1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/def_use_manager.h"
#include <iostream>
#include "source/opt/log.h"
#include "source/opt/reflect.h"
namespace spvtools {
namespace opt {
namespace analysis {
void DefUseManager::AnalyzeInstDef(Instruction* inst) {
const uint32_t def_id = inst->result_id();
if (def_id != 0) {
auto iter = id_to_def_.find(def_id);
if (iter != id_to_def_.end()) {
// Clear the original instruction that defining the same result id of the
// new instruction.
ClearInst(iter->second);
}
id_to_def_[def_id] = inst;
} else {
ClearInst(inst);
}
}
void DefUseManager::AnalyzeInstUse(Instruction* inst) {
// Create entry for the given instruction. Note that the instruction may
// not have any in-operands. In such cases, we still need a entry for those
// instructions so this manager knows it has seen the instruction later.
auto* used_ids = &inst_to_used_ids_[inst];
if (used_ids->size()) {
EraseUseRecordsOfOperandIds(inst);
used_ids = &inst_to_used_ids_[inst];
}
used_ids->clear(); // It might have existed before.
for (uint32_t i = 0; i < inst->NumOperands(); ++i) {
switch (inst->GetOperand(i).type) {
// For any id type but result id type
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
case SPV_OPERAND_TYPE_SCOPE_ID: {
uint32_t use_id = inst->GetSingleWordOperand(i);
Instruction* def = GetDef(use_id);
assert(def && "Definition is not registered.");
id_to_users_.insert(UserEntry(def, inst));
used_ids->push_back(use_id);
} break;
default:
break;
}
}
}
void DefUseManager::AnalyzeInstDefUse(Instruction* inst) {
AnalyzeInstDef(inst);
AnalyzeInstUse(inst);
}
void DefUseManager::UpdateDefUse(Instruction* inst) {
const uint32_t def_id = inst->result_id();
if (def_id != 0) {
auto iter = id_to_def_.find(def_id);
if (iter == id_to_def_.end()) {
AnalyzeInstDef(inst);
}
}
AnalyzeInstUse(inst);
}
Instruction* DefUseManager::GetDef(uint32_t id) {
auto iter = id_to_def_.find(id);
if (iter == id_to_def_.end()) return nullptr;
return iter->second;
}
const Instruction* DefUseManager::GetDef(uint32_t id) const {
const auto iter = id_to_def_.find(id);
if (iter == id_to_def_.end()) return nullptr;
return iter->second;
}
DefUseManager::IdToUsersMap::const_iterator DefUseManager::UsersBegin(
const Instruction* def) const {
return id_to_users_.lower_bound(
UserEntry(const_cast<Instruction*>(def), nullptr));
}
bool DefUseManager::UsersNotEnd(const IdToUsersMap::const_iterator& iter,
const IdToUsersMap::const_iterator& cached_end,
const Instruction* inst) const {
return (iter != cached_end && iter->first == inst);
}
bool DefUseManager::UsersNotEnd(const IdToUsersMap::const_iterator& iter,
const Instruction* inst) const {
return UsersNotEnd(iter, id_to_users_.end(), inst);
}
bool DefUseManager::WhileEachUser(
const Instruction* def, const std::function<bool(Instruction*)>& f) const {
// Ensure that |def| has been registered.
assert(def && (!def->HasResultId() || def == GetDef(def->result_id())) &&
"Definition is not registered.");
if (!def->HasResultId()) return true;
auto end = id_to_users_.end();
for (auto iter = UsersBegin(def); UsersNotEnd(iter, end, def); ++iter) {
if (!f(iter->second)) return false;
}
return true;
}
bool DefUseManager::WhileEachUser(
uint32_t id, const std::function<bool(Instruction*)>& f) const {
return WhileEachUser(GetDef(id), f);
}
void DefUseManager::ForEachUser(
const Instruction* def, const std::function<void(Instruction*)>& f) const {
WhileEachUser(def, [&f](Instruction* user) {
f(user);
return true;
});
}
void DefUseManager::ForEachUser(
uint32_t id, const std::function<void(Instruction*)>& f) const {
ForEachUser(GetDef(id), f);
}
bool DefUseManager::WhileEachUse(
const Instruction* def,
const std::function<bool(Instruction*, uint32_t)>& f) const {
// Ensure that |def| has been registered.
assert(def && (!def->HasResultId() || def == GetDef(def->result_id())) &&
"Definition is not registered.");
if (!def->HasResultId()) return true;
auto end = id_to_users_.end();
for (auto iter = UsersBegin(def); UsersNotEnd(iter, end, def); ++iter) {
Instruction* user = iter->second;
for (uint32_t idx = 0; idx != user->NumOperands(); ++idx) {
const Operand& op = user->GetOperand(idx);
if (op.type != SPV_OPERAND_TYPE_RESULT_ID && spvIsIdType(op.type)) {
if (def->result_id() == op.words[0]) {
if (!f(user, idx)) return false;
}
}
}
}
return true;
}
bool DefUseManager::WhileEachUse(
uint32_t id, const std::function<bool(Instruction*, uint32_t)>& f) const {
return WhileEachUse(GetDef(id), f);
}
void DefUseManager::ForEachUse(
const Instruction* def,
const std::function<void(Instruction*, uint32_t)>& f) const {
WhileEachUse(def, [&f](Instruction* user, uint32_t index) {
f(user, index);
return true;
});
}
void DefUseManager::ForEachUse(
uint32_t id, const std::function<void(Instruction*, uint32_t)>& f) const {
ForEachUse(GetDef(id), f);
}
uint32_t DefUseManager::NumUsers(const Instruction* def) const {
uint32_t count = 0;
ForEachUser(def, [&count](Instruction*) { ++count; });
return count;
}
uint32_t DefUseManager::NumUsers(uint32_t id) const {
return NumUsers(GetDef(id));
}
uint32_t DefUseManager::NumUses(const Instruction* def) const {
uint32_t count = 0;
ForEachUse(def, [&count](Instruction*, uint32_t) { ++count; });
return count;
}
uint32_t DefUseManager::NumUses(uint32_t id) const {
return NumUses(GetDef(id));
}
std::vector<Instruction*> DefUseManager::GetAnnotations(uint32_t id) const {
std::vector<Instruction*> annos;
const Instruction* def = GetDef(id);
if (!def) return annos;
ForEachUser(def, [&annos](Instruction* user) {
if (IsAnnotationInst(user->opcode())) {
annos.push_back(user);
}
});
return annos;
}
void DefUseManager::AnalyzeDefUse(Module* module) {
if (!module) return;
// Analyze all the defs before any uses to catch forward references.
module->ForEachInst(
std::bind(&DefUseManager::AnalyzeInstDef, this, std::placeholders::_1));
module->ForEachInst(
std::bind(&DefUseManager::AnalyzeInstUse, this, std::placeholders::_1));
}
void DefUseManager::ClearInst(Instruction* inst) {
auto iter = inst_to_used_ids_.find(inst);
if (iter != inst_to_used_ids_.end()) {
EraseUseRecordsOfOperandIds(inst);
if (inst->result_id() != 0) {
// Remove all uses of this inst.
auto users_begin = UsersBegin(inst);
auto end = id_to_users_.end();
auto new_end = users_begin;
for (; UsersNotEnd(new_end, end, inst); ++new_end) {
}
id_to_users_.erase(users_begin, new_end);
id_to_def_.erase(inst->result_id());
}
}
}
void DefUseManager::EraseUseRecordsOfOperandIds(const Instruction* inst) {
// Go through all ids used by this instruction, remove this instruction's
// uses of them.
auto iter = inst_to_used_ids_.find(inst);
if (iter != inst_to_used_ids_.end()) {
for (auto use_id : iter->second) {
id_to_users_.erase(
UserEntry(GetDef(use_id), const_cast<Instruction*>(inst)));
}
inst_to_used_ids_.erase(inst);
}
}
bool operator==(const DefUseManager& lhs, const DefUseManager& rhs) {
if (lhs.id_to_def_ != rhs.id_to_def_) {
return false;
}
if (lhs.id_to_users_ != rhs.id_to_users_) {
for (auto p : lhs.id_to_users_) {
if (rhs.id_to_users_.count(p) == 0) {
return false;
}
}
for (auto p : rhs.id_to_users_) {
if (lhs.id_to_users_.count(p) == 0) {
return false;
}
}
return false;
}
if (lhs.inst_to_used_ids_ != rhs.inst_to_used_ids_) {
for (auto p : lhs.inst_to_used_ids_) {
if (rhs.inst_to_used_ids_.count(p.first) == 0) {
return false;
}
}
for (auto p : rhs.inst_to_used_ids_) {
if (lhs.inst_to_used_ids_.count(p.first) == 0) {
return false;
}
}
return false;
}
return true;
}
} // namespace analysis
} // namespace opt
} // namespace spvtools
|