1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/fold_spec_constant_op_and_composite_pass.h"
#include <algorithm>
#include <initializer_list>
#include <tuple>
#include "source/opt/constants.h"
#include "source/opt/fold.h"
#include "source/opt/ir_context.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace opt {
Pass::Status FoldSpecConstantOpAndCompositePass::Process() {
bool modified = false;
// Traverse through all the constant defining instructions. For Normal
// Constants whose values are determined and do not depend on OpUndef
// instructions, records their values in two internal maps: id_to_const_val_
// and const_val_to_id_ so that we can use them to infer the value of Spec
// Constants later.
// For Spec Constants defined with OpSpecConstantComposite instructions, if
// all of their components are Normal Constants, they will be turned into
// Normal Constants too. For Spec Constants defined with OpSpecConstantOp
// instructions, we check if they only depends on Normal Constants and fold
// them when possible. The two maps for Normal Constants: id_to_const_val_
// and const_val_to_id_ will be updated along the traversal so that the new
// Normal Constants generated from folding can be used to fold following Spec
// Constants.
// This algorithm depends on the SSA property of SPIR-V when
// defining constants. The dependent constants must be defined before the
// dependee constants. So a dependent Spec Constant must be defined and
// will be processed before its dependee Spec Constant. When we encounter
// the dependee Spec Constants, all its dependent constants must have been
// processed and all its dependent Spec Constants should have been folded if
// possible.
Module::inst_iterator next_inst = context()->types_values_begin();
for (Module::inst_iterator inst_iter = next_inst;
// Need to re-evaluate the end iterator since we may modify the list of
// instructions in this section of the module as the process goes.
inst_iter != context()->types_values_end(); inst_iter = next_inst) {
++next_inst;
Instruction* inst = &*inst_iter;
// Collect constant values of normal constants and process the
// OpSpecConstantOp and OpSpecConstantComposite instructions if possible.
// The constant values will be stored in analysis::Constant instances.
// OpConstantSampler instruction is not collected here because it cannot be
// used in OpSpecConstant{Composite|Op} instructions.
// TODO(qining): If the constant or its type has decoration, we may need
// to skip it.
if (context()->get_constant_mgr()->GetType(inst) &&
!context()->get_constant_mgr()->GetType(inst)->decoration_empty())
continue;
switch (SpvOp opcode = inst->opcode()) {
// Records the values of Normal Constants.
case SpvOp::SpvOpConstantTrue:
case SpvOp::SpvOpConstantFalse:
case SpvOp::SpvOpConstant:
case SpvOp::SpvOpConstantNull:
case SpvOp::SpvOpConstantComposite:
case SpvOp::SpvOpSpecConstantComposite: {
// A Constant instance will be created if the given instruction is a
// Normal Constant whose value(s) are fixed. Note that for a composite
// Spec Constant defined with OpSpecConstantComposite instruction, if
// all of its components are Normal Constants already, the Spec
// Constant will be turned in to a Normal Constant. In that case, a
// Constant instance should also be created successfully and recorded
// in the id_to_const_val_ and const_val_to_id_ mapps.
if (auto const_value =
context()->get_constant_mgr()->GetConstantFromInst(inst)) {
// Need to replace the OpSpecConstantComposite instruction with a
// corresponding OpConstantComposite instruction.
if (opcode == SpvOp::SpvOpSpecConstantComposite) {
inst->SetOpcode(SpvOp::SpvOpConstantComposite);
modified = true;
}
context()->get_constant_mgr()->MapConstantToInst(const_value, inst);
}
break;
}
// For a Spec Constants defined with OpSpecConstantOp instruction, check
// if it only depends on Normal Constants. If so, the Spec Constant will
// be folded. The original Spec Constant defining instruction will be
// replaced by Normal Constant defining instructions, and the new Normal
// Constants will be added to id_to_const_val_ and const_val_to_id_ so
// that we can use the new Normal Constants when folding following Spec
// Constants.
case SpvOp::SpvOpSpecConstantOp:
modified |= ProcessOpSpecConstantOp(&inst_iter);
break;
default:
break;
}
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
bool FoldSpecConstantOpAndCompositePass::ProcessOpSpecConstantOp(
Module::inst_iterator* pos) {
Instruction* inst = &**pos;
Instruction* folded_inst = nullptr;
assert(inst->GetInOperand(0).type ==
SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER &&
"The first in-operand of OpSpecContantOp instruction must be of "
"SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER type");
switch (static_cast<SpvOp>(inst->GetSingleWordInOperand(0))) {
case SpvOp::SpvOpCompositeExtract:
case SpvOp::SpvOpVectorShuffle:
case SpvOp::SpvOpCompositeInsert:
case SpvOp::SpvOpQuantizeToF16:
folded_inst = FoldWithInstructionFolder(pos);
break;
default:
// TODO: This should use the instruction folder as well, but some folding
// rules are missing.
// Component-wise operations.
folded_inst = DoComponentWiseOperation(pos);
break;
}
if (!folded_inst) return false;
// Replace the original constant with the new folded constant, kill the
// original constant.
uint32_t new_id = folded_inst->result_id();
uint32_t old_id = inst->result_id();
context()->ReplaceAllUsesWith(old_id, new_id);
context()->KillDef(old_id);
return true;
}
uint32_t FoldSpecConstantOpAndCompositePass::GetTypeComponent(
uint32_t typeId, uint32_t element) const {
Instruction* type = context()->get_def_use_mgr()->GetDef(typeId);
uint32_t subtype = type->GetTypeComponent(element);
assert(subtype != 0);
return subtype;
}
Instruction* FoldSpecConstantOpAndCompositePass::FoldWithInstructionFolder(
Module::inst_iterator* inst_iter_ptr) {
// If one of operands to the instruction is not a
// constant, then we cannot fold this spec constant.
for (uint32_t i = 1; i < (*inst_iter_ptr)->NumInOperands(); i++) {
const Operand& operand = (*inst_iter_ptr)->GetInOperand(i);
if (operand.type != SPV_OPERAND_TYPE_ID &&
operand.type != SPV_OPERAND_TYPE_OPTIONAL_ID) {
continue;
}
uint32_t id = operand.words[0];
if (context()->get_constant_mgr()->FindDeclaredConstant(id) == nullptr) {
return nullptr;
}
}
// All of the operands are constant. Construct a regular version of the
// instruction and pass it to the instruction folder.
std::unique_ptr<Instruction> inst((*inst_iter_ptr)->Clone(context()));
inst->SetOpcode(
static_cast<SpvOp>((*inst_iter_ptr)->GetSingleWordInOperand(0)));
inst->RemoveOperand(2);
// We want the current instruction to be replaced by an |OpConstant*|
// instruction in the same position. We need to keep track of which constants
// the instruction folder creates, so we can move them into the correct place.
auto last_type_value_iter = (context()->types_values_end());
--last_type_value_iter;
Instruction* last_type_value = &*last_type_value_iter;
auto identity_map = [](uint32_t id) { return id; };
Instruction* new_const_inst =
context()->get_instruction_folder().FoldInstructionToConstant(
inst.get(), identity_map);
assert(new_const_inst != nullptr &&
"Failed to fold instruction that must be folded.");
// Get the instruction before |pos| to insert after. |pos| cannot be the
// first instruction in the list because its type has to come first.
Instruction* insert_pos = (*inst_iter_ptr)->PreviousNode();
assert(insert_pos != nullptr &&
"pos is the first instruction in the types and values.");
bool need_to_clone = true;
for (Instruction* i = last_type_value->NextNode(); i != nullptr;
i = last_type_value->NextNode()) {
if (i == new_const_inst) {
need_to_clone = false;
}
i->InsertAfter(insert_pos);
insert_pos = insert_pos->NextNode();
}
if (need_to_clone) {
new_const_inst = new_const_inst->Clone(context());
new_const_inst->SetResultId(TakeNextId());
new_const_inst->InsertAfter(insert_pos);
get_def_use_mgr()->AnalyzeInstDefUse(new_const_inst);
}
return new_const_inst;
}
Instruction* FoldSpecConstantOpAndCompositePass::DoVectorShuffle(
Module::inst_iterator* pos) {
Instruction* inst = &**pos;
analysis::Vector* result_vec_type =
context()->get_constant_mgr()->GetType(inst)->AsVector();
assert(inst->NumInOperands() - 1 > 2 &&
"OpSpecConstantOp DoVectorShuffle instruction requires more than 2 "
"operands (2 vector ids and at least one literal operand");
assert(result_vec_type &&
"The result of VectorShuffle must be of type vector");
// A temporary null constants that can be used as the components of the result
// vector. This is needed when any one of the vector operands are null
// constant.
const analysis::Constant* null_component_constants = nullptr;
// Get a concatenated vector of scalar constants. The vector should be built
// with the components from the first and the second operand of VectorShuffle.
std::vector<const analysis::Constant*> concatenated_components;
// Note that for OpSpecConstantOp, the second in-operand is the first id
// operand. The first in-operand is the spec opcode.
for (uint32_t i : {1, 2}) {
assert(inst->GetInOperand(i).type == SPV_OPERAND_TYPE_ID &&
"The vector operand must have a SPV_OPERAND_TYPE_ID type");
uint32_t operand_id = inst->GetSingleWordInOperand(i);
auto operand_const =
context()->get_constant_mgr()->FindDeclaredConstant(operand_id);
if (!operand_const) return nullptr;
const analysis::Type* operand_type = operand_const->type();
assert(operand_type->AsVector() &&
"The first two operand of VectorShuffle must be of vector type");
if (auto vec_const = operand_const->AsVectorConstant()) {
// case 1: current operand is a non-null vector constant.
concatenated_components.insert(concatenated_components.end(),
vec_const->GetComponents().begin(),
vec_const->GetComponents().end());
} else if (operand_const->AsNullConstant()) {
// case 2: current operand is a null vector constant. Create a temporary
// null scalar constant as the component.
if (!null_component_constants) {
const analysis::Type* component_type =
operand_type->AsVector()->element_type();
null_component_constants =
context()->get_constant_mgr()->GetConstant(component_type, {});
}
// Append the null scalar consts to the concatenated components
// vector.
concatenated_components.insert(concatenated_components.end(),
operand_type->AsVector()->element_count(),
null_component_constants);
} else {
// no other valid cases
return nullptr;
}
}
// Create null component constants if there are any. The component constants
// must be added to the module before the dependee composite constants to
// satisfy SSA def-use dominance.
if (null_component_constants) {
context()->get_constant_mgr()->BuildInstructionAndAddToModule(
null_component_constants, pos);
}
// Create the new vector constant with the selected components.
std::vector<const analysis::Constant*> selected_components;
for (uint32_t i = 3; i < inst->NumInOperands(); i++) {
assert(inst->GetInOperand(i).type == SPV_OPERAND_TYPE_LITERAL_INTEGER &&
"The literal operand must of type SPV_OPERAND_TYPE_LITERAL_INTEGER");
uint32_t literal = inst->GetSingleWordInOperand(i);
assert(literal < concatenated_components.size() &&
"Literal index out of bound of the concatenated vector");
selected_components.push_back(concatenated_components[literal]);
}
auto new_vec_const = MakeUnique<analysis::VectorConstant>(
result_vec_type, selected_components);
auto reg_vec_const =
context()->get_constant_mgr()->RegisterConstant(std::move(new_vec_const));
return context()->get_constant_mgr()->BuildInstructionAndAddToModule(
reg_vec_const, pos);
}
namespace {
// A helper function to check the type for component wise operations. Returns
// true if the type:
// 1) is bool type;
// 2) is 32-bit int type;
// 3) is vector of bool type;
// 4) is vector of 32-bit integer type.
// Otherwise returns false.
bool IsValidTypeForComponentWiseOperation(const analysis::Type* type) {
if (type->AsBool()) {
return true;
} else if (auto* it = type->AsInteger()) {
if (it->width() == 32) return true;
} else if (auto* vt = type->AsVector()) {
if (vt->element_type()->AsBool()) {
return true;
} else if (auto* vit = vt->element_type()->AsInteger()) {
if (vit->width() == 32) return true;
}
}
return false;
}
// Encodes the integer |value| of in a word vector format appropriate for
// representing this value as a operands for a constant definition. Performs
// zero-extension/sign-extension/truncation when needed, based on the signess of
// the given target type.
//
// Note: type |type| argument must be either Integer or Bool.
utils::SmallVector<uint32_t, 2> EncodeIntegerAsWords(const analysis::Type& type,
uint32_t value) {
const uint32_t all_ones = ~0;
uint32_t bit_width = 0;
uint32_t pad_value = 0;
bool result_type_signed = false;
if (auto* int_ty = type.AsInteger()) {
bit_width = int_ty->width();
result_type_signed = int_ty->IsSigned();
if (result_type_signed && static_cast<int32_t>(value) < 0) {
pad_value = all_ones;
}
} else if (type.AsBool()) {
bit_width = 1;
} else {
assert(false && "type must be Integer or Bool");
}
assert(bit_width > 0);
uint32_t first_word = value;
const uint32_t bits_per_word = 32;
// Truncate first_word if the |type| has width less than uint32.
if (bit_width < bits_per_word) {
const uint32_t num_high_bits_to_mask = bits_per_word - bit_width;
const bool is_negative_after_truncation =
result_type_signed &&
utils::IsBitAtPositionSet(first_word, bit_width - 1);
if (is_negative_after_truncation) {
// Truncate and sign-extend |first_word|. No padding words will be
// added and |pad_value| can be left as-is.
first_word = utils::SetHighBits(first_word, num_high_bits_to_mask);
} else {
first_word = utils::ClearHighBits(first_word, num_high_bits_to_mask);
}
}
utils::SmallVector<uint32_t, 2> words = {first_word};
for (uint32_t current_bit = bits_per_word; current_bit < bit_width;
current_bit += bits_per_word) {
words.push_back(pad_value);
}
return words;
}
} // namespace
Instruction* FoldSpecConstantOpAndCompositePass::DoComponentWiseOperation(
Module::inst_iterator* pos) {
const Instruction* inst = &**pos;
const analysis::Type* result_type =
context()->get_constant_mgr()->GetType(inst);
SpvOp spec_opcode = static_cast<SpvOp>(inst->GetSingleWordInOperand(0));
// Check and collect operands.
std::vector<const analysis::Constant*> operands;
if (!std::all_of(
inst->cbegin(), inst->cend(), [&operands, this](const Operand& o) {
// skip the operands that is not an id.
if (o.type != spv_operand_type_t::SPV_OPERAND_TYPE_ID) return true;
uint32_t id = o.words.front();
if (auto c =
context()->get_constant_mgr()->FindDeclaredConstant(id)) {
if (IsValidTypeForComponentWiseOperation(c->type())) {
operands.push_back(c);
return true;
}
}
return false;
}))
return nullptr;
if (result_type->AsInteger() || result_type->AsBool()) {
// Scalar operation
const uint32_t result_val =
context()->get_instruction_folder().FoldScalars(spec_opcode, operands);
auto result_const = context()->get_constant_mgr()->GetConstant(
result_type, EncodeIntegerAsWords(*result_type, result_val));
return context()->get_constant_mgr()->BuildInstructionAndAddToModule(
result_const, pos);
} else if (result_type->AsVector()) {
// Vector operation
const analysis::Type* element_type =
result_type->AsVector()->element_type();
uint32_t num_dims = result_type->AsVector()->element_count();
std::vector<uint32_t> result_vec =
context()->get_instruction_folder().FoldVectors(spec_opcode, num_dims,
operands);
std::vector<const analysis::Constant*> result_vector_components;
for (const uint32_t r : result_vec) {
if (auto rc = context()->get_constant_mgr()->GetConstant(
element_type, EncodeIntegerAsWords(*element_type, r))) {
result_vector_components.push_back(rc);
if (!context()->get_constant_mgr()->BuildInstructionAndAddToModule(
rc, pos)) {
assert(false &&
"Failed to build and insert constant declaring instruction "
"for the given vector component constant");
}
} else {
assert(false && "Failed to create constants with 32-bit word");
}
}
auto new_vec_const = MakeUnique<analysis::VectorConstant>(
result_type->AsVector(), result_vector_components);
auto reg_vec_const = context()->get_constant_mgr()->RegisterConstant(
std::move(new_vec_const));
return context()->get_constant_mgr()->BuildInstructionAndAddToModule(
reg_vec_const, pos);
} else {
// Cannot process invalid component wise operation. The result of component
// wise operation must be of integer or bool scalar or vector of
// integer/bool type.
return nullptr;
}
}
} // namespace opt
} // namespace spvtools
|