1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
//===- SPIRVRegularizeLLVM.cpp - Regularize LLVM for SPIR-V ------- C++ -*-===//
//
// The LLVM/SPIRV Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of Advanced Micro Devices, Inc., nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements regularization of LLVM module for SPIR-V.
//
//===----------------------------------------------------------------------===//
#include "SPIRVRegularizeLLVM.h"
#include "OCLUtil.h"
#include "SPIRVInternal.h"
#include "SPIRVMDWalker.h"
#include "libSPIRV/SPIRVDebug.h"
#include "llvm/ADT/StringExtras.h" // llvm::isDigit
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h" // expandMemSetAsLoop()
#include <set>
#include <vector>
#define DEBUG_TYPE "spvregular"
using namespace llvm;
using namespace SPIRV;
using namespace OCLUtil;
namespace SPIRV {
static bool SPIRVDbgSaveRegularizedModule = false;
static std::string RegularizedModuleTmpFile = "regularized.bc";
char SPIRVRegularizeLLVMLegacy::ID = 0;
bool SPIRVRegularizeLLVMLegacy::runOnModule(Module &Module) {
return runRegularizeLLVM(Module);
}
std::string SPIRVRegularizeLLVMBase::lowerLLVMIntrinsicName(IntrinsicInst *II) {
Function *IntrinsicFunc = II->getCalledFunction();
assert(IntrinsicFunc && "Missing function");
std::string FuncName = IntrinsicFunc->getName().str();
std::replace(FuncName.begin(), FuncName.end(), '.', '_');
FuncName = "spirv." + FuncName;
return FuncName;
}
void SPIRVRegularizeLLVMBase::lowerIntrinsicToFunction(
IntrinsicInst *Intrinsic) {
// For @llvm.memset.* intrinsic cases with constant value and length arguments
// are emulated via "storing" a constant array to the destination. For other
// cases we wrap the intrinsic in @spirv.llvm_memset_* function and expand the
// intrinsic to a loop via expandMemSetAsLoop() from
// llvm/Transforms/Utils/LowerMemIntrinsics.h
if (auto *MSI = dyn_cast<MemSetInst>(Intrinsic))
if (isa<Constant>(MSI->getValue()) && isa<ConstantInt>(MSI->getLength()))
return; // To be handled in LLVMToSPIRV::transIntrinsicInst
std::string FuncName = lowerLLVMIntrinsicName(Intrinsic);
if (Intrinsic->isVolatile())
FuncName += ".volatile";
// Redirect @llvm.intrinsic.* call to @spirv.llvm_intrinsic_*
Function *F = M->getFunction(FuncName);
if (F) {
// This function is already linked in.
Intrinsic->setCalledFunction(F);
return;
}
// TODO copy arguments attributes: nocapture writeonly.
FunctionCallee FC =
M->getOrInsertFunction(FuncName, Intrinsic->getFunctionType());
auto IntrinsicID = Intrinsic->getIntrinsicID();
Intrinsic->setCalledFunction(FC);
F = dyn_cast<Function>(FC.getCallee());
assert(F && "must be a function!");
switch (IntrinsicID) {
case Intrinsic::memset: {
auto *MSI = static_cast<MemSetInst *>(Intrinsic);
Argument *Dest = F->getArg(0);
Argument *Val = F->getArg(1);
Argument *Len = F->getArg(2);
Argument *IsVolatile = F->getArg(3);
Dest->setName("dest");
Val->setName("val");
Len->setName("len");
IsVolatile->setName("isvolatile");
IsVolatile->addAttr(Attribute::ImmArg);
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> IRB(EntryBB);
auto *MemSet = IRB.CreateMemSet(Dest, Val, Len, MSI->getDestAlign(),
MSI->isVolatile());
IRB.CreateRetVoid();
expandMemSetAsLoop(cast<MemSetInst>(MemSet));
MemSet->eraseFromParent();
break;
}
case Intrinsic::bswap: {
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> IRB(EntryBB);
auto *BSwap = IRB.CreateIntrinsic(Intrinsic::bswap, Intrinsic->getType(),
F->getArg(0));
IRB.CreateRet(BSwap);
IntrinsicLowering IL(M->getDataLayout());
IL.LowerIntrinsicCall(BSwap);
break;
}
default:
break; // do nothing
}
return;
}
void SPIRVRegularizeLLVMBase::lowerFunnelShift(IntrinsicInst *FSHIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
// Expected LLVM IR for the function: i* @spirv.llvm_fsh?_i* (i* %a, i* %b, i*
// %c)
FunctionType *FSHFuncTy = FSHIntrinsic->getFunctionType();
Type *FSHRetTy = FSHFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(FSHIntrinsic);
Function *FSHFunc =
getOrCreateFunction(M, FSHRetTy, FSHFuncTy->params(), FuncName);
if (!FSHFunc->empty()) {
FSHIntrinsic->setCalledFunction(FSHFunc);
return;
}
auto *RotateBB = BasicBlock::Create(M->getContext(), "rotate", FSHFunc);
IRBuilder<> Builder(RotateBB);
Type *Ty = FSHFunc->getReturnType();
// Build the actual funnel shift rotate logic.
// In the comments, "int" is used interchangeably with "vector of int
// elements".
FixedVectorType *VectorTy = dyn_cast<FixedVectorType>(Ty);
Type *IntTy = VectorTy ? VectorTy->getElementType() : Ty;
unsigned BitWidth = IntTy->getIntegerBitWidth();
ConstantInt *BitWidthConstant = Builder.getInt({BitWidth, BitWidth});
Value *BitWidthForInsts =
VectorTy ? Builder.CreateVectorSplat(VectorTy->getNumElements(),
BitWidthConstant)
: BitWidthConstant;
auto *RotateModVal =
Builder.CreateURem(/*Rotate*/ FSHFunc->getArg(2), BitWidthForInsts);
Value *FirstShift = nullptr, *SecShift = nullptr;
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr)
// Shift the less significant number right, the "rotate" number of bits
// will be 0-filled on the left as a result of this regular shift.
FirstShift = Builder.CreateLShr(FSHFunc->getArg(1), RotateModVal);
else
// Shift the more significant number left, the "rotate" number of bits
// will be 0-filled on the right as a result of this regular shift.
FirstShift = Builder.CreateShl(FSHFunc->getArg(0), RotateModVal);
// We want the "rotate" number of the more significant int's LSBs (MSBs) to
// occupy the leftmost (rightmost) "0 space" left by the previous operation.
// Therefore, subtract the "rotate" number from the integer bitsize...
auto *SubRotateVal = Builder.CreateSub(BitWidthForInsts, RotateModVal);
if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr)
// ...and left-shift the more significant int by this number, zero-filling
// the LSBs.
SecShift = Builder.CreateShl(FSHFunc->getArg(0), SubRotateVal);
else
// ...and right-shift the less significant int by this number, zero-filling
// the MSBs.
SecShift = Builder.CreateLShr(FSHFunc->getArg(1), SubRotateVal);
// A simple binary addition of the shifted ints yields the final result.
auto *FunnelShiftRes = Builder.CreateOr(FirstShift, SecShift);
Builder.CreateRet(FunnelShiftRes);
FSHIntrinsic->setCalledFunction(FSHFunc);
}
void SPIRVRegularizeLLVMBase::buildUMulWithOverflowFunc(Function *UMulFunc) {
if (!UMulFunc->empty())
return;
BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", UMulFunc);
IRBuilder<> Builder(EntryBB);
// Build the actual unsigned multiplication logic with the overflow
// indication.
auto *FirstArg = UMulFunc->getArg(0);
auto *SecondArg = UMulFunc->getArg(1);
// Do unsigned multiplication Mul = A * B.
// Then check if unsigned division Div = Mul / A is not equal to B.
// If so, then overflow has happened.
auto *Mul = Builder.CreateNUWMul(FirstArg, SecondArg);
auto *Div = Builder.CreateUDiv(Mul, FirstArg);
auto *Overflow = Builder.CreateICmpNE(FirstArg, Div);
// umul.with.overflow intrinsic return a structure, where the first element
// is the multiplication result, and the second is an overflow bit.
auto *StructTy = UMulFunc->getReturnType();
auto *Agg = Builder.CreateInsertValue(UndefValue::get(StructTy), Mul, {0});
auto *Res = Builder.CreateInsertValue(Agg, Overflow, {1});
Builder.CreateRet(Res);
}
void SPIRVRegularizeLLVMBase::lowerUMulWithOverflow(
IntrinsicInst *UMulIntrinsic) {
// Get a separate function - otherwise, we'd have to rework the CFG of the
// current one. Then simply replace the intrinsic uses with a call to the new
// function.
FunctionType *UMulFuncTy = UMulIntrinsic->getFunctionType();
Type *FSHLRetTy = UMulFuncTy->getReturnType();
const std::string FuncName = lowerLLVMIntrinsicName(UMulIntrinsic);
Function *UMulFunc =
getOrCreateFunction(M, FSHLRetTy, UMulFuncTy->params(), FuncName);
buildUMulWithOverflowFunc(UMulFunc);
UMulIntrinsic->setCalledFunction(UMulFunc);
}
void SPIRVRegularizeLLVMBase::expandVEDWithSYCLTypeSRetArg(Function *F) {
auto Attrs = F->getAttributes();
StructType *SRetTy = cast<StructType>(Attrs.getParamStructRetType(0));
Attrs = Attrs.removeParamAttribute(F->getContext(), 0, Attribute::StructRet);
std::string Name = F->getName().str();
CallInst *OldCall = nullptr;
mutateFunction(
F,
[=, &OldCall](CallInst *CI, std::vector<Value *> &Args, Type *&RetTy) {
Args.erase(Args.begin());
RetTy = SRetTy->getElementType(0);
OldCall = CI;
return Name;
},
[=, &OldCall](CallInst *NewCI) {
IRBuilder<> Builder(OldCall);
Value *Target =
Builder.CreateStructGEP(SRetTy, OldCall->getOperand(0), 0);
return Builder.CreateStore(NewCI, Target);
},
nullptr, &Attrs, true);
}
void SPIRVRegularizeLLVMBase::expandVIDWithSYCLTypeByValComp(Function *F) {
auto Attrs = F->getAttributes();
auto *CompPtrTy = cast<StructType>(Attrs.getParamByValType(1));
Attrs = Attrs.removeParamAttribute(F->getContext(), 1, Attribute::ByVal);
std::string Name = F->getName().str();
mutateFunction(
F,
[=](CallInst *CI, std::vector<Value *> &Args) {
Type *HalfTy = CompPtrTy->getElementType(0);
IRBuilder<> Builder(CI);
auto *Target = Builder.CreateStructGEP(CompPtrTy, CI->getOperand(1), 0);
Args[1] = Builder.CreateLoad(HalfTy, Target);
return Name;
},
nullptr, &Attrs, true);
}
void SPIRVRegularizeLLVMBase::expandSYCLTypeUsing(Module *M) {
std::vector<Function *> ToExpandVEDWithSYCLTypeSRetArg;
std::vector<Function *> ToExpandVIDWithSYCLTypeByValComp;
for (auto &F : *M) {
if (F.getName().starts_with("_Z28__spirv_VectorExtractDynamic") &&
F.hasStructRetAttr()) {
auto *SRetTy = F.getParamStructRetType(0);
if (isSYCLHalfType(SRetTy) || isSYCLBfloat16Type(SRetTy))
ToExpandVEDWithSYCLTypeSRetArg.push_back(&F);
else
llvm_unreachable("The return type of the VectorExtractDynamic "
"instruction cannot be a structure other than SYCL "
"half.");
}
if (F.getName().starts_with("_Z27__spirv_VectorInsertDynamic") &&
F.getArg(1)->getType()->isPointerTy()) {
auto *ET = F.getParamByValType(1);
if (isSYCLHalfType(ET) || isSYCLBfloat16Type(ET))
ToExpandVIDWithSYCLTypeByValComp.push_back(&F);
else
llvm_unreachable("The component argument type of an "
"VectorInsertDynamic instruction can't be a "
"structure other than SYCL half.");
}
}
for (auto *F : ToExpandVEDWithSYCLTypeSRetArg)
expandVEDWithSYCLTypeSRetArg(F);
for (auto *F : ToExpandVIDWithSYCLTypeByValComp)
expandVIDWithSYCLTypeByValComp(F);
}
// In this function, we handle two conversion operations
// 1. fptoui.sat.iX.fY (X is not 8,16,32,64; Y is 32 or 64)
// 2. fptosi.sat.iX.fY (X is not 8,16,32,64; Y is 32 or 64)
// Such non-standard integer types cannot be handled in SPIR-V. Hence, they
// will be promoted to
// 1. fptoui.sat.i64.fY (Y is 32 or 64)
// 2. fptosi.sat.i64.fY (Y is 32 or 64)
// However, LLVM documentation requires the following rules to be obeyed.
// Rule 1: If the argument is any NaN, zero is returned.
// Rule 2: If the argument is smaller than the smallest representable
// (un)signed integer of the result type, the smallest representable
// (un)signed integer is returned.
// Rule 3: If the argument is larger than the largest representable (un)signed
// integer of the result type, the largest representable (un)signed integer is
// returned.
// Rule 4: Otherwise, the result of rounding the argument towards zero is
// returned.
// Rules 1 & 4 are preserved when promoting iX to i64. For preserving Rule 2
// and Rule 3, we saturate the result of the promoted instruction based on
// original integer type (iX)
// Example:
// Input:
// %0 = call i2 @llvm.fptosi.sat.i2.f32(float %input)
// %1 = sext i32 %0
// Output:
// %0 = call i32 @_Z17convert_long_satf(float %input)
// %1 = icmp sge i32 %0, 1 <Largest 2-bit signed integer>
// %2 = icmp sle i32 %0, -2 <Smallest 2-bit signed integer>
// %3 = select i1 %1, i32 1, i32 %0
// %4 = select i1 %2, i32 -2, i32 %3
// Replace uses of %1 in Input with %4 in Output
void SPIRVRegularizeLLVMBase::cleanupConversionToNonStdIntegers(Module *M) {
for (auto FI = M->begin(), FE = M->end(); FI != FE;) {
Function *F = &(*FI++);
std::vector<Instruction *> ToErase;
auto IID = F->getIntrinsicID();
if (IID != Intrinsic::fptosi_sat && IID != Intrinsic::fptoui_sat)
continue;
for (auto *I : F->users()) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
// TODO: Vector type not supported yet.
if (isa<VectorType>(II->getType()))
continue;
auto IID = II->getIntrinsicID();
auto IntBitWidth = II->getType()->getScalarSizeInBits();
if (IntBitWidth == 8 || IntBitWidth == 16 || IntBitWidth == 32 ||
IntBitWidth == 64)
continue;
if (IID == Intrinsic::fptosi_sat) {
// Identify sext (user of II). Make sure that's the only use of II.
auto *User = II->getUniqueUndroppableUser();
if (!User || !isa<SExtInst>(User))
continue;
auto *SExtI = dyn_cast<SExtInst>(User);
auto *NewIType = SExtI->getType();
IRBuilder<> IRB(II);
auto *NewII = IRB.CreateIntrinsic(
IID, {NewIType, II->getOperand(0)->getType()}, II->getOperand(0));
Constant *MaxVal = ConstantInt::get(
NewIType, APInt::getSignedMaxValue(IntBitWidth).getSExtValue());
Constant *MinVal = ConstantInt::get(
NewIType, APInt::getSignedMinValue(IntBitWidth).getSExtValue());
auto *GTMax = IRB.CreateICmp(CmpInst::ICMP_SGE, NewII, MaxVal);
auto *LTMin = IRB.CreateICmp(CmpInst::ICMP_SLE, NewII, MinVal);
auto *SatMax = IRB.CreateSelect(GTMax, MaxVal, NewII);
auto *SatMin = IRB.CreateSelect(LTMin, MinVal, SatMax);
SExtI->replaceAllUsesWith(SatMin);
ToErase.push_back(SExtI);
ToErase.push_back(II);
}
if (IID == Intrinsic::fptoui_sat) {
// Identify zext (user of II). Make sure that's the only use of II.
auto *User = II->getUniqueUndroppableUser();
if (!User || !isa<ZExtInst>(User))
continue;
auto *ZExtI = dyn_cast<ZExtInst>(User);
auto *NewIType = ZExtI->getType();
IRBuilder<> IRB(II);
auto *NewII = IRB.CreateIntrinsic(
IID, {NewIType, II->getOperand(0)->getType()}, II->getOperand(0));
Constant *MaxVal = ConstantInt::get(
NewIType, APInt::getMaxValue(IntBitWidth).getZExtValue());
auto *GTMax = IRB.CreateICmp(CmpInst::ICMP_UGE, NewII, MaxVal);
auto *SatMax = IRB.CreateSelect(GTMax, MaxVal, NewII);
ZExtI->replaceAllUsesWith(SatMax);
ToErase.push_back(ZExtI);
ToErase.push_back(II);
}
}
}
for (Instruction *V : ToErase) {
assert(V->user_empty());
V->dropAllReferences();
V->eraseFromParent();
}
}
}
bool SPIRVRegularizeLLVMBase::runRegularizeLLVM(Module &Module) {
M = &Module;
Ctx = &M->getContext();
LLVM_DEBUG(dbgs() << "Enter SPIRVRegularizeLLVM:\n");
regularize();
LLVM_DEBUG(dbgs() << "After SPIRVRegularizeLLVM:\n" << *M);
verifyRegularizationPass(*M, "SPIRVRegularizeLLVM");
return true;
}
namespace {
void regularizeWithOverflowInstrinsics(StringRef MangledName, CallInst *Call,
Module *M,
std::vector<Instruction *> &ToErase) {
IRBuilder Builder(Call);
Function *Builtin = Call->getModule()->getFunction(MangledName);
AllocaInst *A;
StructType *StructBuiltinTy;
if (Builtin) {
StructBuiltinTy = cast<StructType>(Builtin->getParamStructRetType(0));
{
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPointPastAllocas(Call->getParent()->getParent());
A = Builder.CreateAlloca(StructBuiltinTy);
}
CallInst *C = Builder.CreateCall(
Builtin, {A, Call->getArgOperand(0), Call->getArgOperand(1)});
auto SretAttr = Attribute::get(
Builder.getContext(), Attribute::AttrKind::StructRet, StructBuiltinTy);
C->addParamAttr(0, SretAttr);
} else {
StructBuiltinTy = StructType::create(
Call->getContext(),
{Call->getArgOperand(0)->getType(), Call->getArgOperand(1)->getType()});
{
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPointPastAllocas(Call->getParent()->getParent());
A = Builder.CreateAlloca(StructBuiltinTy);
}
FunctionType *FT =
FunctionType::get(Builder.getVoidTy(),
{A->getType(), Call->getArgOperand(0)->getType(),
Call->getArgOperand(1)->getType()},
false);
Builtin =
Function::Create(FT, GlobalValue::ExternalLinkage, MangledName, M);
Builtin->setCallingConv(CallingConv::SPIR_FUNC);
Builtin->addFnAttr(Attribute::NoUnwind);
auto SretAttr = Attribute::get(
Builder.getContext(), Attribute::AttrKind::StructRet, StructBuiltinTy);
Builtin->addParamAttr(0, SretAttr);
CallInst *C = Builder.CreateCall(
Builtin, {A, Call->getArgOperand(0), Call->getArgOperand(1)});
C->addParamAttr(0, SretAttr);
}
Type *RetTy = Call->getArgOperand(0)->getType();
Constant *ConstZero = ConstantInt::get(RetTy, 0);
Value *L = Builder.CreateLoad(StructBuiltinTy, A);
Value *V0 = Builder.CreateExtractValue(L, {0});
Value *V1 = Builder.CreateExtractValue(L, {1});
Value *V2 = Builder.CreateICmpNE(V1, ConstZero);
Type *StructI32I1Ty =
StructType::create(Call->getContext(), {RetTy, V2->getType()});
Value *Undef = UndefValue::get(StructI32I1Ty);
Value *V3 = Builder.CreateInsertValue(Undef, V0, {0});
Value *V4 = Builder.CreateInsertValue(V3, V2, {1});
SmallVector<User *> Users(Call->users());
for (User *U : Users) {
U->replaceUsesOfWith(Call, V4);
}
ToErase.push_back(Call);
}
// CacheControls(Load/Store)INTEL decorations can be represented as metadata
// placed on memory accessing instruction with the following form:
// !spirv.DecorationCacheControlINTEL !X
// !X = !{i32 %decoration_kind%, i32 %level%, i32 %control%,
// i32 %operand of the instruction to decorate%}
// This function creates a dummy GEP accessing pointer operand of the
// instruction and creates !spirv.Decorations metadata attached to it.
void prepareCacheControlsTranslation(Metadata *MD, Instruction *Inst) {
if (!Inst->mayReadOrWriteMemory())
return;
auto *ArgDecoMD = dyn_cast<MDNode>(MD);
assert(ArgDecoMD && "Decoration list must be a metadata node");
std::vector<Instruction *> CreatedGeps;
for (unsigned I = 0, E = ArgDecoMD->getNumOperands(); I != E; ++I) {
auto *DecoMD = dyn_cast<MDNode>(ArgDecoMD->getOperand(I));
if (!DecoMD) {
assert(!"Decoration does not name metadata");
return;
}
constexpr size_t CacheControlsNumOps = 4;
if (DecoMD->getNumOperands() != CacheControlsNumOps) {
assert(!"Cache controls metadata on instruction must have 4 operands");
return;
}
auto *const KindMD = cast<ConstantAsMetadata>(DecoMD->getOperand(0));
auto *const LevelMD = cast<ConstantAsMetadata>(DecoMD->getOperand(1));
auto *const ControlMD = cast<ConstantAsMetadata>(DecoMD->getOperand(2));
const size_t TargetArgNo =
mdconst::dyn_extract<ConstantInt>(DecoMD->getOperand(3))
->getZExtValue();
Value *PtrInstOp = Inst->getOperand(TargetArgNo);
if (!PtrInstOp->getType()->isPointerTy()) {
assert(!"Cache controls must decorate a pointer");
return;
}
// Create dummy GEP for SSA copy of the pointer operand. Lets do our best
// to guess pointee type here, but if we won't - just pointer is also fine,
// if necessary TypeScavenger will adjust types and create bitcasts. If
// memory instruction operand is already created zero GEP - create nothing
// and use the old GEP.
SmallVector<Metadata *, 4> MDs;
std::vector<Metadata *> OPs = {KindMD, LevelMD, ControlMD};
if (auto *const GEP = dyn_cast<GetElementPtrInst>(PtrInstOp)) {
if (GEP->hasAllZeroIndices() &&
(std::find(CreatedGeps.begin(), CreatedGeps.end(), GEP) !=
std::end(CreatedGeps))) {
MDs.push_back(MDNode::get(Inst->getContext(), OPs));
// If the existing GEP has SPIRV_MD_DECORATIONS metadata - copy it
if (auto *OldMD = GEP->getMetadata(SPIRV_MD_DECORATIONS))
for (unsigned I = 0, E = OldMD->getNumOperands(); I != E; ++I)
if (auto *DecoMD = dyn_cast<MDNode>(OldMD->getOperand(I)))
MDs.push_back(DecoMD);
MDNode *MDList = MDNode::get(Inst->getContext(), MDs);
GEP->setMetadata(SPIRV_MD_DECORATIONS, MDList);
return;
}
}
IRBuilder Builder(Inst);
Type *GEPTy = Builder.getInt8Ty();
if (auto *LI = dyn_cast<LoadInst>(Inst))
GEPTy = LI->getType();
else if (auto *SI = dyn_cast<StoreInst>(Inst))
GEPTy = SI->getValueOperand()->getType();
auto *GEP =
cast<Instruction>(Builder.CreateConstGEP1_32(GEPTy, PtrInstOp, 0));
CreatedGeps.push_back(GEP);
Inst->setOperand(TargetArgNo, GEP);
MDs.push_back(MDNode::get(Inst->getContext(), OPs));
MDNode *MDList = MDNode::get(Inst->getContext(), MDs);
GEP->setMetadata(SPIRV_MD_DECORATIONS, MDList);
}
}
} // namespace
/// Remove entities not representable by SPIR-V
bool SPIRVRegularizeLLVMBase::regularize() {
eraseUselessFunctions(M);
addKernelEntryPoint(M);
expandSYCLTypeUsing(M);
cleanupConversionToNonStdIntegers(M);
for (auto I = M->begin(), E = M->end(); I != E;) {
Function *F = &(*I++);
if (F->isDeclaration() && F->use_empty()) {
F->eraseFromParent();
continue;
}
// TODO: query intrinsic calls from their declarations
std::vector<Instruction *> ToErase;
for (BasicBlock &BB : *F) {
for (Instruction &II : BB) {
if (auto *MD = II.getMetadata(SPIRV_MD_INTEL_CACHE_DECORATIONS))
prepareCacheControlsTranslation(MD, &II);
if (auto *Call = dyn_cast<CallInst>(&II)) {
Call->setTailCall(false);
Function *CF = Call->getCalledFunction();
if (CF && CF->isIntrinsic()) {
removeFnAttr(Call, Attribute::NoUnwind);
auto *II = cast<IntrinsicInst>(Call);
if (II->getIntrinsicID() == Intrinsic::memset ||
II->getIntrinsicID() == Intrinsic::bswap)
lowerIntrinsicToFunction(II);
else if (II->getIntrinsicID() == Intrinsic::fshl ||
II->getIntrinsicID() == Intrinsic::fshr)
lowerFunnelShift(II);
else if (II->getIntrinsicID() == Intrinsic::umul_with_overflow)
lowerUMulWithOverflow(II);
else if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
BuiltinFuncMangleInfo Info;
std::string MangledName =
mangleBuiltin("__spirv_IAddCarry",
{Call->getArgOperand(0)->getType(),
Call->getArgOperand(1)->getType()},
&Info);
regularizeWithOverflowInstrinsics(MangledName, Call, M, ToErase);
} else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow) {
BuiltinFuncMangleInfo Info;
std::string MangledName =
mangleBuiltin("__spirv_ISubBorrow",
{Call->getArgOperand(0)->getType(),
Call->getArgOperand(1)->getType()},
&Info);
regularizeWithOverflowInstrinsics(MangledName, Call, M, ToErase);
}
}
}
if (II.isLogicalShift()) {
// Translator treats i1 as boolean, but bit instructions take
// a scalar/vector integers, so we have to extend such arguments.
// shl i1 %a %b and lshr i1 %a %b are now converted on:
// %0 = select i1 %a, i32 1, i32 0
// %1 = select i1 %b, i32 1, i32 0
// %2 = lshr i32 %0, %1
// if any other instruction other than zext was dependant:
// %3 = icmp ne i32 %2, 0
// which converts it back to i1 and replace original result with %3
// to dependant instructions.
if (II.getOperand(0)->getType()->isIntOrIntVectorTy(1)) {
IRBuilder<> Builder(&II);
Value *CmpNEInst = nullptr;
Constant *ConstZero = ConstantInt::get(Builder.getInt32Ty(), 0);
Constant *ConstOne = ConstantInt::get(Builder.getInt32Ty(), 1);
if (auto *VecTy =
dyn_cast<FixedVectorType>(II.getOperand(0)->getType())) {
const unsigned NumElements = VecTy->getNumElements();
ConstZero = ConstantVector::getSplat(
ElementCount::getFixed(NumElements), ConstZero);
ConstOne = ConstantVector::getSplat(
ElementCount::getFixed(NumElements), ConstOne);
}
Value *ExtendedBase =
Builder.CreateSelect(II.getOperand(0), ConstOne, ConstZero);
Value *ExtendedShift =
Builder.CreateSelect(II.getOperand(1), ConstOne, ConstZero);
Value *ExtendedShiftedVal =
Builder.CreateLShr(ExtendedBase, ExtendedShift);
SmallVector<User *, 8> Users(II.users());
for (User *U : Users) {
if (auto *UI = dyn_cast<Instruction>(U)) {
if (UI->getOpcode() == Instruction::ZExt) {
UI->dropAllReferences();
UI->replaceAllUsesWith(ExtendedShiftedVal);
ToErase.push_back(UI);
continue;
}
}
if (!CmpNEInst) {
CmpNEInst = Builder.CreateICmpNE(ExtendedShiftedVal, ConstZero);
}
U->replaceUsesOfWith(&II, CmpNEInst);
}
ToErase.push_back(&II);
}
}
// Remove optimization info not supported by SPIRV
if (auto *BO = dyn_cast<BinaryOperator>(&II)) {
if (isa<PossiblyExactOperator>(BO) && BO->isExact())
BO->setIsExact(false);
}
// FIXME: This is not valid handling for freeze instruction
if (auto *FI = dyn_cast<FreezeInst>(&II)) {
auto *V = FI->getOperand(0);
if (isa<UndefValue>(V))
V = Constant::getNullValue(V->getType());
FI->replaceAllUsesWith(V);
FI->dropAllReferences();
ToErase.push_back(FI);
}
// Remove metadata not supported by SPIRV
static const char *MDs[] = {
"tbaa",
"range",
};
for (auto &MDName : MDs) {
if (II.getMetadata(MDName)) {
II.setMetadata(MDName, nullptr);
}
}
if (auto *Cmpxchg = dyn_cast<AtomicCmpXchgInst>(&II)) {
// Transform:
// %1 = cmpxchg i32* %ptr, i32 %comparator, i32 %0 seq_cst acquire
// To:
// %cmpxchg.res = call spir_func
// i32 @_Z29__spirv_AtomicCompareExchangePiiiiii(
// i32* %ptr, i32 1, i32 16, i32 2, i32 %0, i32 %comparator)
// %cmpxchg.success = icmp eq i32 %cmpxchg.res, %comparator
// %1 = insertvalue { i32, i1 } undef, i32 %cmpxchg.res, 0
// %2 = insertvalue { i32, i1 } %1, i1 %cmpxchg.success, 1
// To get memory scope argument we use Cmpxchg->getSyncScopeID()
// but LLVM's cmpxchg instruction is not aware of OpenCL(or SPIR-V)
// memory scope enumeration. If the scope is not set and assuming the
// produced SPIR-V module will be consumed in an OpenCL environment,
// we can use the same memory scope as OpenCL atomic functions that do
// not have memory_scope argument, i.e. memory_scope_device. See the
// OpenCL C specification p6.13.11. Atomic Functions
// cmpxchg LLVM instruction returns a pair {i32, i1}: the original
// value and a flag indicating success (true) or failure (false).
// OpAtomicCompareExchange SPIR-V instruction returns only the
// original value. To keep the return type({i32, i1}) we construct
// a composite. The first element of the composite holds result of
// OpAtomicCompareExchange, i.e. the original value. The second
// element holds result of comparison of the returned value and the
// comparator, which matches with semantics of the flag returned by
// cmpxchg.
Value *Ptr = Cmpxchg->getPointerOperand();
SmallVector<StringRef> SSIDs;
Cmpxchg->getContext().getSyncScopeNames(SSIDs);
spv::Scope S;
// Fill unknown syncscope value to default Device scope.
if (!OCLStrMemScopeMap::find(SSIDs[Cmpxchg->getSyncScopeID()].str(),
&S)) {
S = ScopeDevice;
}
Value *MemoryScope = getInt32(M, S);
auto SuccessOrder = static_cast<OCLMemOrderKind>(
llvm::toCABI(Cmpxchg->getSuccessOrdering()));
auto FailureOrder = static_cast<OCLMemOrderKind>(
llvm::toCABI(Cmpxchg->getFailureOrdering()));
Value *EqualSem = getInt32(M, OCLMemOrderMap::map(SuccessOrder));
Value *UnequalSem = getInt32(M, OCLMemOrderMap::map(FailureOrder));
Value *Val = Cmpxchg->getNewValOperand();
Value *Comparator = Cmpxchg->getCompareOperand();
Type *MemType = Cmpxchg->getCompareOperand()->getType();
llvm::Value *Args[] = {Ptr, MemoryScope, EqualSem,
UnequalSem, Val, Comparator};
auto *Res =
addCallInstSPIRV(M, "__spirv_AtomicCompareExchange", MemType,
Args, nullptr, {MemType}, &II, "cmpxchg.res");
IRBuilder<> Builder(Cmpxchg);
auto *Cmp = Builder.CreateICmpEQ(Res, Comparator, "cmpxchg.success");
auto *V1 = Builder.CreateInsertValue(
UndefValue::get(Cmpxchg->getType()), Res, 0);
auto *V2 = Builder.CreateInsertValue(V1, Cmp, 1, Cmpxchg->getName());
Cmpxchg->replaceAllUsesWith(V2);
ToErase.push_back(Cmpxchg);
}
}
}
for (Instruction *V : ToErase) {
assert(V->user_empty());
V->eraseFromParent();
}
}
if (SPIRVDbgSaveRegularizedModule)
saveLLVMModule(M, RegularizedModuleTmpFile);
return true;
}
void SPIRVRegularizeLLVMBase::addKernelEntryPoint(Module *M) {
std::vector<Function *> Work;
// Get a list of all functions that have SPIR kernel calling conv
for (auto &F : *M) {
if (F.getCallingConv() == CallingConv::SPIR_KERNEL)
Work.push_back(&F);
}
for (auto &F : Work) {
// for declarations just make them into SPIR functions.
F->setCallingConv(CallingConv::SPIR_FUNC);
if (F->isDeclaration())
continue;
// Otherwise add a wrapper around the function to act as an entry point.
FunctionType *FType = F->getFunctionType();
std::string WrapName =
kSPIRVName::EntrypointPrefix + static_cast<std::string>(F->getName());
Function *WrapFn =
getOrCreateFunction(M, F->getReturnType(), FType->params(), WrapName);
auto *CallBB = BasicBlock::Create(M->getContext(), "", WrapFn);
IRBuilder<> Builder(CallBB);
Function::arg_iterator DestI = WrapFn->arg_begin();
for (const Argument &I : F->args()) {
DestI->setName(I.getName());
DestI++;
}
SmallVector<Value *, 1> Args;
for (Argument &I : WrapFn->args()) {
Args.emplace_back(&I);
}
auto *CI = CallInst::Create(F, ArrayRef<Value *>(Args), "", CallBB);
CI->setCallingConv(F->getCallingConv());
CI->setAttributes(F->getAttributes());
// copy over all the metadata (should it be removed from F?)
SmallVector<std::pair<unsigned, MDNode *>> MDs;
F->getAllMetadata(MDs);
WrapFn->setAttributes(F->getAttributes());
for (auto MD = MDs.begin(), End = MDs.end(); MD != End; ++MD) {
WrapFn->addMetadata(MD->first, *MD->second);
}
WrapFn->setCallingConv(CallingConv::SPIR_KERNEL);
WrapFn->setLinkage(llvm::GlobalValue::InternalLinkage);
Builder.CreateRet(F->getReturnType()->isVoidTy() ? nullptr : CI);
// Have to find the spir-v metadata for execution mode and transfer it to
// the wrapper.
if (auto NMD = SPIRVMDWalker(*M).getNamedMD(kSPIRVMD::ExecutionMode)) {
while (!NMD.atEnd()) {
Function *MDF = nullptr;
auto N = NMD.nextOp(); /* execution mode MDNode */
N.get(MDF);
if (MDF == F)
N.M->replaceOperandWith(0, ValueAsMetadata::get(WrapFn));
}
}
}
}
} // namespace SPIRV
INITIALIZE_PASS(SPIRVRegularizeLLVMLegacy, "spvregular",
"Regularize LLVM for SPIR-V", false, false)
ModulePass *llvm::createSPIRVRegularizeLLVMLegacy() {
return new SPIRVRegularizeLLVMLegacy();
}
|