL metadata"));
char PreprocessMetadataLegacy::ID = 0;
bool PreprocessMetadataLegacy::runOnModule(Module &Module) {
return runPreprocessMetadata(Module);
}
llvm::PreservedAnalyses
PreprocessMetadataPass::run(llvm::Module &M, llvm::ModuleAnalysisManager &MAM) {
return runPreprocessMetadata(M) ? llvm::PreservedAnalyses::none()
: llvm::PreservedAnalyses::all();
}
bool PreprocessMetadataBase::runPreprocessMetadata(Module &Module) {
M = &Module;
Ctx = &M->getContext();
LLVM_DEBUG(dbgs() << "Enter PreprocessMetadata:\n");
visit(M);
LLVM_DEBUG(dbgs() << "After PreprocessMetadata:\n" << *M);
verifyRegularizationPass(*M, "PreprocessMetadata");
return true;
}
void PreprocessMetadataBase::preprocessCXXStructorList(
SPIRVMDBuilder::NamedMDWrapper &EM, GlobalVariable *V,
ExecutionMode EMode) {
auto *List = dyn_cast_or_null<ConstantArray>(V->getInitializer());
if (!List)
return;
for (Value *V : List->operands()) {
auto *Structor = cast<ConstantStruct>(V);
// Each entry in the list is a struct containing 3 members:
// (priority, function, data), with function being the entry point.
auto *Kernel = cast<Function>(Structor->getOperand(1));
EM.addOp().add(Kernel).add(EMode).done();
}
}
void PreprocessMetadataBase::visit(Module *M) {
SPIRVMDBuilder B(*M);
SPIRVMDWalker W(*M);
preprocessOCLMetadata(M, &B, &W);
preprocessVectorComputeMetadata(M, &B, &W);
// Create metadata representing (empty so far) list
// of OpExecutionMode instructions
auto EM = B.addNamedMD(kSPIRVMD::ExecutionMode); // !spirv.ExecutionMode = {}
// Process special variables in LLVM IR module.
if (auto *GV = M->getGlobalVariable("llvm.global_ctors"))
preprocessCXXStructorList(EM, GV, spv::ExecutionModeInitializer);
// Add execution modes for kernels. We take it from metadata attached to
// the kernel functions.
for (Function &Kernel : *M) {
if (Kernel.getCallingConv() != CallingConv::SPIR_KERNEL)
continue;
// Specifing execution modes for the Kernel and adding it to the list
// of ExecutionMode instructions.
// !{void (i32 addrspace(1)*)* @kernel, i32 17, i32 X, i32 Y, i32 Z}
if (MDNode *WGSize = Kernel.getMetadata(kSPIR2MD::WGSize)) {
assert(WGSize->getNumOperands() >= 1 && WGSize->getNumOperands() <= 3 &&
"reqd_work_group_size does not have between 1 and 3 operands.");
SmallVector<unsigned, 3> DecodedVals = decodeMDNode(WGSize);
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeLocalSize)
.add(DecodedVals[0])
.add(DecodedVals.size() >= 2 ? DecodedVals[1] : 1)
.add(DecodedVals.size() == 3 ? DecodedVals[2] : 1)
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 18, i32 X, i32 Y, i32 Z}
if (MDNode *WGSizeHint = Kernel.getMetadata(kSPIR2MD::WGSizeHint)) {
assert(WGSizeHint->getNumOperands() >= 1 &&
WGSizeHint->getNumOperands() <= 3 &&
"work_group_size_hint does not have between 1 and 3 operands.");
SmallVector<unsigned, 3> DecodedVals = decodeMDNode(WGSizeHint);
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeLocalSizeHint)
.add(DecodedVals[0])
.add(DecodedVals.size() >= 2 ? DecodedVals[1] : 1)
.add(DecodedVals.size() == 3 ? DecodedVals[2] : 1)
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 30, i32 hint}
if (MDNode *VecTypeHint = Kernel.getMetadata(kSPIR2MD::VecTyHint)) {
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeVecTypeHint)
.add(transVecTypeHint(VecTypeHint))
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 35, i32 size}
if (MDNode *ReqdSubgroupSize = Kernel.getMetadata(kSPIR2MD::SubgroupSize)) {
// A primary named subgroup size is encoded as
// the metadata intel_reqd_sub_group_size with value -1.
auto Val = getMDOperandAsInt(ReqdSubgroupSize, 0);
if (Val == -1U)
EM.addOp()
.add(&Kernel)
.add(spv::internal::ExecutionModeNamedSubgroupSizeINTEL)
.add(/* PrimarySubgroupSizeINTEL = */ 0U)
.done();
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeSubgroupSize)
.add(Val)
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 max_work_group_size, i32 X,
// i32 Y, i32 Z}
if (MDNode *MaxWorkgroupSizeINTEL =
Kernel.getMetadata(kSPIR2MD::MaxWGSize)) {
assert(MaxWorkgroupSizeINTEL->getNumOperands() == 3 &&
"max_work_group_size does not have 3 operands.");
SmallVector<unsigned, 3> DecodedVals =
decodeMDNode(MaxWorkgroupSizeINTEL);
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeMaxWorkgroupSizeINTEL)
.add(DecodedVals[0])
.add(DecodedVals[1])
.add(DecodedVals[2])
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 no_global_work_offset}
if (Kernel.getMetadata(kSPIR2MD::NoGlobalOffset)) {
EM.addOp().add(&Kernel).add(spv::ExecutionModeNoGlobalOffsetINTEL).done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 max_global_work_dim, i32 dim}
if (MDNode *MaxWorkDimINTEL = Kernel.getMetadata(kSPIR2MD::MaxWGDim)) {
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeMaxWorkDimINTEL)
.add(getMDOperandAsInt(MaxWorkDimINTEL, 0))
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 num_simd_work_items, i32 num}
if (MDNode *NumSIMDWorkitemsINTEL = Kernel.getMetadata(kSPIR2MD::NumSIMD)) {
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeNumSIMDWorkitemsINTEL)
.add(getMDOperandAsInt(NumSIMDWorkitemsINTEL, 0))
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 scheduler_target_fmax_mhz,
// i32 num}
if (MDNode *SchedulerTargetFmaxMhzINTEL =
Kernel.getMetadata(kSPIR2MD::FmaxMhz)) {
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeSchedulerTargetFmaxMhzINTEL)
.add(getMDOperandAsInt(SchedulerTargetFmaxMhzINTEL, 0))
.done();
}
// !{void (i32 addrspace(1)*)* @kernel, i32 ip_interface, i32 interface}
if (MDNode *Interface =
Kernel.getMetadata(kSPIR2MD::IntelFPGAIPInterface)) {
std::set<std::string> InterfaceStrSet;
for (size_t I = 0; I != Interface->getNumOperands(); ++I)
InterfaceStrSet.insert(getMDOperandAsString(Interface, I).str());
// ip_interface metadata will either have Register Map metadata or
// Streaming metadata.
//
// Register Map mode metadata:
// Not 'WaitForDoneWrite' mode (to be mapped on '0' literal)
// !ip_interface !N
// !N = !{!"csr"}
// 'WaitForDoneWrite' mode (to be mapped on '1' literal)
// !ip_interface !N
// !N = !{!"csr", !"wait_for_done_write"}
if (InterfaceStrSet.find("csr") != InterfaceStrSet.end()) {
int32_t InterfaceMode = 0;
if (InterfaceStrSet.find("wait_for_done_write") !=
InterfaceStrSet.end())
InterfaceMode = 1;
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeRegisterMapInterfaceINTEL)
.add(InterfaceMode)
.done();
}
// Streaming mode metadata be like:
// Not 'stall free' mode (to be mapped on '0' literal)
// !ip_interface !N
// !N = !{!"streaming"}
// 'stall free' mode (to be mapped on '1' literal)
// !ip_interface !N
// !N = !{!"streaming", !"stall_free_return"}
if (InterfaceStrSet.find("streaming") != InterfaceStrSet.end()) {
int32_t InterfaceMode = 0;
if (InterfaceStrSet.find("stall_free_return") != InterfaceStrSet.end())
InterfaceMode = 1;
EM.addOp()
.add(&Kernel)
.add(spv::ExecutionModeStreamingInterfaceINTEL)
.add(InterfaceMode)
.done();
}
}
}
}
void PreprocessMetadataBase::preprocessOCLMetadata(Module *M, SPIRVMDBuilder *B,
SPIRVMDWalker *W) {
unsigned CLVer = getOCLVersion(M, true);
if (CLVer == 0)
return;
// Preprocess OpenCL-specific metadata
// !spirv.Source = !{!x}
// !{x} = !{i32 3, i32 102000}
B->addNamedMD(kSPIRVMD::Source)
.addOp()
.add(M->getNamedMetadata(kSPIR2MD::OCLCXXVer) &&
(CLVer == kOCLVer::CLCXX10 || CLVer == kOCLVer::CLCXX2021)
? spv::SourceLanguageCPP_for_OpenCL
: spv::SourceLanguageOpenCL_C)
.add(CLVer)
.done();
if (EraseOCLMD)
B->eraseNamedMD(kSPIR2MD::OCLVer)
.eraseNamedMD(kSPIR2MD::SPIRVer)
.eraseNamedMD(kSPIR2MD::OCLCXXVer);
// !spirv.MemoryModel = !{!x}
// !{x} = !{i32 1, i32 2}
Triple TT(M->getTargetTriple());
assert(isSupportedTriple(TT) && "Invalid triple");
B->addNamedMD(kSPIRVMD::MemoryModel)
.addOp()
.add(TT.isArch32Bit() ? spv::AddressingModelPhysical32
: spv::AddressingModelPhysical64)
.add(spv::MemoryModelOpenCL)
.done();
// Add source extensions
// !spirv.SourceExtension = !{!x, !y, ...}
// !x = {!"cl_khr_..."}
// !y = {!"cl_khr_..."}
auto Exts = getNamedMDAsStringSet(M, kSPIR2MD::Extensions);
if (!Exts.empty()) {
auto N = B->addNamedMD(kSPIRVMD::SourceExtension);
for (auto &I : Exts)
N.addOp().add(I).done();
}
if (EraseOCLMD)
B->eraseNamedMD(kSPIR2MD::Extensions).eraseNamedMD(kSPIR2MD::OptFeatures);
if (EraseOCLMD)
B->eraseNamedMD(kSPIR2MD::FPContract);
}
void PreprocessMetadataBase::preprocessVectorComputeMetadata(Module *M,
SPIRVMDBuilder *B,
SPIRVMDWalker *W) {
using namespace VectorComputeUtil;
auto EM = B->addNamedMD(kSPIRVMD::ExecutionMode);
for (auto &F : *M) {
if (F.getCallingConv() != CallingConv::SPIR_KERNEL)
continue;
// Add VC float control execution modes
// RoundMode and FloatMode are always same for all types in VC
// While Denorm could be different for double, float and half
auto Attrs = F.getAttributes();
if (Attrs.hasFnAttr(kVCMetadata::VCFloatControl)) {
SPIRVWord Mode = 0;
Attrs.getFnAttr(kVCMetadata::VCFloatControl)
.getValueAsString()
.getAsInteger(0, Mode);
spv::ExecutionMode ExecRoundMode =
FPRoundingModeExecModeMap::map(getFPRoundingMode(Mode));
spv::ExecutionMode ExecFloatMode =
FPOperationModeExecModeMap::map(getFPOperationMode(Mode));
VCFloatTypeSizeMap::foreach ([&](VCFloatType FloatType,
unsigned TargetWidth) {
EM.addOp().add(&F).add(ExecRoundMode).add(TargetWidth).done();
EM.addOp().add(&F).add(ExecFloatMode).add(TargetWidth).done();
EM.addOp()
.add(&F)
.add(FPDenormModeExecModeMap::map(getFPDenormMode(Mode, FloatType)))
.add(TargetWidth)
.done();
});
}
if (Attrs.hasFnAttr(kVCMetadata::VCSLMSize)) {
SPIRVWord SLMSize = 0;
Attrs.getFnAttr(kVCMetadata::VCSLMSize)
.getValueAsString()
.getAsInteger(0, SLMSize);
EM.addOp()
.add(&F)
.add(spv::ExecutionModeSharedLocalMemorySizeINTEL)
.add(SLMSize)
.done();
}
if (Attrs.hasFnAttr(kVCMetadata::VCNamedBarrierCount)) {
SPIRVWord NBarrierCnt = 0;
Attrs.getFnAttr(kVCMetadata::VCNamedBarrierCount)
.getValueAsString()
.getAsInteger(0, NBarrierCnt);
EM.addOp()
.add(&F)
.add(spv::ExecutionModeNamedBarrierCountINTEL)
.add(NBarrierCnt)
.done();
}
}
}
} // namespace SPIRV
INITIALIZE_PASS(PreprocessMetadataLegacy, "preprocess-metadata",
"Transform LLVM IR metadata to SPIR-V metadata format", false,
false)
ModulePass *llvm::createPreprocessMetadataLegacy() {
return new PreprocessMetadataLegacy();
}
|