File: fuzzer_pass_construct_composites.cpp

package info (click to toggle)
spirv-tools 2020.6-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,636 kB
  • sloc: cpp: 366,576; javascript: 5,849; python: 2,551; ansic: 387; sh: 327; ruby: 88; makefile: 19; lisp: 9
file content (388 lines) | stat: -rw-r--r-- 17,123 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/fuzz/fuzzer_pass_construct_composites.h"

#include <memory>

#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_composite_construct.h"

namespace spvtools {
namespace fuzz {

FuzzerPassConstructComposites::FuzzerPassConstructComposites(
    opt::IRContext* ir_context, TransformationContext* transformation_context,
    FuzzerContext* fuzzer_context,
    protobufs::TransformationSequence* transformations)
    : FuzzerPass(ir_context, transformation_context, fuzzer_context,
                 transformations) {}

FuzzerPassConstructComposites::~FuzzerPassConstructComposites() = default;

void FuzzerPassConstructComposites::Apply() {
  // Gather up the ids of all composite types, but skip block-/buffer
  // block-decorated struct types.
  std::vector<uint32_t> composite_type_ids;
  for (auto& inst : GetIRContext()->types_values()) {
    if (fuzzerutil::IsCompositeType(
            GetIRContext()->get_type_mgr()->GetType(inst.result_id())) &&
        !fuzzerutil::HasBlockOrBufferBlockDecoration(GetIRContext(),
                                                     inst.result_id())) {
      composite_type_ids.push_back(inst.result_id());
    }
  }

  ForEachInstructionWithInstructionDescriptor(
      [this, &composite_type_ids](
          opt::Function* function, opt::BasicBlock* block,
          opt::BasicBlock::iterator inst_it,
          const protobufs::InstructionDescriptor& instruction_descriptor)
          -> void {
        // Check whether it is legitimate to insert a composite construction
        // before the instruction.
        if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(
                SpvOpCompositeConstruct, inst_it)) {
          return;
        }

        // Randomly decide whether to try inserting an object copy here.
        if (!GetFuzzerContext()->ChoosePercentage(
                GetFuzzerContext()->GetChanceOfConstructingComposite())) {
          return;
        }

        // For each instruction that is available at this program point (i.e. an
        // instruction that is global or whose definition strictly dominates the
        // program point) and suitable for making a synonym of, associate it
        // with the id of its result type.
        TypeIdToInstructions type_id_to_available_instructions;
        auto available_instructions = FindAvailableInstructions(
            function, block, inst_it,
            [this](opt::IRContext* ir_context, opt::Instruction* inst) {
              if (!inst->result_id() || !inst->type_id()) {
                return false;
              }

              // If the id is irrelevant, we can use it since it will not
              // participate in DataSynonym fact. Otherwise, we should be able
              // to produce a synonym out of the id.
              return GetTransformationContext()
                         ->GetFactManager()
                         ->IdIsIrrelevant(inst->result_id()) ||
                     fuzzerutil::CanMakeSynonymOf(
                         ir_context, *GetTransformationContext(), inst);
            });
        for (auto instruction : available_instructions) {
          RecordAvailableInstruction(instruction,
                                     &type_id_to_available_instructions);
        }

        // At this point, |composite_type_ids| captures all the composite types
        // we could try to create, while |type_id_to_available_instructions|
        // captures all the available result ids we might use, organized by
        // type.

        // Now we try to find a composite that we can construct.  We might not
        // manage, if there is a paucity of available ingredients in the module
        // (e.g. if our only available composite was a boolean vector and we had
        // no instructions generating boolean result types available).
        //
        // If we succeed, |chosen_composite_type| will end up being non-zero,
        // and |constructor_arguments| will end up giving us result ids suitable
        // for constructing a composite of that type.  Otherwise these variables
        // will remain 0 and null respectively.
        uint32_t chosen_composite_type = 0;
        std::vector<uint32_t> constructor_arguments;

        // Initially, all composite type ids are available for us to try.  Keep
        // trying until we run out of options.
        auto composites_to_try_constructing = composite_type_ids;
        while (!composites_to_try_constructing.empty()) {
          // Remove a composite type from the composite types left for us to
          // try.
          auto next_composite_to_try_constructing =
              GetFuzzerContext()->RemoveAtRandomIndex(
                  &composites_to_try_constructing);

          // Now try to construct a composite of this type, using an appropriate
          // helper method depending on the kind of composite type.
          auto composite_type_inst = GetIRContext()->get_def_use_mgr()->GetDef(
              next_composite_to_try_constructing);
          switch (composite_type_inst->opcode()) {
            case SpvOpTypeArray:
              constructor_arguments = FindComponentsToConstructArray(
                  *composite_type_inst, type_id_to_available_instructions);
              break;
            case SpvOpTypeMatrix:
              constructor_arguments = FindComponentsToConstructMatrix(
                  *composite_type_inst, type_id_to_available_instructions);
              break;
            case SpvOpTypeStruct:
              constructor_arguments = FindComponentsToConstructStruct(
                  *composite_type_inst, type_id_to_available_instructions);
              break;
            case SpvOpTypeVector:
              constructor_arguments = FindComponentsToConstructVector(
                  *composite_type_inst, type_id_to_available_instructions);
              break;
            default:
              assert(false &&
                     "The space of possible composite types should be covered "
                     "by the above cases.");
              break;
          }
          if (!constructor_arguments.empty()) {
            // We succeeded!  Note the composite type we finally settled on, and
            // exit from the loop.
            chosen_composite_type = next_composite_to_try_constructing;
            break;
          }
        }

        if (!chosen_composite_type) {
          // We did not manage to make a composite; return 0 to indicate that no
          // instructions were added.
          assert(constructor_arguments.empty());
          return;
        }
        assert(!constructor_arguments.empty());

        // Make and apply a transformation.
        ApplyTransformation(TransformationCompositeConstruct(
            chosen_composite_type, constructor_arguments,
            instruction_descriptor, GetFuzzerContext()->GetFreshId()));
      });
}

void FuzzerPassConstructComposites::RecordAvailableInstruction(
    opt::Instruction* inst,
    TypeIdToInstructions* type_id_to_available_instructions) {
  if (type_id_to_available_instructions->count(inst->type_id()) == 0) {
    (*type_id_to_available_instructions)[inst->type_id()] = {};
  }
  type_id_to_available_instructions->at(inst->type_id()).push_back(inst);
}

std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructArray(
    const opt::Instruction& array_type_instruction,
    const TypeIdToInstructions& type_id_to_available_instructions) {
  assert(array_type_instruction.opcode() == SpvOpTypeArray &&
         "Precondition: instruction must be an array type.");

  // Get the element type for the array.
  auto element_type_id = array_type_instruction.GetSingleWordInOperand(0);

  // Get all instructions at our disposal that compute something of this element
  // type.
  auto available_instructions =
      type_id_to_available_instructions.find(element_type_id);

  if (available_instructions == type_id_to_available_instructions.cend()) {
    // If there are not any instructions available that compute the element type
    // of the array then we are not in a position to construct a composite with
    // this array type.
    return {};
  }

  uint32_t array_length =
      GetIRContext()
          ->get_def_use_mgr()
          ->GetDef(array_type_instruction.GetSingleWordInOperand(1))
          ->GetSingleWordInOperand(0);

  std::vector<uint32_t> result;
  for (uint32_t index = 0; index < array_length; index++) {
    result.push_back(available_instructions
                         ->second[GetFuzzerContext()->RandomIndex(
                             available_instructions->second)]
                         ->result_id());
  }
  return result;
}

std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructMatrix(
    const opt::Instruction& matrix_type_instruction,
    const TypeIdToInstructions& type_id_to_available_instructions) {
  assert(matrix_type_instruction.opcode() == SpvOpTypeMatrix &&
         "Precondition: instruction must be a matrix type.");

  // Get the element type for the matrix.
  auto element_type_id = matrix_type_instruction.GetSingleWordInOperand(0);

  // Get all instructions at our disposal that compute something of this element
  // type.
  auto available_instructions =
      type_id_to_available_instructions.find(element_type_id);

  if (available_instructions == type_id_to_available_instructions.cend()) {
    // If there are not any instructions available that compute the element type
    // of the matrix then we are not in a position to construct a composite with
    // this matrix type.
    return {};
  }
  std::vector<uint32_t> result;
  for (uint32_t index = 0;
       index < matrix_type_instruction.GetSingleWordInOperand(1); index++) {
    result.push_back(available_instructions
                         ->second[GetFuzzerContext()->RandomIndex(
                             available_instructions->second)]
                         ->result_id());
  }
  return result;
}

std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructStruct(
    const opt::Instruction& struct_type_instruction,
    const TypeIdToInstructions& type_id_to_available_instructions) {
  assert(struct_type_instruction.opcode() == SpvOpTypeStruct &&
         "Precondition: instruction must be a struct type.");
  std::vector<uint32_t> result;
  // Consider the type of each field of the struct.
  for (uint32_t in_operand_index = 0;
       in_operand_index < struct_type_instruction.NumInOperands();
       in_operand_index++) {
    auto element_type_id =
        struct_type_instruction.GetSingleWordInOperand(in_operand_index);
    // Find the instructions at our disposal that compute something of the field
    // type.
    auto available_instructions =
        type_id_to_available_instructions.find(element_type_id);
    if (available_instructions == type_id_to_available_instructions.cend()) {
      // If there are no such instructions, we cannot construct a composite of
      // this struct type.
      return {};
    }
    result.push_back(available_instructions
                         ->second[GetFuzzerContext()->RandomIndex(
                             available_instructions->second)]
                         ->result_id());
  }
  return result;
}

std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructVector(
    const opt::Instruction& vector_type_instruction,
    const TypeIdToInstructions& type_id_to_available_instructions) {
  assert(vector_type_instruction.opcode() == SpvOpTypeVector &&
         "Precondition: instruction must be a vector type.");

  // Get details of the type underlying the vector, and the width of the vector,
  // for convenience.
  auto element_type_id = vector_type_instruction.GetSingleWordInOperand(0);
  auto element_type = GetIRContext()->get_type_mgr()->GetType(element_type_id);
  auto element_count = vector_type_instruction.GetSingleWordInOperand(1);

  // Collect a mapping, from type id to width, for scalar/vector types that are
  // smaller in width than |vector_type|, but that have the same underlying
  // type.  For example, if |vector_type| is vec4, the mapping will be:
  //   { float -> 1, vec2 -> 2, vec3 -> 3 }
  // The mapping will have missing entries if some of these types do not exist.

  std::map<uint32_t, uint32_t> smaller_vector_type_id_to_width;
  // Add the underlying type.  This id must exist, in order for |vector_type| to
  // exist.
  smaller_vector_type_id_to_width[element_type_id] = 1;

  // Now add every vector type with width at least 2, and less than the width of
  // |vector_type|.
  for (uint32_t width = 2; width < element_count; width++) {
    opt::analysis::Vector smaller_vector_type(element_type, width);
    auto smaller_vector_type_id =
        GetIRContext()->get_type_mgr()->GetId(&smaller_vector_type);
    // We might find that there is no declared type of this smaller width.
    // For example, a module can declare vec4 without having declared vec2 or
    // vec3.
    if (smaller_vector_type_id) {
      smaller_vector_type_id_to_width[smaller_vector_type_id] = width;
    }
  }

  // Now we know the types that are available to us, we set about populating a
  // vector of the right length.  We do this by deciding, with no order in mind,
  // which instructions we will use to populate the vector, and subsequently
  // randomly choosing an order.  This is to avoid biasing construction of
  // vectors with smaller vectors to the left and scalars to the right.  That is
  // a concern because, e.g. in the case of populating a vec4, if we populate
  // the constructor instructions left-to-right, we can always choose a vec3 to
  // construct the first three elements, but can only choose a vec3 to construct
  // the last three elements if we chose a float to construct the first element
  // (otherwise there will not be space left for a vec3).

  uint32_t vector_slots_used = 0;
  // The instructions we will use to construct the vector, in no particular
  // order at this stage.
  std::vector<opt::Instruction*> instructions_to_use;

  while (vector_slots_used < element_count) {
    std::vector<opt::Instruction*> instructions_to_choose_from;
    for (auto& entry : smaller_vector_type_id_to_width) {
      if (entry.second >
          std::min(element_count - 1, element_count - vector_slots_used)) {
        continue;
      }
      auto available_instructions =
          type_id_to_available_instructions.find(entry.first);
      if (available_instructions == type_id_to_available_instructions.cend()) {
        continue;
      }
      instructions_to_choose_from.insert(instructions_to_choose_from.end(),
                                         available_instructions->second.begin(),
                                         available_instructions->second.end());
    }
    if (instructions_to_choose_from.empty()) {
      // We may get unlucky and find that there are not any instructions to
      // choose from.  In this case we give up constructing a composite of this
      // vector type.  It might be that we could construct the composite in
      // another manner, so we could opt to retry a few times here, but it is
      // simpler to just give up on the basis that this will not happen
      // frequently.
      return {};
    }
    auto instruction_to_use =
        instructions_to_choose_from[GetFuzzerContext()->RandomIndex(
            instructions_to_choose_from)];
    instructions_to_use.push_back(instruction_to_use);
    auto chosen_type =
        GetIRContext()->get_type_mgr()->GetType(instruction_to_use->type_id());
    if (chosen_type->AsVector()) {
      assert(chosen_type->AsVector()->element_type() == element_type);
      assert(chosen_type->AsVector()->element_count() < element_count);
      assert(chosen_type->AsVector()->element_count() <=
             element_count - vector_slots_used);
      vector_slots_used += chosen_type->AsVector()->element_count();
    } else {
      assert(chosen_type == element_type);
      vector_slots_used += 1;
    }
  }
  assert(vector_slots_used == element_count);

  std::vector<uint32_t> result;
  std::vector<uint32_t> operands;
  while (!instructions_to_use.empty()) {
    auto index = GetFuzzerContext()->RandomIndex(instructions_to_use);
    result.push_back(instructions_to_use[index]->result_id());
    instructions_to_use.erase(instructions_to_use.begin() + index);
  }
  assert(result.size() > 1);
  return result;
}

}  // namespace fuzz
}  // namespace spvtools