1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
//===- SPIRVTypeScavenger.cpp - Recover pointer types in opaque pointer IR ===//
//
// The LLVM/SPIR-V Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2022 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of The Khronos Group, nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements the necessary logic to recover pointer types from LLVM
// IR for the output SPIR-V file from the opaque pointers in LLVM IR.
//
// The core algorithm being implemented is rather simple, although there are
// several complications that make its implementation more difficult. At its
// core, the algorithm works like this:
//
// 1. Replace every instance of an opaque pointer type with a typed pointer that
// points to an unknown type variable.
// 2. Convert each instruction into a series of typing rules. For example,
// load i8, ptr %ptr implies that %ptr must be typedptr(i8, 0).
// 3. Based on the typing rules, resolve the type variables to concrete types.
// 4. If the typing rules produce a contradiction (e.g., i8 == i32), insert a
// synthetic bitcast to represent the bitcast that would have been present in
// a typed pointer IR.
// 5. If any type variables are unresolved at the end of the typing process,
// assign i8 to them instead.
//
// Typed pointers are represented with the TypedPointerType. Type variables are
// represented as target("typevar", i), where i is an integer to disambiguate
// between different unknown types. (It is an index into the TypeVariables and
// UnifiedTypeVars fields).
//
// Step 3 of the above algorithm is represented by unifyType, which implements a
// unification-based type algorithm. This means there exists essentially just
// four cases that need to be considered:
// * unify(type var, concrete type):
// In this case, the concrete type is assigned to the type variable
// Note: It is possible for concrete type to contain nested type variables,
// e.g., typedptr(target("typevar", 3), 4)
// * unify(type var, concrete type containing type var):
// Unification fails in this case. This can come up if you have code like
// this:
// %ptr = alloca ptr
// store ptr %ptr, ptr %ptr
// * unify(type var, type var):
// In this case, the two type variables are unified into one so that they get
// the same concrete type. This uses IntEqClasses as the implementation of the
// union-find data structure.
// * unify(concrete type, same concrete type):
// There is nothing to do in this case
// * unify(concrete type, different concrete type):
// Unification fails in this case, and a bitcast needs to be generated.
//
// Note that this algorithm does not attempt to seek a minimal set of bitcasts
// that need to be added to produce a correctly-typed program.
//
// Type rules are represented by the SPIRVTypeScavenger::TypeRule class, and
// should be constructed using the provided static methods (which are easier to
// understand than the constructor itself). Type rules boil down to the
// following categories:
// * operand I has type T
// * operand I has the same type as operand J
// * the return value has type T
// * the return value has the same type as operand I
// with any of the above operands, types, or return values potentially having a
// level of indirection. For example, the rule for an addrspacecast is that the
// return value points to the same type that its sole operand points to. The
// indirection effectively means T->getScalarType()->getPointerElementType().
// Note: When constructing type rules fixing an operand or the return to a
// particular type T, the type must be a type using typed pointers and/or
// type variables in lieu of ptr.
// Note: getTypeRules may be called twice on an instruction, so if a new type
// variable needs to be created for type rules, it needs to be saved in
// the AssociatedTypeVariables method to ensure proper functioning. This
// is particularly important if you need to use the type variable both in
// constraining the return value and an operand.
//
// Now for the complications to the above algorithm:
//
// The most notable issue is that LLVM does not allow no-op constant
// expressions to be created. This means that we have to be very careful about
// the types of constant values. As the SPIR-V translator expands most constant
// expressions into instructions, this isn't much of an issue, but where it
// really comes into play is with global variable initializers, which don't have
// that luxury. Global variable typing therefore pays careful attention to the
// type of the initializer.
//
// Constructing type variables is a slightly expensive step, so before
// attempting to create a type variable for the return of an instruction, we
// instead look through the type rules to see if we can get the type of the
// return value from one of its input operands.
//
// Recursive pointer types are not possible to express, as we make no attempt
// to recover pointer types within struct types. It is still possible for
// a type rule to suggest an infinite recursive type (consider the example
// store ptr %x, ptr %x), so we have to guard against it in unifyType.
//
//===----------------------------------------------------------------------===//
#include "SPIRVTypeScavenger.h"
#include "SPIRVInternal.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Regex.h"
#define DEBUG_TYPE "type-scavenger"
using namespace llvm;
namespace {
static inline std::optional<unsigned> isTypeVariable(Type *T) {
if (auto *TET = dyn_cast<TargetExtType>(T))
if (TET->getName() == "typevar") {
return TET->getIntParameter(0);
}
return std::nullopt;
}
/// Convert Ty to a type that can be unified with a type-variable-ified L, given
/// that either or both types may have an indirection.
/// For example, adjust(L, true, Ty, false) will extract the element type of Ty
/// for unifying with L.
/// In this method, L is expected to be a type of a value, while Ty (and the
/// return value) will use TypedPointerType instead of PointerType.
static Type *adjustIndirect(Type *L, bool LIndirect, Type *Ty, bool TIndirect) {
if (LIndirect)
Ty = cast<TypedPointerType>(Ty->getScalarType())->getElementType();
if (TIndirect) {
unsigned AS = L->getScalarType()->getPointerAddressSpace();
Ty = TypedPointerType::get(Ty, AS);
if (auto *VT = dyn_cast<VectorType>(L))
Ty = VectorType::get(Ty, VT->getElementCount());
}
return Ty;
}
/// Return the type with all inner pointer types replaced with the result of
/// calling MutatePointer(PointerAddressSpace).
template <typename Fn> Type *mutateType(Type *T, Fn MutatePointer) {
if (T->isPointerTy()) {
return MutatePointer(T->getPointerAddressSpace());
}
if (auto *VT = dyn_cast<VectorType>(T)) {
return VectorType::get(mutateType(VT->getScalarType(), MutatePointer),
VT->getElementCount());
}
if (auto *AT = dyn_cast<ArrayType>(T)) {
return ArrayType::get(mutateType(AT->getElementType(), MutatePointer),
AT->getNumElements());
}
if (auto *FT = dyn_cast<FunctionType>(T)) {
SmallVector<Type *, 4> ParamTypes;
for (Type *Inner : FT->params())
ParamTypes.push_back(mutateType(Inner, MutatePointer));
Type *ReturnTy = mutateType(FT->getReturnType(), MutatePointer);
return FunctionType::get(ReturnTy, ParamTypes, FT->isVarArg());
}
// TODO: support literal structs
return T;
}
/// Return true if the type is an opaque pointer, or contains an opaque pointer
/// that needs to be typed.
bool hasPointerType(Type *T) {
if (T->isPtrOrPtrVectorTy())
return true;
if (auto *AT = dyn_cast<ArrayType>(T))
return hasPointerType(AT->getElementType());
if (auto *FT = dyn_cast<FunctionType>(T)) {
for (Type *Inner : FT->params())
if (hasPointerType(Inner))
return true;
return hasPointerType(FT->getReturnType());
}
// TODO: literal structs
return false;
}
/// Get a type where all internal pointer types are replaced with i8*.
Type *getUnknownTyped(Type *T) {
Type *Int8Ty = Type::getInt8Ty(T->getContext());
return mutateType(
T, [=](unsigned AS) { return TypedPointerType::get(Int8Ty, AS); });
}
bool hasTypeVariable(Type *T, const unsigned TypeVarNum) {
if (auto *TPT = dyn_cast<TypedPointerType>(T))
return hasTypeVariable(TPT->getElementType(), TypeVarNum);
if (auto *VT = dyn_cast<VectorType>(T))
return hasTypeVariable(VT->getElementType(), TypeVarNum);
if (auto *AT = dyn_cast<ArrayType>(T))
return hasTypeVariable(AT->getElementType(), TypeVarNum);
if (auto *FT = dyn_cast<FunctionType>(T)) {
for (Type *Inner : FT->params())
if (hasTypeVariable(Inner, TypeVarNum))
return true;
return hasTypeVariable(FT->getReturnType(), TypeVarNum);
}
if (auto CheckNum = isTypeVariable(T)) {
return TypeVarNum == *CheckNum;
}
return false;
}
} // anonymous namespace
Type *SPIRVTypeScavenger::substituteTypeVariables(Type *T) {
if (auto *TPT = dyn_cast<TypedPointerType>(T))
return TypedPointerType::get(substituteTypeVariables(TPT->getElementType()),
TPT->getAddressSpace());
if (auto *VT = dyn_cast<VectorType>(T))
return VectorType::get(substituteTypeVariables(VT->getElementType()),
VT->getElementCount());
if (auto *AT = dyn_cast<ArrayType>(T))
return ArrayType::get(substituteTypeVariables(AT->getElementType()),
AT->getNumElements());
if (auto *FT = dyn_cast<FunctionType>(T)) {
SmallVector<Type *, 4> ParamTypes;
for (Type *Inner : FT->params())
ParamTypes.push_back(substituteTypeVariables(Inner));
Type *ReturnTy = substituteTypeVariables(FT->getReturnType());
return FunctionType::get(ReturnTy, ParamTypes, FT->isVarArg());
}
if (auto Index = isTypeVariable(T)) {
unsigned TypeVarNum = *Index;
TypeVarNum = UnifiedTypeVars.findLeader(TypeVarNum);
Type *&SubstTy = TypeVariables[TypeVarNum];
// A value in TypeVariables may itself contain type variables that need to
// be substituted. Substitute these as well.
if (SubstTy)
return SubstTy = substituteTypeVariables(SubstTy);
// Even if it's not fully resolved, return the leader of the current
// equivalence class instead. This allows for easier scanning of recursive
// type declarations.
return TargetExtType::get(T->getContext(), "typevar", {}, {TypeVarNum});
}
return T;
}
bool SPIRVTypeScavenger::unifyType(Type *T1, Type *T2) {
T1 = substituteTypeVariables(T1);
T2 = substituteTypeVariables(T2);
if (T1 == T2)
return true;
auto SetTypeVar = [&](unsigned TypeVarNum, Type *ActualTy) {
unsigned Leader = UnifiedTypeVars.findLeader(TypeVarNum);
// This method might be called with T1 as a concrete type containing
// pointers, and we want to make sure those don't leak into type variables.
// Guard against that here.
ActualTy = allocateTypeVariable(ActualTy);
// Check for recursion in type variables. Such recursive types generally
// cannot be correctly typed.
if (hasTypeVariable(ActualTy, Leader))
return false;
LLVM_DEBUG(dbgs() << "Type variable " << TypeVarNum << " is " << *ActualTy
<< "\n");
assert(!TypeVariables[Leader] && "Type was already fixed?");
TypeVariables[Leader] = ActualTy;
return true;
};
if (auto T1Num = isTypeVariable(T1)) {
if (auto T2Num = isTypeVariable(T2)) {
// Two type variables. Unify the two of them into the same type.
if (T1Num != T2Num) {
UnifiedTypeVars.join(*T1Num, *T2Num);
LLVM_DEBUG(dbgs() << "Joining typevar " << *T1Num << " and " << *T2Num
<< "\n");
}
return true;
}
return SetTypeVar(*T1Num, T2);
}
if (auto T2Num = isTypeVariable(T2)) {
// We know that T1 can't be a type variable, so the only possibility is that
// we assign T2 to T1.
return SetTypeVar(*T2Num, T1);
}
// At this point, we know that neither type is a type variable. If the two
// types have a different structure, we can't unify them.
if (auto *TPT1 = dyn_cast<TypedPointerType>(T1)) {
if (auto *TPT2 = dyn_cast<TypedPointerType>(T2)) {
if (TPT1->getAddressSpace() != TPT2->getAddressSpace())
return false;
return unifyType(TPT1->getElementType(), TPT2->getElementType());
}
return false;
}
// We can also call unifyType(ptr, T2) (this is useful for propagating types
// to return values of instructions). In such a case, the ptr type is
// equivalent to typedptr(target("typevar")), for some type variable we
// haven't yet allocated. In this use case, it suffices to know that T2 is
// also a typed pointer type, as the case where T2 is a type variable was
// handled earlier.
if (isa<PointerType>(T1)) {
if (auto *TPT2 = dyn_cast<TypedPointerType>(T2))
return TPT2->getAddressSpace() == T1->getPointerAddressSpace();
return false;
}
if (auto *FT1 = dyn_cast<FunctionType>(T1)) {
if (auto *FT2 = dyn_cast<FunctionType>(T2)) {
if (FT1->getNumParams() != FT2->getNumParams())
return false;
if (FT1->isVarArg() != FT2->isVarArg())
return false;
if (!unifyType(FT1->getReturnType(), FT2->getReturnType()))
return false;
for (const auto &[PT1, PT2] : zip(FT1->params(), FT2->params()))
if (!unifyType(PT1, PT2))
return false;
return true;
}
return false;
}
if (auto *VT1 = dyn_cast<VectorType>(T1)) {
if (auto *VT2 = dyn_cast<VectorType>(T2)) {
if (VT1->getElementCount() != VT2->getElementCount())
return false;
return unifyType(VT1->getScalarType(), VT2->getScalarType());
}
return false;
}
if (auto *AT1 = dyn_cast<ArrayType>(T1)) {
if (auto *AT2 = dyn_cast<ArrayType>(T2)) {
if (AT1->getNumElements() != AT2->getNumElements())
return false;
return unifyType(AT1->getElementType(), AT2->getElementType());
}
return false;
}
// We already established T1 != T2 earlier, so there's no way we're capable of
// unifying at this point.
return false;
}
void SPIRVTypeScavenger::typeModule(Module &M) {
// Generate corrected function types for all functions in the module.
for (auto &F : M.functions()) {
deduceFunctionType(F);
}
// Now that we have function types, type the global variables. We have
// restrictions on our ability to do typing on constant initializers, so we
// need to make sure that global variables get typed.
for (auto &GV : M.globals())
typeGlobalValue(GV, GV.hasInitializer() ? GV.getInitializer() : nullptr);
// SPIR-V doesn't support global aliases, so pass through all of the types of
// global aliasees to the global alias (this at least ensures correct typing
// of uses of the global alias).
for (auto &GA : M.aliases()) {
Type *ScavengedTy = getScavengedType(GA.getAliasee());
DeducedTypes[&GA] = ScavengedTy;
LLVM_DEBUG(dbgs() << "Type of " << GA << " is " << *ScavengedTy << "\n");
}
// Type all instructions in the module.
for (auto &F : M.functions()) {
LLVM_DEBUG(dbgs() << "Typing function " << F.getName() << "\n");
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
getTypeAfterRules(&I);
correctUseTypes(I);
}
}
}
// If there are any type variables we couldn't resolve, fallback to assigning
// them as an i8* type.
Type *Int8Ty = Type::getInt8Ty(M.getContext());
for (const auto &[TypeVarNum, TypeVar] : enumerate(TypeVariables)) {
unsigned PrimaryVar = UnifiedTypeVars.findLeader(TypeVarNum);
Type *LeaderTy = TypeVariables[PrimaryVar];
if (TypeVar)
TypeVar = substituteTypeVariables(TypeVar);
if (LeaderTy)
LeaderTy = substituteTypeVariables(LeaderTy);
assert((!TypeVar || LeaderTy == TypeVar) &&
"Inconsistent type variable unification");
if (!TypeVar) {
TypeVar = LeaderTy ? LeaderTy : Int8Ty;
}
TypeVariables[TypeVarNum] = TypeVar;
LLVM_DEBUG(dbgs() << "Type variable " << TypeVarNum << " resolved to "
<< *TypeVar << "\n");
}
return;
}
bool SPIRVTypeScavenger::typeIntrinsicCall(
CallBase &CB, SmallVectorImpl<TypeRule> &TypeRules) {
Function *TargetFn = CB.getCalledFunction();
assert(TargetFn && TargetFn->isDeclaration() &&
"Call is not an intrinsic function call");
LLVMContext &Ctx = TargetFn->getContext();
// If the type is a pointer type, replace it with a typedptr(typevar) type
// instead, using AssociatedTypeVariables.
auto GetTypeOrTypeVar = [&](Type *BaseTy) {
if (!BaseTy->isPointerTy())
return BaseTy;
Type *&AssociatedTy = AssociatedTypeVariables[&CB];
if (!AssociatedTy)
AssociatedTy = allocateTypeVariable(BaseTy);
return AssociatedTy;
};
StringRef DemangledName;
if (oclIsBuiltin(TargetFn->getName(), DemangledName) ||
isDecoratedSPIRVFunc(TargetFn, DemangledName)) {
Op OC = getSPIRVFuncOC(DemangledName);
switch (OC) {
case OpAtomicLoad:
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicIAdd:
case OpAtomicISub:
case OpAtomicFAddEXT:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicFMinEXT:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicFMaxEXT:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
TypeRules.push_back(TypeRule::pointsTo(CB, 0, CB.getType()));
return true;
case OpAtomicStore:
TypeRules.push_back(
TypeRule::pointsTo(CB, 0, CB.getArgOperand(3)->getType()));
return true;
case OpGenericCastToPtr:
case OpGenericCastToPtrExplicit: {
Type *Ty =
cast<TypedPointerType>(getFunctionType(TargetFn)->getParamType(0))
->getElementType();
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Ty));
TypeRules.push_back(TypeRule::returnsPointerTo(Ty));
return true;
}
default:
// Do nothing
break;
}
}
if (auto IntrinID = TargetFn->getIntrinsicID()) {
switch (IntrinID) {
case Intrinsic::memcpy: {
// First two parameters are pointers, but they point to the same thing
// (albeit maybe in different address spaces).
TypeRules.push_back(TypeRule::isIndirect(CB, 0, 1));
break;
}
case Intrinsic::memset:
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Type::getInt8Ty(Ctx)));
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
// These intrinsics were stored as i8* as typed pointers, and the SPIR-V
// writer will expect these to be i8*, even if they can be any pointer
// type.
TypeRules.push_back(TypeRule::pointsTo(CB, 1, Type::getInt8Ty(Ctx)));
break;
case Intrinsic::invariant_end:
// This is like invariant_start with an extra string parameter in the
// beginning (so the pointer object moves to argument two).
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Type::getInt8Ty(Ctx)));
TypeRules.push_back(TypeRule::pointsTo(CB, 2, Type::getInt8Ty(Ctx)));
break;
case Intrinsic::var_annotation:
// The first parameter of these is an i8*.
// (See below for notes on the latter parameters).
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Type::getInt8Ty(Ctx)));
break;
case Intrinsic::ptr_annotation:
// Returns the first argument.
// (See below for notes on the latter parameters).
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Type::getInt8Ty(Ctx)));
TypeRules.push_back(TypeRule::returnsPointerTo(Type::getInt8Ty(Ctx)));
break;
case Intrinsic::annotation:
// Second and third parameters are strings, which should be constants
// for global variables. Nominally, this is i8*, but we specifically
// *do not* want to insert bitcast instructions (they need to remain
// global constants).
break;
case Intrinsic::stacksave:
TypeRules.push_back(TypeRule::returnsPointerTo(Type::getInt8Ty(Ctx)));
break;
case Intrinsic::stackrestore:
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Type::getInt8Ty(Ctx)));
break;
case Intrinsic::instrprof_cover:
case Intrinsic::instrprof_increment:
case Intrinsic::instrprof_increment_step:
case Intrinsic::instrprof_value_profile:
// llvm.instrprof.* intrinsics are not supported
TypeRules.push_back(TypeRule::pointsTo(CB, 0, Type::getInt8Ty(Ctx)));
break;
case Intrinsic::masked_gather: {
Type *ScalarTy = GetTypeOrTypeVar(CB.getType()->getScalarType());
TypeRules.push_back(TypeRule::pointsTo(CB, 0, ScalarTy));
if (CB.getType()->getScalarType()->isPointerTy())
TypeRules.push_back(TypeRule::propagates(CB, 3));
break;
}
case Intrinsic::masked_scatter: {
Type *ScalarTy =
GetTypeOrTypeVar(CB.getOperand(0)->getType()->getScalarType());
TypeRules.push_back(TypeRule::pointsTo(CB, 1, ScalarTy));
break;
}
default:
return false;
}
} else if (TargetFn->getName().starts_with("_Z18__spirv_ocl_printf")) {
Type *Int8Ty = Type::getInt8Ty(Ctx);
// The first argument is a string pointer. Subsequent arguments may include
// pointer-valued arguments, corresponding to %s or %p parameters.
// Therefore, all parameters need to be i8*.
for (Use &U : CB.args()) {
if (U->getType()->isPointerTy())
TypeRules.push_back(TypeRule::pointsTo(U, Int8Ty));
}
} else if (TargetFn->getName() == "__spirv_GetKernelWorkGroupSize__") {
TypeRules.push_back(TypeRule::pointsTo(CB, 1, Type::getInt8Ty(Ctx)));
} else if (TargetFn->getName() ==
"__spirv_GetKernelPreferredWorkGroupSizeMultiple__") {
TypeRules.push_back(TypeRule::pointsTo(CB, 1, Type::getInt8Ty(Ctx)));
} else if (TargetFn->getName() ==
"__spirv_GetKernelNDrangeMaxSubGroupSize__") {
TypeRules.push_back(TypeRule::pointsTo(CB, 2, Type::getInt8Ty(Ctx)));
} else if (TargetFn->getName() == "__spirv_GetKernelNDrangeSubGroupCount__") {
TypeRules.push_back(TypeRule::pointsTo(CB, 2, Type::getInt8Ty(Ctx)));
} else if (TargetFn->getName().starts_with("__spirv_EnqueueKernel__")) {
Type *DevEvent = TargetExtType::get(Ctx, "spirv.DeviceEvent");
TypeRules.push_back(TypeRule::pointsTo(CB, 4, DevEvent));
TypeRules.push_back(TypeRule::pointsTo(CB, 5, DevEvent));
TypeRules.push_back(TypeRule::pointsTo(CB, 7, Type::getInt8Ty(Ctx)));
} else if (TargetFn->getName().starts_with(
"_Z33__regcall3____builtin_invoke_simd")) {
// First argument is a function to call, subsequent arguments are parameters
// to said function.
auto *FnTy = getFunctionType(cast<Function>(CB.getArgOperand(0)));
TypeRules.push_back(TypeRule::pointsTo(CB, 0, FnTy));
typeFunctionParams(CB, FnTy, 1, true, TypeRules);
// Also apply type rules to the parameter types of the underlying function.
return false;
} else
return false;
return true;
}
void SPIRVTypeScavenger::typeFunctionParams(
CallBase &CB, FunctionType *FT, unsigned ArgStart, bool IncludeRet,
SmallVectorImpl<TypeRule> &TypeRules) {
for (const auto &[U, ArgTy] :
zip(drop_begin(CB.args(), ArgStart), FT->params())) {
if (hasPointerType(U->getType())) {
TypeRules.push_back(TypeRule::is(U, ArgTy));
}
}
if (IncludeRet) {
if (hasPointerType(CB.getType()))
TypeRules.push_back(TypeRule::returns(FT->getReturnType()));
}
}
void SPIRVTypeScavenger::typeGlobalValue(GlobalValue &GV, Constant *Init) {
auto GetNaturalType = [&](Value *C) -> Type * {
if (isa<GlobalValue>(C)) {
auto It = DeducedTypes.find(C);
if (It != DeducedTypes.end())
return It->second;
} else if (auto *GEP = dyn_cast<GEPOperator>(C)) {
auto *ResultTy =
TypedPointerType::get(GEP->getResultElementType(),
GEP->getType()->getPointerAddressSpace());
DeducedTypes[C] = ResultTy;
return ResultTy;
}
return getUnknownTyped(C->getType());
};
Type *Ty = GV.getValueType();
Type *MemType = nullptr;
// If the initializer is an array or vector of globals that all have the same
// type, prefer to use that type.
if (Init && (isa<ConstantArray>(Init) || isa<ConstantVector>(Init))) {
Type *InnerTy = Init->getType()->getContainedType(0);
if (InnerTy->isPointerTy()) {
Type *CommonTy = allocateTypeVariable(InnerTy);
bool Successful = true;
for (Value *Op : Init->operand_values()) {
Successful &= unifyType(CommonTy, GetNaturalType(Op));
if (!Successful)
break;
}
if (Successful) {
CommonTy = substituteTypeVariables(CommonTy);
if (isa<ConstantArray>(Init))
MemType = ArrayType::get(CommonTy, Ty->getArrayNumElements());
else
MemType = VectorType::get(CommonTy,
cast<VectorType>(Ty)->getElementCount());
}
}
}
// If there's an initializer, give it a fixed type based on the initializer.
if (Init && !MemType)
MemType = GetNaturalType(Init);
// At this point, use a fixed type based on the value type of the global value
// if we didn't compute it already.
if (!MemType)
MemType = getUnknownTyped(GV.getValueType());
Type *TypedTy = TypedPointerType::get(MemType, GV.getAddressSpace());
LLVM_DEBUG(dbgs() << "@" << GV.getName() << " has type " << *TypedTy << "\n");
DeducedTypes[&GV] = TypedTy;
}
static Type *getParamType(const AttributeList &AL, unsigned ArgNo) {
if (Type *Ty = AL.getParamByValType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamStructRetType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamElementType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamInAllocaType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamPreallocatedType(ArgNo))
return Ty;
return nullptr;
}
void SPIRVTypeScavenger::deduceFunctionType(Function &F) {
// Start by constructing a basic function type that replaces all pointer
// types in arguments (and the return type) with type variables. We may
// resolve those type variables almost immediately, but this is a starting
// point.
FunctionType *FuncTy = F.getFunctionType();
if (hasPointerType(FuncTy))
FuncTy = cast<FunctionType>(allocateTypeVariable(F.getFunctionType()));
DeducedTypes[&F] = TypedPointerType::get(FuncTy, F.getAddressSpace());
auto TypeArgument = [&](Argument *Arg, Type *T) {
[[maybe_unused]] bool Successful =
unifyType(FuncTy->getParamType(Arg->getArgNo()), T);
assert(Successful && "Unification of argument type failed?");
LLVM_DEBUG(dbgs() << " Arg " << *Arg << " is known to be " << *T << "\n");
DeducedTypes[Arg] = T;
};
// Gather a list of arguments that have unresolved type variables.
SmallVector<Argument *, 8> PointerArgs;
for (Argument &Arg : F.args()) {
DeducedTypes[&Arg] = FuncTy->getParamType(Arg.getArgNo());
if (hasPointerType(Arg.getType()))
PointerArgs.push_back(&Arg);
}
// Get any arguments from attributes where possible.
for (Argument *Arg : PointerArgs) {
Type *Ty = getParamType(F.getAttributes(), Arg->getArgNo());
if (Ty)
TypeArgument(Arg, TypedPointerType::get(
Ty, Arg->getType()->getPointerAddressSpace()));
}
// The first non-sret argument of block_invoke functions is the block capture
// struct, which should be passed as an i8*.
static const Regex BlockInvokeRegex(
"^(__.+)?_block_invoke(_[0-9]+)?(_kernel)?$");
if (BlockInvokeRegex.match(F.getName())) {
for (Argument *Arg : PointerArgs) {
if (!Arg->hasAttribute(Attribute::StructRet)) {
TypeArgument(Arg, getUnknownTyped(Arg->getType()));
break;
}
}
}
// If the function is a mangled name, try to recover types from the Itanium
// name mangling. Do this only for function types that without bodies, where
// existing code can propagate types to the parameters.
// TODO: Investigate if target extension types and the specially-handled
// SPIR-V intrinsics renders this code unnecessary.
if (F.isDeclaration() && F.getName().starts_with("_Z")) {
if (F.getName().starts_with("_Z")) {
SmallVector<Type *, 8> ParamTypes;
if (getParameterTypes(&F, ParamTypes)) {
for (Argument *Arg : PointerArgs) {
if (auto *Ty =
dyn_cast<TypedPointerType>(ParamTypes[Arg->getArgNo()]))
if (!Arg->hasAttribute(Attribute::StructRet))
TypeArgument(Arg, Ty);
}
}
}
}
LLVM_DEBUG(dbgs() << "Type of @" << F.getName() << " is "
<< *substituteTypeVariables(FuncTy) << "\n");
}
/// Certain constant types (null, undef, and poison) will get their type from
/// the use of the constant. We discover the type of the use by inserting a
/// synthetic bitcast instruction before the use. For these types, we need to
/// have special handling in a few places, and this indicates that it needs to
/// be done.
static bool doesNotImplyType(Value *V) {
return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
}
Type *SPIRVTypeScavenger::getTypeAfterRules(Value *V) {
auto *Ty = V->getType();
if (!hasPointerType(Ty))
return Ty;
// Don't try to store null, undef, or poison in our type map. We'll call these
// i8* by default; if any use has a different type, a bitcast will be added
// later.
if (doesNotImplyType(V)) {
return getUnknownTyped(Ty);
}
// Check if we've already deduced a type for the value.
Type *KnownType = DeducedTypes.lookup(V);
if (KnownType)
return substituteTypeVariables(KnownType);
assert(
!isa<GlobalValue>(V) && !isa<Argument>(V) &&
"Globals and arguments must be fully handled before calling this method");
// All constants will have their pointer types handled as i8*.
if (!isa<Instruction>(V))
return getUnknownTyped(Ty);
assert(!is_contained(VisitStack, V) && "Found cycle in type scavenger");
VisitStack.push_back(V);
// Try to propagate from type rules constraining the return value.
SmallVector<TypeRule, 4> TypeRules;
getTypeRules(*cast<Instruction>(V), TypeRules);
for (TypeRule &Rule : TypeRules) {
if (Rule.OpNo != RETURN_OPERAND)
continue;
// Get the target type from the rule. If it comes from an operand,
// recursively attempt to find the type from the operand (but avoid any
// cycles).
Type *TargetTy;
if (auto *UsedTy = dyn_cast<Type *>(Rule.Target)) {
TargetTy = allocateTypeVariable(UsedTy);
} else {
Value *Arg = cast<Use *>(Rule.Target)->get();
if (is_contained(VisitStack, Arg))
continue;
Value *Source = cast<Use *>(Rule.Target)->get();
// If the source argument is null, undef, or poison, then move on to
// another rule to give better type hints.
if (doesNotImplyType(Source))
continue;
TargetTy = substituteTypeVariables(getTypeAfterRules(Source));
}
// If the argument is a null pointer, try another operand instead.
if (!TargetTy)
continue;
KnownType =
adjustIndirect(Ty, Rule.LhsIndirect, TargetTy, Rule.RhsIndirect);
// Make sure that the type is consistent with the type format of Ty.
if (!unifyType(Ty, KnownType))
KnownType = nullptr;
break;
}
// If we still haven't gotten a type at this point, just construct a new type
// variable and rely on later uses to recover the type.
if (!KnownType) {
LLVM_DEBUG(dbgs() << *V << " matched no typing rules\n");
KnownType = allocateTypeVariable(Ty);
}
DeducedTypes[V] = KnownType;
VisitStack.pop_back();
LLVM_DEBUG(dbgs() << "Assigned type " << *KnownType << " to " << *V << "\n");
return KnownType;
}
void SPIRVTypeScavenger::getTypeRules(Instruction &I,
SmallVectorImpl<TypeRule> &TypeRules) {
auto GetAssociatedTypeVariable = [&](Type *T) {
Type *&TypeVar = AssociatedTypeVariables[&I];
if (TypeVar)
return TypeVar;
return TypeVar = allocateTypeVariable(T);
};
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Type *GepTy = GEP->getSourceElementType();
Type *ReturnTy = GEP->getResultElementType();
if (hasPointerType(GepTy)) {
GepTy = GetAssociatedTypeVariable(GepTy);
// Iterate the indices to find the return type, based on the version of
// the type using type variables and typed pointer types instead.
ReturnTy = GepTy;
for (Use &U : drop_begin(GEP->indices()))
ReturnTy = GetElementPtrInst::getTypeAtIndex(ReturnTy, U.get());
} else {
// It's possible that ReturnTy might be a type containing a ptr. However,
// if we aren't typing the struct type specifically, then this type is
// going to be coerced by the writer to i8*, so don't allocate any type
// variables for it.
ReturnTy = getUnknownTyped(ReturnTy);
}
TypeRules.push_back(TypeRule::pointsTo(I, 0, GepTy));
TypeRules.push_back(TypeRule::returnsPointerTo(ReturnTy));
} else if (isa<LoadInst>(&I)) {
TypeRules.push_back(
TypeRule::pointsToReturn(I, LoadInst::getPointerOperandIndex()));
} else if (isa<StoreInst>(&I)) {
TypeRules.push_back(
TypeRule::pointsTo(I, StoreInst::getPointerOperandIndex(), 0U));
} else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
TypeRules.push_back(
TypeRule::pointsTo(I, AtomicCmpXchgInst::getPointerOperandIndex(), 1));
if (hasPointerType(AI->getCompareOperand()->getType()))
TypeRules.push_back(TypeRule::is(I, 1, 2));
} else if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) {
TypeRules.push_back(
TypeRule::pointsTo(I, AtomicRMWInst::getPointerOperandIndex(), 1));
if (hasPointerType(AI->getValOperand()->getType()))
TypeRules.push_back(TypeRule::propagates(I, 1));
} else if (auto *AI = dyn_cast<AllocaInst>(&I)) {
TypeRules.push_back(TypeRule::returnsPointerTo(AI->getAllocatedType()));
} else if (auto *CI = dyn_cast<ICmpInst>(&I)) {
// icmp can compare pointers. If it isn't, ignore the instruction.
if (!hasPointerType(CI->getOperand(0)->getType()))
return;
// The two pointer operands should have the same type.
TypeRules.push_back(TypeRule::is(I, 1, 0));
} else if (auto *SI = dyn_cast<SelectInst>(&I)) {
if (!hasPointerType(SI->getType()))
return;
// Both selected values should have the same type as the result.
TypeRules.push_back(TypeRule::propagates(I, 1));
TypeRules.push_back(TypeRule::propagates(I, 2));
} else if (auto *Phi = dyn_cast<PHINode>(&I)) {
if (!hasPointerType(Phi->getType()))
return;
for (Use &U : Phi->incoming_values()) {
TypeRules.push_back(TypeRule::propagates(U));
}
} else if (isa<FreezeInst>(&I)) {
if (!hasPointerType(I.getType()))
return;
TypeRules.push_back(TypeRule::propagates(I, 0));
} else if (auto *AS = dyn_cast<AddrSpaceCastInst>(&I)) {
TypeRules.push_back(TypeRule::propagatesIndirect(*AS, 0));
} else if (isa<ReturnInst>(&I)) {
if (!hasPointerType(I.getFunction()->getReturnType()))
return;
Type *ExpectedTy = getFunctionType(I.getFunction())->getReturnType();
TypeRules.push_back(TypeRule::is(0, ExpectedTy));
} else if (auto *CB = dyn_cast<CallBase>(&I)) {
// If we have an identified function for the call instruction, map the
// arguments we pass in to the argument requirements of the function.
if (Function *F = CB->getCalledFunction()) {
if (!F->isDeclaration() || !typeIntrinsicCall(*CB, TypeRules)) {
typeFunctionParams(*CB, getFunctionType(F), 0, true, TypeRules);
}
} else {
// In the case of function pointers, we need to also assert the function
// type of the call instruction itself.
// In the case of inline assembly, the inline asm type is typed as if all
// ptr parameters are i8* by the writer, so force all pointer to those
// types here.
FunctionType *FT =
cast<FunctionType>(GetAssociatedTypeVariable(CB->getFunctionType()));
if (isa<InlineAsm>(CB->getCalledOperand()))
FT = cast<FunctionType>(getUnknownTyped(CB->getFunctionType()));
else
TypeRules.push_back(TypeRule::pointsTo(CB->getCalledOperandUse(), FT));
typeFunctionParams(*CB, FT, 0, true, TypeRules);
}
} else if (isa<ExtractElementInst>(&I)) {
if (!hasPointerType(I.getType()))
return;
TypeRules.push_back(TypeRule::propagatesIndirect(I, 0));
} else if (isa<InsertElementInst>(&I)) {
if (!hasPointerType(I.getType()))
return;
TypeRules.push_back(TypeRule::propagatesIndirect(I, 0));
TypeRules.push_back(TypeRule::propagatesIndirect(I, 1));
} else if (isa<ShuffleVectorInst>(&I)) {
if (!hasPointerType(I.getType()))
return;
TypeRules.push_back(TypeRule::propagatesIndirect(I, 0));
TypeRules.push_back(TypeRule::propagatesIndirect(I, 1));
}
// TODO: Handle insertvalue, extractvalue that work with pointers (requires
// literal struct support)
}
std::pair<Use &, Type *>
SPIRVTypeScavenger::getTypeCheck(Instruction &I, const TypeRule &Rule) {
auto MakeCheck = [&](Use &U, bool UIndirect, Type *Ty, bool TIndirect) {
return std::pair<Use &, Type *>(
U, adjustIndirect(U->getType(), UIndirect, Ty, TIndirect));
};
bool LIndirect = Rule.LhsIndirect, RIndirect = Rule.RhsIndirect;
// If we have typeof(return) == typeof(operand) check, reverse the check for
// typing rules.
if (Rule.OpNo == RETURN_OPERAND) {
Use &U = *cast<Use *>(Rule.Target);
Type *Ty = getTypeAfterRules(&I);
return MakeCheck(U, RIndirect, Ty, LIndirect);
}
Type *TargetTy;
if (auto *UsedTy = dyn_cast<Type *>(Rule.Target)) {
TargetTy = UsedTy;
} else {
TargetTy = getTypeAfterRules(cast<Use *>(Rule.Target)->get());
}
Use &U = I.getOperandUse(Rule.OpNo);
return MakeCheck(U, LIndirect, TargetTy, RIndirect);
}
void SPIRVTypeScavenger::correctUseTypes(Instruction &I) {
// This represents the types of all pointer-valued operands of the
// instruction.
SmallVector<TypeRule, 4> TypeRules;
getTypeRules(I, TypeRules);
if (!TypeRules.empty())
LLVM_DEBUG(dbgs() << "Typing uses of " << I << "\n");
// Now that we've collected all the pointer-valued operands in the
// instruction, go through and insert bitcasts for any operands that have the
// wrong type, fix any deferred types whose types are now known, and merge any
// deferred types that need to have the same type.
IRBuilder<NoFolder> Builder(&I);
for (auto &Rule : TypeRules) {
// No type checking needs to happen for a returns-type rule, since there's
// no operands of this instruction to check.
if (Rule.OpNo == RETURN_OPERAND && isa<Type *>(Rule.Target))
continue;
auto [U, UsedTy] = getTypeCheck(I, Rule);
Type *SourceTy = getTypeAfterRules(U);
// If we're handling a PHI node, we need to insert in the basic block that
// the value comes in from, not immediately before this instruction.
if (auto *Phi = dyn_cast<PHINode>(&I)) {
BasicBlock *SourceBlock = Phi->getIncomingBlock(U);
Builder.SetInsertPoint(SourceBlock->getTerminator());
}
bool CanUnify = unifyType(SourceTy, UsedTy);
LLVM_DEBUG(dbgs() << " " << *SourceTy << " == " << *UsedTy << "? "
<< (CanUnify ? "yes" : "no") << "\n");
if (!CanUnify) {
LLVM_DEBUG({
dbgs() << " Inserting bitcast of ";
U->printAsOperand(dbgs(), true,
I.getParent()->getParent()->getParent());
dbgs() << "\n";
});
Value *CastedValue =
Builder.Insert(CastInst::CreatePointerCast(U, U->getType()));
DeducedTypes[CastedValue] = UsedTy;
U.set(CastedValue);
}
}
}
Type *SPIRVTypeScavenger::allocateTypeVariable(Type *Base) {
LLVMContext &Ctx = Base->getContext();
return mutateType(Base, [&](unsigned AS) {
unsigned VarIndex = TypeVariables.size();
UnifiedTypeVars.grow(VarIndex + 1);
TypeVariables.push_back(nullptr);
Type *InnerTy = TargetExtType::get(Ctx, "typevar", {}, {VarIndex});
return TypedPointerType::get(InnerTy, AS);
});
}
FunctionType *SPIRVTypeScavenger::getFunctionType(Function *F) {
TypedPointerType *Ty =
cast<TypedPointerType>(substituteTypeVariables(DeducedTypes[F]));
return cast<FunctionType>(Ty->getElementType());
}
Type *SPIRVTypeScavenger::getScavengedType(Value *V) {
Type *Ty = V->getType();
if (!hasPointerType(Ty))
return Ty;
// If we get a null/undef/poison value (this should be rare, but it can
// happen if you use, e.g., store ptr null, ptr %val), then assume the result
// should be an i8. This aligns with the use in the original deduction.
if (doesNotImplyType(V))
return getUnknownTyped(Ty);
auto It = DeducedTypes.find(V);
if (It != DeducedTypes.end()) {
return substituteTypeVariables(It->second);
}
assert(
(!isa<Instruction>(V) || !cast<Instruction>(V)->getParent()) &&
!isa<Argument>(V) && !isa<GlobalValue>(V) &&
"Global values, arguments, and instructions should all have been typed.");
// A constant array or constant vector that is used as a global variable
// initializer should get the type of that global variable.
if (isa<ConstantArray>(V) || isa<ConstantVector>(V)) {
for (User *U : V->users()) {
if (isa<GlobalVariable>(U)) {
return cast<TypedPointerType>(getScavengedType(U))->getElementType();
}
}
}
return getUnknownTyped(Ty);
}
|