1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
|
//===- SPIRVToOCL.cpp - Transform SPIR-V builtins to OCL builtins------===//
//
// The LLVM/SPIRV Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of Advanced Micro Devices, Inc., nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements common transform of SPIR-V builtins to OCL builtins.
//
// Some of the visit functions are translations to OCL2.0 builtins, but they
// are currently used also for OCL1.2, so theirs implementations are placed
// in this pass as a common functionality for both versions.
//
//===----------------------------------------------------------------------===//
#include "SPIRVToOCL.h"
#include "llvm/IR/TypedPointerType.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "spvtocl"
namespace SPIRV {
void SPIRVToOCLBase::visitCallInst(CallInst &CI) {
LLVM_DEBUG(dbgs() << "[visistCallInst] " << CI << '\n');
auto *F = CI.getCalledFunction();
if (!F)
return;
OCLExtOpKind ExtOp;
if (isSPIRVOCLExtInst(&CI, &ExtOp)) {
switch (ExtOp) {
case OpenCLLIB::Vloadn:
case OpenCLLIB::Vloada_halfn:
case OpenCLLIB::Vload_halfn:
visitCallSPIRVVLoadn(&CI, ExtOp);
break;
case OpenCLLIB::Vstoren:
case OpenCLLIB::Vstore_halfn:
case OpenCLLIB::Vstorea_halfn:
case OpenCLLIB::Vstore_half_r:
case OpenCLLIB::Vstore_halfn_r:
case OpenCLLIB::Vstorea_halfn_r:
visitCallSPIRVVStore(&CI, ExtOp);
break;
case OpenCLLIB::Printf: {
// TODO: Lower the printf instruction with the non-constant address space
// format string to suitable for OpenCL representation
auto *PT = dyn_cast<PointerType>(CI.getOperand(0)->getType());
if (PT && PT->getAddressSpace() == SPIR::TypeAttributeEnum::ATTR_CONST)
visitCallSPIRVPrintf(&CI, ExtOp);
break;
}
default:
visitCallSPIRVOCLExt(&CI, ExtOp);
break;
}
return;
}
auto MangledName = F->getName();
StringRef DemangledName;
Op OC = OpNop;
SPIRVBuiltinVariableKind BuiltinKind = SPIRVBuiltinVariableKind::BuiltInMax;
if (!oclIsBuiltin(MangledName, DemangledName) ||
((OC = getSPIRVFuncOC(DemangledName)) == OpNop &&
!getSPIRVBuiltin(DemangledName.str(), BuiltinKind)))
return;
LLVM_DEBUG(dbgs() << "DemangledName = " << DemangledName.str() << '\n'
<< "OpCode = " << OC << '\n'
<< "BuiltinKind = " << BuiltinKind << '\n');
if (BuiltinKind != SPIRVBuiltinVariableKind::BuiltInMax) {
if (static_cast<uint32_t>(BuiltinKind) >=
internal::BuiltInSubDeviceIDINTEL &&
static_cast<uint32_t>(BuiltinKind) <=
internal::BuiltInGlobalHWThreadIDINTEL)
return;
visitCallSPIRVBuiltin(&CI, BuiltinKind);
return;
}
if (OC == OpImageQuerySize || OC == OpImageQuerySizeLod) {
visitCallSPIRVImageQuerySize(&CI);
return;
}
if (OC == OpMemoryBarrier) {
visitCallSPIRVMemoryBarrier(&CI);
return;
}
if (OC == OpControlBarrier) {
visitCallSPIRVControlBarrier(&CI);
}
if (isSplitBarrierINTELOpCode(OC)) {
visitCallSPIRVSplitBarrierINTEL(&CI, OC);
return;
}
if (isAtomicOpCode(OC)) {
visitCallSPIRVAtomicBuiltin(&CI, OC);
return;
}
if (isGroupOpCode(OC) || isGroupNonUniformOpcode(OC)) {
visitCallSPIRVGroupBuiltin(&CI, OC);
return;
}
if (isPipeOpCode(OC)) {
visitCallSPIRVPipeBuiltin(&CI, OC);
return;
}
if (isMediaBlockINTELOpcode(OC)) {
visitCallSPIRVImageMediaBlockBuiltin(&CI, OC);
return;
}
if (isIntelSubgroupOpCode(OC)) {
visitCallSPIRVSubgroupINTELBuiltIn(&CI, OC);
return;
}
if (isSubgroupAvcINTELEvaluateOpcode(OC)) {
visitCallSPIRVAvcINTELEvaluateBuiltIn(&CI, OC);
return;
}
if (isSubgroupAvcINTELInstructionOpCode(OC)) {
visitCallSPIRVAvcINTELInstructionBuiltin(&CI, OC);
return;
}
if (OC == OpBuildNDRange) {
visitCallBuildNDRangeBuiltIn(&CI, OC, DemangledName);
return;
}
if (OC == OpGenericCastToPtrExplicit) {
visitCallGenericCastToPtrExplicitBuiltIn(&CI, OC);
return;
}
if (isCvtOpCode(OC)) {
visitCallSPIRVCvtBuiltin(&CI, OC, DemangledName);
return;
}
if (OC == OpGroupAsyncCopy) {
visitCallAsyncWorkGroupCopy(&CI, OC);
return;
}
if (OC == OpGroupWaitEvents) {
visitCallGroupWaitEvents(&CI, OC);
return;
}
if (OC == OpImageSampleExplicitLod) {
visitCallSPIRVImageSampleExplicitLodBuiltIn(&CI, OC);
return;
}
if (OC == OpImageWrite) {
visitCallSPIRVImageWriteBuiltIn(&CI, OC);
return;
}
if (OC == OpImageRead) {
visitCallSPIRVImageReadBuiltIn(&CI, OC);
return;
}
if (OC == OpImageQueryOrder || OC == OpImageQueryFormat) {
visitCallSPIRVImageQueryBuiltIn(&CI, OC);
return;
}
if (OC == OpEnqueueKernel) {
visitCallSPIRVEnqueueKernel(&CI, OC);
return;
}
if (OC == OpGenericPtrMemSemantics) {
visitCallSPIRVGenericPtrMemSemantics(&CI);
return;
}
// Check if OC is OpenCL relational builtin except bitselect and select.
auto IsOclRelationalOp = [](Op OC) {
return isUnaryPredicateOpCode(OC) || OC == OpOrdered || OC == OpUnordered ||
OC == OpFOrdEqual || OC == OpFUnordNotEqual ||
OC == OpFOrdGreaterThan || OC == OpFOrdGreaterThanEqual ||
OC == OpFOrdLessThan || OC == OpFOrdLessThanEqual ||
OC == OpFOrdNotEqual;
};
if (IsOclRelationalOp(OC)) {
if (OC == OpAny || OC == OpAll)
visitCallSPIRVAnyAll(&CI, OC);
else
visitCallSPIRVRelational(&CI, OC);
return;
}
if (OC == OpReadClockKHR) {
visitCallSPIRVReadClockKHR(&CI);
return;
}
if (OC == internal::OpConvertFToBF16INTEL ||
OC == internal::OpConvertBF16ToFINTEL) {
visitCallSPIRVBFloat16Conversions(&CI, OC);
return;
}
if (OCLSPIRVBuiltinMap::rfind(OC))
visitCallSPIRVBuiltin(&CI, OC);
}
void SPIRVToOCLBase::visitCastInst(CastInst &Cast) {
if (!isa<ZExtInst>(Cast) && !isa<SExtInst>(Cast) && !isa<TruncInst>(Cast) &&
!isa<FPTruncInst>(Cast) && !isa<FPExtInst>(Cast) &&
!isa<FPToUIInst>(Cast) && !isa<FPToSIInst>(Cast) &&
!isa<UIToFPInst>(Cast) && !isa<SIToFPInst>(Cast))
return;
Type const *SrcTy = Cast.getSrcTy();
Type *DstVecTy = Cast.getDestTy();
// Leave scalar casts as is. Skip boolean vector casts becase there
// are no suitable OCL built-ins.
if (!DstVecTy->isVectorTy() || SrcTy->getScalarSizeInBits() == 1 ||
DstVecTy->getScalarSizeInBits() == 1)
return;
// Assemble built-in name -> convert_gentypeN
std::string CastBuiltInName(kOCLBuiltinName::ConvertPrefix);
// Check if this is 'floating point -> unsigned integer' cast
CastBuiltInName += mapLLVMTypeToOCLType(DstVecTy, !isa<FPToUIInst>(Cast));
// Replace LLVM conversion instruction with call to conversion built-in
BuiltinFuncMangleInfo Mangle;
// It does matter if the source is unsigned integer or not. SExt is for
// signed source, ZExt and UIToFPInst are for unsigned source.
if (isa<ZExtInst>(Cast) || isa<UIToFPInst>(Cast))
Mangle.addUnsignedArg(0);
AttributeList Attributes;
CallInst *Call =
addCallInst(M, CastBuiltInName, DstVecTy, Cast.getOperand(0), &Attributes,
&Cast, &Mangle, Cast.getName(), false);
Cast.replaceAllUsesWith(Call);
Cast.eraseFromParent();
}
void SPIRVToOCLBase::visitCallSPIRVImageQuerySize(CallInst *CI) {
// Get image type
Type *ImgTy = getCallValueType(CI, 0);
auto Desc = getImageDescriptor(ImgTy);
unsigned ImgDim = getImageDimension(Desc.Dim);
bool ImgArray = Desc.Arrayed;
AttributeList Attributes = CI->getCalledFunction()->getAttributes();
BuiltinFuncMangleInfo Mangle;
Mangle.getTypeMangleInfo(0).PointerTy = ImgTy;
Type *Int32Ty = Type::getInt32Ty(*Ctx);
Instruction *GetImageSize = nullptr;
if (ImgDim == 1) {
// OpImageQuerySize from non-arrayed 1d image is always translated
// into get_image_width returning scalar argument
GetImageSize = addCallInst(M, kOCLBuiltinName::GetImageWidth, Int32Ty,
CI->getArgOperand(0), &Attributes, CI, &Mangle,
CI->getName(), false);
// The width of integer type returning by OpImageQuerySize[Lod] may
// differ from i32
if (CI->getType()->getScalarType() != Int32Ty) {
GetImageSize = CastInst::CreateIntegerCast(
GetImageSize, CI->getType()->getScalarType(), false, CI->getName(),
CI->getIterator());
}
} else {
assert((ImgDim == 2 || ImgDim == 3) && "invalid image type");
assert(CI->getType()->isVectorTy() &&
"this code can handle vector result type only");
// get_image_dim returns int2 and int4 for 2d and 3d images respecitvely.
const unsigned ImgDimRetEls = ImgDim == 2 ? 2 : 4;
VectorType *RetTy = FixedVectorType::get(Int32Ty, ImgDimRetEls);
GetImageSize = addCallInst(M, kOCLBuiltinName::GetImageDim, RetTy,
CI->getArgOperand(0), &Attributes, CI, &Mangle,
CI->getName(), false);
// The width of integer type returning by OpImageQuerySize[Lod] may
// differ from i32
if (CI->getType()->getScalarType() != Int32Ty) {
GetImageSize = CastInst::CreateIntegerCast(
GetImageSize,
FixedVectorType::get(
CI->getType()->getScalarType(),
cast<FixedVectorType>(GetImageSize->getType())->getNumElements()),
false, CI->getName(), CI->getIterator());
}
}
if (ImgArray || ImgDim == 3) {
auto *VecTy = cast<FixedVectorType>(CI->getType());
const unsigned ImgQuerySizeRetEls = VecTy->getNumElements();
if (ImgDim == 1) {
// get_image_width returns scalar result while OpImageQuerySize
// for image1d_array_t returns <2 x i32> vector.
assert(ImgQuerySizeRetEls == 2 &&
"OpImageQuerySize[Lod] must return <2 x iN> vector type");
GetImageSize = InsertElementInst::Create(
UndefValue::get(VecTy), GetImageSize, ConstantInt::get(Int32Ty, 0),
CI->getName(), CI->getIterator());
} else {
// get_image_dim and OpImageQuerySize returns different vector
// types for arrayed and 3d images.
SmallVector<Constant *, 4> MaskEls;
for (unsigned Idx = 0; Idx < ImgQuerySizeRetEls; ++Idx)
MaskEls.push_back(ConstantInt::get(Int32Ty, Idx));
Constant *Mask = ConstantVector::get(MaskEls);
GetImageSize = new ShuffleVectorInst(
GetImageSize, UndefValue::get(GetImageSize->getType()), Mask,
CI->getName(), CI->getIterator());
}
}
if (ImgArray) {
assert((ImgDim == 1 || ImgDim == 2) && "invalid image array type");
// Insert get_image_array_size to the last position of the resulting vector.
auto *VecTy = cast<FixedVectorType>(CI->getType());
Type *SizeTy =
Type::getIntNTy(*Ctx, M->getDataLayout().getPointerSizeInBits(0));
Instruction *GetImageArraySize = addCallInst(
M, kOCLBuiltinName::GetImageArraySize, SizeTy, CI->getArgOperand(0),
&Attributes, CI, &Mangle, CI->getName(), false);
// The width of integer type returning by OpImageQuerySize[Lod] may
// differ from size_t which is returned by get_image_array_size
if (GetImageArraySize->getType() != VecTy->getElementType()) {
GetImageArraySize = CastInst::CreateIntegerCast(
GetImageArraySize, VecTy->getElementType(), false, CI->getName(),
CI->getIterator());
}
GetImageSize = InsertElementInst::Create(
GetImageSize, GetImageArraySize,
ConstantInt::get(Int32Ty, VecTy->getNumElements() - 1), CI->getName(),
CI->getIterator());
}
assert(GetImageSize && "must not be null");
CI->replaceAllUsesWith(GetImageSize);
CI->eraseFromParent();
}
std::string SPIRVToOCLBase::getUniformArithmeticBuiltinName(CallInst *CI,
Op OC) {
assert(isUniformArithmeticOpCode(OC) &&
"Not intended to handle other than uniform arithmetic opcodes!");
auto FuncName = OCLSPIRVBuiltinMap::rmap(OC);
std::string Prefix = getGroupBuiltinPrefix(CI);
std::string Op = FuncName;
Op.erase(0, strlen(kSPIRVName::GroupPrefix));
// unsigned prefix cannot be removed yet, as it is necessary to properly
// mangle the function
bool Unsigned = Op.front() == 'u';
if (!Unsigned)
Op = Op.erase(0, 1);
std::string GroupOp;
auto GO = getArgAs<spv::GroupOperation>(CI, 1);
switch (GO) {
case GroupOperationReduce:
GroupOp = "reduce";
break;
case GroupOperationInclusiveScan:
GroupOp = "scan_inclusive";
break;
case GroupOperationExclusiveScan:
GroupOp = "scan_exclusive";
break;
default:
llvm_unreachable("Unsupported group operation!");
break;
}
return Prefix + kSPIRVName::GroupPrefix + GroupOp + "_" + Op;
}
std::string SPIRVToOCLBase::getNonUniformArithmeticBuiltinName(CallInst *CI,
Op OC) {
assert(isNonUniformArithmeticOpCode(OC) &&
"Not intended to handle other than non uniform arithmetic opcodes!");
std::string Prefix = getGroupBuiltinPrefix(CI);
assert((Prefix == kOCLBuiltinName::SubPrefix) &&
"Workgroup scope is not supported for OpGroupNonUniform opcodes");
auto FuncName = OCLSPIRVBuiltinMap::rmap(OC);
std::string Op = FuncName;
Op.erase(0, strlen(kSPIRVName::GroupNonUniformPrefix));
if (!isGroupLogicalOpCode(OC)) {
// unsigned prefix cannot be removed yet, as it is necessary to properly
// mangle the function
const char Sign = Op.front();
bool Signed = (Sign == 'i' || Sign == 'f' || Sign == 's');
if (Signed)
Op = Op.erase(0, 1);
else
assert((Sign == 'u') && "Incorrect sign!");
} else { // LogicalOpcode
assert(
(Op == "logical_iand" || Op == "logical_ior" || Op == "logical_ixor") &&
"Incorrect logical operation");
Op = Op.erase(8, 1);
}
std::string GroupOp;
std::string GroupPrefix = kSPIRVName::GroupNonUniformPrefix;
auto GO = getArgAs<spv::GroupOperation>(CI, 1);
switch (GO) {
case GroupOperationReduce:
GroupOp = "reduce";
break;
case GroupOperationInclusiveScan:
GroupOp = "scan_inclusive";
break;
case GroupOperationExclusiveScan:
GroupOp = "scan_exclusive";
break;
case GroupOperationClusteredReduce:
GroupOp = "clustered_reduce";
// OpenCL clustered builtin has no non_uniform prefix, ex.
// sub_group_reduce_clustered_logical_and
GroupPrefix = kSPIRVName::GroupPrefix;
break;
default:
llvm_unreachable("Unsupported group operation!");
break;
}
return Prefix + GroupPrefix + GroupOp + "_" + Op;
}
std::string SPIRVToOCLBase::getBallotBuiltinName(CallInst *CI, Op OC) {
assert((OC == OpGroupNonUniformBallotBitCount) &&
"Not inteded to handle other opcodes than "
"OpGroupNonUniformBallotBitCount!");
std::string Prefix = getGroupBuiltinPrefix(CI);
assert(
(Prefix == kOCLBuiltinName::SubPrefix) &&
"Workgroup scope is not supported for OpGroupNonUniformBallotBitCount");
std::string GroupOp;
auto GO = getArgAs<spv::GroupOperation>(CI, 1);
switch (GO) {
case GroupOperationReduce:
GroupOp = "bit_count";
break;
case GroupOperationInclusiveScan:
GroupOp = "inclusive_scan";
break;
case GroupOperationExclusiveScan:
GroupOp = "exclusive_scan";
break;
default:
llvm_unreachable("Unsupported group operation!");
break;
}
return Prefix + kSPIRVName::GroupPrefix + "ballot_" + GroupOp;
}
std::string SPIRVToOCLBase::getRotateBuiltinName(CallInst *CI, Op OC) {
assert((OC == OpGroupNonUniformRotateKHR) &&
"Not intended to handle other opcodes");
std::string Prefix = getGroupBuiltinPrefix(CI);
assert((Prefix == kOCLBuiltinName::SubPrefix) &&
"Workgroup scope is not supported for OpGroupNonUniformRotateKHR");
std::string OptionalClustered;
if (CI->arg_size() == 4)
OptionalClustered = "clustered_";
return Prefix + kSPIRVName::GroupPrefix + OptionalClustered + "rotate";
}
std::string SPIRVToOCLBase::groupOCToOCLBuiltinName(CallInst *CI, Op OC) {
if (OC == OpGroupNonUniformRotateKHR)
return getRotateBuiltinName(CI, OC);
auto FuncName = OCLSPIRVBuiltinMap::rmap(OC);
assert(FuncName.find(kSPIRVName::GroupPrefix) == 0);
if (!hasGroupOperation(OC)) {
/// Transform OpenCL group builtin function names from group_
/// to work_group_ and sub_group_.
FuncName = getGroupBuiltinPrefix(CI) + FuncName;
} else { // Opcodes with group operation parameter
if (isUniformArithmeticOpCode(OC))
FuncName = getUniformArithmeticBuiltinName(CI, OC);
else if (isNonUniformArithmeticOpCode(OC))
FuncName = getNonUniformArithmeticBuiltinName(CI, OC);
else if (OC == OpGroupNonUniformBallotBitCount)
FuncName = getBallotBuiltinName(CI, OC);
else
llvm_unreachable("Unsupported opcode!");
}
return FuncName;
}
/// Return true if the original boolean return type needs to be changed to i32
/// when mapping the SPIR-V op to an OpenCL builtin.
static bool needsInt32RetTy(Op OC) {
return OC == OpGroupAny || OC == OpGroupAll || OC == OpGroupNonUniformAny ||
OC == OpGroupNonUniformAll || OC == OpGroupNonUniformAllEqual ||
OC == OpGroupNonUniformElect || OC == OpGroupNonUniformInverseBallot ||
OC == OpGroupNonUniformBallotBitExtract || isGroupLogicalOpCode(OC);
}
void SPIRVToOCLBase::visitCallSPIRVGroupBuiltin(CallInst *CI, Op OC) {
auto FuncName = groupOCToOCLBuiltinName(CI, OC);
auto Mutator = mutateCallInst(CI, FuncName);
/// Remove Group Operation argument,
/// as in OpenCL representation this is included in the function name
Mutator.removeArgs(0, (hasGroupOperation(OC) ? 2 : 1));
Type *Int32Ty = Type::getInt32Ty(*Ctx);
bool HasArg0ExtendedToi32 =
OC == OpGroupAny || OC == OpGroupAll || OC == OpGroupNonUniformAny ||
OC == OpGroupNonUniformAll || OC == OpGroupNonUniformBallot ||
isGroupLogicalOpCode(OC);
// Handle function arguments
if (OC == OpGroupBroadcast) {
Value *VecArg = Mutator.getArg(1);
if (auto *VT = dyn_cast<FixedVectorType>(VecArg->getType())) {
unsigned NumElements = VT->getNumElements();
for (unsigned I = 0; I < NumElements; I++)
Mutator.insertArg(1 + I, Mutator.Builder.CreateExtractElement(
VecArg, Mutator.Builder.getInt32(I)));
Mutator.removeArg(1 + NumElements);
}
} else if (HasArg0ExtendedToi32)
Mutator.mapArg(0, [](IRBuilder<> &Builder, Value *V) {
return Builder.CreateZExt(V, Builder.getInt32Ty());
});
// Handle function return type
if (needsInt32RetTy(OC))
Mutator.changeReturnType(Int32Ty, [](IRBuilder<> &Builder, CallInst *CI) {
// The OpenCL builtin returns a non-zero integer value. Convert to a
// boolean value.
return Builder.CreateICmpNE(CI, Builder.getInt32(0));
});
}
void SPIRVToOCLBase::visitCallSPIRVPipeBuiltin(CallInst *CI, Op OC) {
auto DemangledName = OCLSPIRVBuiltinMap::rmap(OC);
bool HasScope = DemangledName.find(kSPIRVName::GroupPrefix) == 0;
if (HasScope)
DemangledName = getGroupBuiltinPrefix(CI) + DemangledName;
assert(CI->getCalledFunction() && "Unexpected indirect call");
auto Mutator = mutateCallInst(CI, DemangledName);
if (HasScope)
Mutator.removeArg(0);
if (OC == OpReadPipe || OC == OpWritePipe || OC == OpReservedReadPipe ||
OC == OpReservedWritePipe || OC == OpReadPipeBlockingINTEL ||
OC == OpWritePipeBlockingINTEL) {
Mutator.mapArg(Mutator.arg_size() - 3, [](IRBuilder<> &Builder, Value *P) {
Type *T = P->getType();
assert(isa<PointerType>(T));
auto *NewTy = Builder.getPtrTy(SPIRAS_Generic);
if (T != NewTy) {
P = Builder.CreatePointerBitCastOrAddrSpaceCast(P, NewTy);
}
return std::make_pair(
P, TypedPointerType::get(Builder.getInt8Ty(), SPIRAS_Generic));
});
}
}
void SPIRVToOCLBase::visitCallSPIRVImageMediaBlockBuiltin(CallInst *CI, Op OC) {
Type *RetType = CI->getType();
if (OC == OpSubgroupImageMediaBlockWriteINTEL) {
assert(CI->arg_size() >= 5 && "Wrong media block write signature");
RetType = CI->getArgOperand(4)->getType(); // texel type
}
unsigned int BitWidth = RetType->getScalarSizeInBits();
std::string FuncPostfix;
if (BitWidth == 8)
FuncPostfix = "_uc";
else if (BitWidth == 16)
FuncPostfix = "_us";
else if (BitWidth == 32)
FuncPostfix = "_ui";
else
assert(0 && "Unsupported texel type!");
if (auto *VecTy = dyn_cast<FixedVectorType>(RetType)) {
unsigned int NumEl = VecTy->getNumElements();
assert((NumEl == 2 || NumEl == 4 || NumEl == 8 || NumEl == 16) &&
"Wrong function type!");
FuncPostfix += std::to_string(NumEl);
}
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC) + FuncPostfix)
.moveArg(0, CI->arg_size() - 1);
}
void SPIRVToOCLBase::visitCallBuildNDRangeBuiltIn(CallInst *CI, Op OC,
StringRef DemangledName) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
// __spirv_BuildNDRange_nD, drop __spirv_
StringRef S = DemangledName;
S = S.drop_front(strlen(kSPIRVName::Prefix));
SmallVector<StringRef, 8> Split;
// BuildNDRange_nD
S.split(Split, kSPIRVPostfix::Divider,
/*MaxSplit=*/-1, /*KeepEmpty=*/false);
assert(Split.size() >= 2 && "Invalid SPIRV function name");
// Cut _nD and add it to function name.
mutateCallInst(CI, std::string(kOCLBuiltinName::NDRangePrefix) +
Split[1].substr(0, 3).str())
// OpenCL built-in has another order of parameters.
.moveArg(2, 0);
}
void SPIRVToOCLBase::visitCallGenericCastToPtrExplicitBuiltIn(CallInst *CI,
Op OC) {
assert(CI->getCalledFunction() && "Unexpected indirect call");
StringRef Name;
auto AddrSpace =
static_cast<SPIRAddressSpace>(CI->getType()->getPointerAddressSpace());
switch (AddrSpace) {
case SPIRAS_Global:
Name = kOCLBuiltinName::ToGlobal;
break;
case SPIRAS_Local:
Name = kOCLBuiltinName::ToLocal;
break;
case SPIRAS_Private:
Name = kOCLBuiltinName::ToPrivate;
break;
default:
llvm_unreachable("Invalid address space");
}
mutateCallInst(CI, Name.str())
// The instruction has two arguments, whereas ocl built-in has only one
// argument.
.removeArg(1);
}
void SPIRVToOCLBase::visitCallSPIRVCvtBuiltin(CallInst *CI, Op OC,
StringRef DemangledName) {
std::string CastBuiltInName;
if (isCvtFromUnsignedOpCode(OC))
CastBuiltInName = "u";
CastBuiltInName += kOCLBuiltinName::ConvertPrefix;
Type *DstTy = CI->getType();
CastBuiltInName += mapLLVMTypeToOCLType(DstTy, !isCvtToUnsignedOpCode(OC));
if (DemangledName.find("_sat") != StringRef::npos || isSatCvtOpCode(OC))
CastBuiltInName += "_sat";
Value *Src = CI->getOperand(0);
assert(Src && "Invalid SPIRV convert builtin call");
Type *SrcTy = Src->getType();
auto Loc = DemangledName.find("_rt");
if (Loc != StringRef::npos &&
!(isa<IntegerType>(SrcTy) && isa<IntegerType>(DstTy)))
CastBuiltInName += DemangledName.substr(Loc, 4).str();
mutateCallInst(CI, CastBuiltInName);
}
void SPIRVToOCLBase::visitCallAsyncWorkGroupCopy(CallInst *CI, Op OC) {
// First argument of AsyncWorkGroupCopy instruction is Scope, OCL
// built-in async_work_group_strided_copy doesn't have this argument
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC)).removeArg(0);
}
void SPIRVToOCLBase::visitCallGroupWaitEvents(CallInst *CI, Op OC) {
// First argument of GroupWaitEvents instruction is Scope, OCL
// built-in wait_group_events doesn't have this argument
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC)).removeArg(0);
}
static std::string getTypeSuffix(Type *T, bool IsSigned) {
std::string Suffix;
Type *ST = T->getScalarType();
if (ST->isHalfTy())
Suffix = "h";
else if (ST->isFloatTy())
Suffix = "f";
else if (IsSigned)
Suffix = "i";
else
Suffix = "ui";
return Suffix;
}
BuiltinCallMutator
SPIRVToOCLBase::mutateCallImageOperands(CallInst *CI, StringRef NewFuncName,
Type *T, unsigned ImOpArgIndex) {
// Default to signed.
bool IsSigned = true;
uint64_t ImOpValue = 0;
if (CI->arg_size() > ImOpArgIndex) {
ConstantInt *ImOp = dyn_cast<ConstantInt>(CI->getArgOperand(ImOpArgIndex));
if (ImOp)
ImOpValue = ImOp->getZExtValue();
unsigned SignZeroExtMasks = ImageOperandsMask::ImageOperandsSignExtendMask |
ImageOperandsMask::ImageOperandsZeroExtendMask;
// If one of the SPIR-V 1.4 SignExtend/ZeroExtend operands is present, take
// it into account and drop the mask.
if (ImOpValue & SignZeroExtMasks) {
if (ImOpValue & ImageOperandsMask::ImageOperandsZeroExtendMask)
IsSigned = false;
ImOpValue &= ~SignZeroExtMasks;
}
}
auto Mutator =
mutateCallInst(CI, NewFuncName.str() + getTypeSuffix(T, IsSigned));
if (ImOpArgIndex < Mutator.arg_size()) {
// Drop "Image Operands" argument.
Mutator.removeArg(ImOpArgIndex);
if (ImOpArgIndex < Mutator.arg_size()) {
ConstantFP *LodVal = dyn_cast<ConstantFP>(Mutator.getArg(ImOpArgIndex));
// If the image operand is LOD and its value is zero, drop it too.
if (LodVal && LodVal->isNullValue() &&
ImOpValue == ImageOperandsMask::ImageOperandsLodMask)
Mutator.removeArgs(ImOpArgIndex, Mutator.arg_size() - ImOpArgIndex);
}
}
return Mutator;
}
void SPIRVToOCLBase::visitCallSPIRVImageSampleExplicitLodBuiltIn(CallInst *CI,
Op OC) {
Type *T = CI->getType();
if (auto *VT = dyn_cast<VectorType>(T))
T = VT->getElementType();
auto Mutator =
mutateCallImageOperands(CI, kOCLBuiltinName::SampledReadImage, T, 2);
CallInst *CallSampledImg = cast<CallInst>(CI->getArgOperand(0));
auto Img = getCallValue(CallSampledImg, 0);
auto Sampler = getCallValue(CallSampledImg, 1);
bool IsDepthImage = false;
Mutator.mapArg(0, [&](Value *SampledImg) {
StringRef ImageTypeName;
if (isOCLImageType(Img.second, &ImageTypeName))
IsDepthImage = ImageTypeName.contains("_depth_");
if (CallSampledImg->hasOneUse()) {
CallSampledImg->replaceAllUsesWith(
UndefValue::get(CallSampledImg->getType()));
CallSampledImg->dropAllReferences();
CallSampledImg->eraseFromParent();
}
return Img;
});
Mutator.insertArg(1, Sampler);
if (IsDepthImage)
Mutator.changeReturnType(T, [&](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateInsertElement(
FixedVectorType::get(NewCI->getType(), 4), NewCI, uint64_t(0));
});
}
void SPIRVToOCLBase::visitCallSPIRVImageWriteBuiltIn(CallInst *CI, Op OC) {
auto Mutator = mutateCallImageOperands(CI, kOCLBuiltinName::WriteImage,
CI->getArgOperand(2)->getType(), 3);
if (Mutator.arg_size() > 3)
Mutator.moveArg(3, 2);
}
void SPIRVToOCLBase::visitCallSPIRVImageReadBuiltIn(CallInst *CI, Op OC) {
mutateCallImageOperands(CI, kOCLBuiltinName::ReadImage, CI->getType(), 2);
}
void SPIRVToOCLBase::visitCallSPIRVImageQueryBuiltIn(CallInst *CI, Op OC) {
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC))
.changeReturnType(CI->getType(), [=](IRBuilder<> &Builder, CallInst *CI) {
unsigned int Offset = 0;
if (OC == OpImageQueryFormat)
Offset = OCLImageChannelDataTypeOffset;
else if (OC == OpImageQueryOrder)
Offset = OCLImageChannelOrderOffset;
else
llvm_unreachable("Unsupported opcode");
return Builder.CreateSub(CI, Builder.getInt32(Offset));
});
}
void SPIRVToOCLBase::visitCallSPIRVSubgroupINTELBuiltIn(CallInst *CI, Op OC) {
std::stringstream Name;
Type *DataTy = nullptr;
switch (OC) {
case OpSubgroupBlockReadINTEL:
case OpSubgroupImageBlockReadINTEL:
Name << "intel_sub_group_block_read";
DataTy = CI->getType();
break;
case OpSubgroupBlockWriteINTEL:
Name << "intel_sub_group_block_write";
DataTy = CI->getOperand(1)->getType();
break;
case OpSubgroupImageBlockWriteINTEL:
Name << "intel_sub_group_block_write";
DataTy = CI->getOperand(2)->getType();
break;
default:
Name << OCLSPIRVBuiltinMap::rmap(OC);
break;
}
if (DataTy) {
unsigned VectorNumElements = 1;
if (FixedVectorType *VT = dyn_cast<FixedVectorType>(DataTy))
VectorNumElements = VT->getNumElements();
unsigned ElementBitSize = DataTy->getScalarSizeInBits();
Name << getIntelSubgroupBlockDataPostfix(ElementBitSize, VectorNumElements);
}
mutateCallInst(CI, Name.str());
}
void SPIRVToOCLBase::visitCallSPIRVAvcINTELEvaluateBuiltIn(CallInst *CI,
Op OC) {
// There are three types of AVC Intel Evaluate opcodes:
// 1. With multi reference images - does not use OpVmeImageINTEL opcode
// for reference images
// 2. With dual reference images - uses two OpVmeImageINTEL opcodes for
// reference image
// 3. With single reference image - uses one OpVmeImageINTEL opcode for
// reference image
StringRef FnName = CI->getCalledFunction()->getName();
int NumImages = 0;
if (FnName.contains("SingleReference"))
NumImages = 2;
else if (FnName.contains("DualReference"))
NumImages = 3;
else if (FnName.contains("MultiReference"))
NumImages = 1;
else if (FnName.contains("EvaluateIpe"))
NumImages = 1;
auto EraseVmeImageCall = [](CallInst *CI) {
if (CI->hasOneUse()) {
CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
CI->dropAllReferences();
CI->eraseFromParent();
}
};
auto Mutator =
mutateCallInst(CI, OCLSPIRVSubgroupAVCIntelBuiltinMap::rmap(OC));
if (NumImages) {
CallInst *SrcImage = cast<CallInst>(Mutator.getArg(0));
if (NumImages == 1) {
// Multi reference opcode - remove src image OpVmeImageINTEL opcode
// and replace it with corresponding OpImage and OpSampler arguments
size_t SamplerPos = Mutator.arg_size() - 1;
Mutator.replaceArg(0, getCallValue(SrcImage, 0));
Mutator.insertArg(SamplerPos, getCallValue(SrcImage, 1));
} else {
CallInst *FwdRefImage = cast<CallInst>(Mutator.getArg(1));
CallInst *BwdRefImage =
NumImages == 3 ? cast<CallInst>(Mutator.getArg(2)) : nullptr;
// Single reference opcode - remove src and ref image
// OpVmeImageINTEL opcodes and replace them with src and ref OpImage
// opcodes and OpSampler
Mutator.removeArgs(0, NumImages);
// insert source OpImage and OpSampler
Mutator.insertArg(0, getCallValue(SrcImage, 0));
Mutator.insertArg(1, getCallValue(SrcImage, 1));
// insert reference OpImage
Mutator.insertArg(1, getCallValue(FwdRefImage, 0));
EraseVmeImageCall(SrcImage);
EraseVmeImageCall(FwdRefImage);
if (BwdRefImage) {
// Dual reference opcode - insert second reference OpImage argument
Mutator.insertArg(2, getCallValue(BwdRefImage, 0));
EraseVmeImageCall(BwdRefImage);
}
}
} else
llvm_unreachable("invalid avc instruction");
}
void SPIRVToOCLBase::visitCallSPIRVGenericPtrMemSemantics(CallInst *CI) {
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OpGenericPtrMemSemantics))
.changeReturnType(CI->getType(),
[](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateShl(NewCI, Builder.getInt32(8));
});
}
void SPIRVToOCLBase::visitCallSPIRVBFloat16Conversions(CallInst *CI, Op OC) {
Type *ArgTy = CI->getOperand(0)->getType();
std::string N =
ArgTy->isVectorTy()
? std::to_string(cast<FixedVectorType>(ArgTy)->getNumElements())
: "";
std::string Name;
switch (static_cast<uint32_t>(OC)) {
case internal::OpConvertFToBF16INTEL:
Name = "intel_convert_bfloat16" + N + "_as_ushort" + N;
break;
case internal::OpConvertBF16ToFINTEL:
Name = "intel_convert_as_bfloat16" + N + "_float" + N;
break;
default:
break; // do nothing
}
mutateCallInst(CI, Name);
}
void SPIRVToOCLBase::visitCallSPIRVBuiltin(CallInst *CI, Op OC) {
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC));
}
void SPIRVToOCLBase::visitCallSPIRVBuiltin(CallInst *CI,
SPIRVBuiltinVariableKind Kind) {
mutateCallInst(CI, SPIRSPIRVBuiltinVariableMap::rmap(Kind));
}
void SPIRVToOCLBase::visitCallSPIRVAvcINTELInstructionBuiltin(CallInst *CI,
Op OC) {
mutateCallInst(CI, OCLSPIRVSubgroupAVCIntelBuiltinMap::rmap(OC));
}
void SPIRVToOCLBase::visitCallSPIRVOCLExt(CallInst *CI, OCLExtOpKind Kind) {
mutateCallInst(CI, OCLExtOpMap::map(Kind));
}
void SPIRVToOCLBase::visitCallSPIRVVLoadn(CallInst *CI, OCLExtOpKind Kind) {
std::string Name = OCLExtOpMap::map(Kind);
unsigned LastArg = CI->arg_size() - 1;
if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getArgOperand(LastArg))) {
uint64_t NumComponents = C->getZExtValue();
std::stringstream SS;
SS << NumComponents;
Name.replace(Name.find("n"), 1, SS.str());
}
mutateCallInst(CI, Name).removeArg(LastArg);
}
void SPIRVToOCLBase::visitCallSPIRVVStore(CallInst *CI, OCLExtOpKind Kind) {
std::string Name = OCLExtOpMap::map(Kind);
bool DropLastArg = false;
if (Kind == OpenCLLIB::Vstore_half_r || Kind == OpenCLLIB::Vstore_halfn_r ||
Kind == OpenCLLIB::Vstorea_halfn_r) {
auto *C = cast<ConstantInt>(CI->getArgOperand(CI->arg_size() - 1));
auto RoundingMode = static_cast<SPIRVFPRoundingModeKind>(C->getZExtValue());
Name.replace(Name.find("_r"), 2,
std::string("_") +
SPIRSPIRVFPRoundingModeMap::rmap(RoundingMode));
DropLastArg = true;
}
if (Kind == OpenCLLIB::Vstore_halfn || Kind == OpenCLLIB::Vstore_halfn_r ||
Kind == OpenCLLIB::Vstorea_halfn || Kind == OpenCLLIB::Vstorea_halfn_r ||
Kind == OpenCLLIB::Vstoren) {
if (auto *DataType =
dyn_cast<VectorType>(CI->getArgOperand(0)->getType())) {
uint64_t NumElements = DataType->getElementCount().getFixedValue();
assert((NumElements == 2 || NumElements == 3 || NumElements == 4 ||
NumElements == 8 || NumElements == 16) &&
"Unsupported vector size for vstore instruction!");
std::stringstream SS;
SS << NumElements;
Name.replace(Name.find("n"), 1, SS.str());
}
}
auto Mutator = mutateCallInst(CI, Name);
if (DropLastArg)
Mutator.removeArg(Mutator.arg_size() - 1);
}
void SPIRVToOCLBase::visitCallSPIRVPrintf(CallInst *CI, OCLExtOpKind Kind) {
CallInst *NewCI = cast<CallInst>(
mutateCallInst(CI, OCLExtOpMap::map(OpenCLLIB::Printf)).getMutated());
// Clang represents printf function without mangling
std::string TargetName = "printf";
if (Function *F = M->getFunction(TargetName))
NewCI->setCalledFunction(F);
else
NewCI->getCalledFunction()->setName(TargetName);
}
void SPIRVToOCLBase::visitCallSPIRVAnyAll(CallInst *CI, Op OC) {
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC))
.mapArg(0,
[](IRBuilder<> &Builder, Value *V) {
Type *NewArgTy = V->getType()->getWithNewBitWidth(8);
return Builder.CreateSExt(V, NewArgTy);
})
.changeReturnType(Type::getInt32Ty(*Ctx),
[=](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateTrunc(NewCI, CI->getType());
});
}
void SPIRVToOCLBase::visitCallSPIRVRelational(CallInst *CI, Op OC) {
Type *IntTy = Type::getInt32Ty(*Ctx);
Type *RetTy = IntTy;
if (CI->getType()->isVectorTy()) {
auto *OpElemTy =
cast<FixedVectorType>(CI->getOperand(0)->getType())->getElementType();
if (OpElemTy->isDoubleTy())
IntTy = Type::getInt64Ty(*Ctx);
if (OpElemTy->isHalfTy())
IntTy = Type::getInt16Ty(*Ctx);
RetTy = FixedVectorType::get(
IntTy, cast<FixedVectorType>(CI->getType())->getNumElements());
}
mutateCallInst(CI, OCLSPIRVBuiltinMap::rmap(OC))
.changeReturnType(RetTy, [=](IRBuilder<> &Builder, CallInst *NewCI) {
return Builder.CreateTruncOrBitCast(NewCI, CI->getType());
});
}
void SPIRVToOCLBase::visitCallSPIRVReadClockKHR(CallInst *CI) {
std::ostringstream Name;
Name << "clock_read_";
if (CI->getType()->isVectorTy())
Name << "hilo_";
// Encode the scope (taken from the argument) in the function name.
ConstantInt *ScopeOp = cast<ConstantInt>(CI->getArgOperand(0));
switch (static_cast<Scope>(ScopeOp->getZExtValue())) {
case ScopeDevice:
Name << "device";
break;
case ScopeWorkgroup:
Name << "work_group";
break;
case ScopeSubgroup:
Name << "sub_group";
break;
default:
break;
}
auto Mutator = mutateCallInst(CI, Name.str());
Mutator.removeArg(0);
}
std::string SPIRVToOCLBase::getGroupBuiltinPrefix(CallInst *CI) {
std::string Prefix;
auto ES = getArgAsScope(CI, 0);
switch (ES) {
case ScopeWorkgroup:
Prefix = kOCLBuiltinName::WorkPrefix;
break;
case ScopeSubgroup:
Prefix = kOCLBuiltinName::SubPrefix;
break;
default:
llvm_unreachable("Invalid execution scope");
}
return Prefix;
}
std::string
SPIRVToOCLBase::getOCLImageOpaqueType(SmallVector<std::string, 8> &Postfixes) {
SmallVector<int, 7> Ops;
for (unsigned I = 1; I < 8; ++I)
Ops.push_back(atoi(Postfixes[I].c_str()));
SPIRVTypeImageDescriptor Desc(static_cast<SPIRVImageDimKind>(Ops[0]), Ops[1],
Ops[2], Ops[3], Ops[4], Ops[5]);
std::string OCLStructName =
std::string(kSPR2TypeName::OCLPrefix) + rmap<std::string>(Desc);
SPIRVAccessQualifierKind Acc = static_cast<SPIRVAccessQualifierKind>(Ops[6]);
insertImageNameAccessQualifier(Acc, OCLStructName);
return OCLStructName;
}
std::string
SPIRVToOCLBase::getOCLPipeOpaqueType(SmallVector<std::string, 8> &Postfixes) {
assert(Postfixes.size() == 1);
unsigned PipeAccess = atoi(Postfixes[0].c_str());
assert((PipeAccess == AccessQualifierReadOnly ||
PipeAccess == AccessQualifierWriteOnly) &&
"Invalid access qualifier");
return PipeAccess ? kSPR2TypeName::PipeWO : kSPR2TypeName::PipeRO;
}
void SPIRVToOCLBase::translateOpaqueTypes() {
for (auto *S : M->getIdentifiedStructTypes()) {
StringRef STName = S->getStructName();
bool IsSPIRVOpaque =
S->isOpaque() && STName.starts_with(kSPIRVTypeName::PrefixAndDelim);
if (!IsSPIRVOpaque)
continue;
S->setName(translateOpaqueType(STName));
}
}
std::string SPIRVToOCLBase::translateOpaqueType(StringRef STName) {
if (!STName.starts_with(kSPIRVTypeName::PrefixAndDelim))
return STName.str();
SmallVector<std::string, 8> Postfixes;
std::string DecodedST = decodeSPIRVTypeName(STName, Postfixes);
if (!SPIRVOpaqueTypeOpCodeMap::find(DecodedST))
return STName.str();
Op OP = SPIRVOpaqueTypeOpCodeMap::map(DecodedST);
std::string OCLOpaqueName;
if (OP == OpTypeImage)
OCLOpaqueName = getOCLImageOpaqueType(Postfixes);
else if (OP == OpTypePipe)
OCLOpaqueName = getOCLPipeOpaqueType(Postfixes);
else if (isSubgroupAvcINTELTypeOpCode(OP))
OCLOpaqueName = OCLSubgroupINTELTypeOpCodeMap::rmap(OP);
else if (isOpaqueGenericTypeOpCode(OP))
OCLOpaqueName = OCLOpaqueTypeOpCodeMap::rmap(OP);
else
return STName.str();
return OCLOpaqueName;
}
void addSPIRVBIsLoweringPass(ModulePassManager &PassMgr,
SPIRV::BIsRepresentation BIsRep) {
switch (BIsRep) {
case SPIRV::BIsRepresentation::OpenCL12:
PassMgr.addPass(SPIRVToOCL12Pass());
break;
case SPIRV::BIsRepresentation::OpenCL20:
PassMgr.addPass(SPIRVToOCL20Pass());
break;
case SPIRV::BIsRepresentation::SPIRVFriendlyIR:
// nothing to do, already done
break;
}
}
} // namespace SPIRV
ModulePass *
llvm::createSPIRVBIsLoweringPass(Module &M,
SPIRV::BIsRepresentation BIsRepresentation) {
switch (BIsRepresentation) {
case SPIRV::BIsRepresentation::OpenCL12:
return createSPIRVToOCL12Legacy();
case SPIRV::BIsRepresentation::OpenCL20:
return createSPIRVToOCL20Legacy();
case SPIRV::BIsRepresentation::SPIRVFriendlyIR:
// nothing to do, already done
return nullptr;
}
llvm_unreachable("Unsupported built-ins representation");
return nullptr;
}
|