1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
|
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/type_manager.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <utility>
#include "source/opt/ir_context.h"
#include "source/opt/log.h"
#include "source/opt/reflect.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace opt {
namespace analysis {
namespace {
const int kSpvTypePointerStorageClass = 1;
const int kSpvTypePointerTypeIdInIdx = 2;
} // namespace
TypeManager::TypeManager(const MessageConsumer& consumer, IRContext* c)
: consumer_(consumer), context_(c) {
AnalyzeTypes(*c->module());
}
Type* TypeManager::GetType(uint32_t id) const {
auto iter = id_to_type_.find(id);
if (iter != id_to_type_.end()) return (*iter).second;
iter = id_to_incomplete_type_.find(id);
if (iter != id_to_incomplete_type_.end()) return (*iter).second;
return nullptr;
}
std::pair<Type*, std::unique_ptr<Pointer>> TypeManager::GetTypeAndPointerType(
uint32_t id, SpvStorageClass sc) const {
Type* type = GetType(id);
if (type) {
return std::make_pair(type, MakeUnique<Pointer>(type, sc));
} else {
return std::make_pair(type, std::unique_ptr<Pointer>());
}
}
uint32_t TypeManager::GetId(const Type* type) const {
auto iter = type_to_id_.find(type);
if (iter != type_to_id_.end()) {
return (*iter).second;
}
return 0;
}
void TypeManager::AnalyzeTypes(const Module& module) {
// First pass through the constants, as some will be needed when traversing
// the types in the next pass.
for (const auto* inst : module.GetConstants()) {
id_to_constant_inst_[inst->result_id()] = inst;
}
// Then pass through the types. Any types that reference a forward pointer
// (directly or indirectly) are incomplete, and are added to incomplete types.
for (const auto* inst : module.GetTypes()) {
RecordIfTypeDefinition(*inst);
}
if (incomplete_types_.empty()) {
return;
}
// Get the real pointer definition for all of the forward pointers.
for (auto& type : incomplete_types_) {
if (type.type()->kind() == Type::kForwardPointer) {
auto* t = GetType(type.id());
assert(t);
auto* p = t->AsPointer();
assert(p);
type.type()->AsForwardPointer()->SetTargetPointer(p);
}
}
// Replaces the references to the forward pointers in the incomplete types.
for (auto& type : incomplete_types_) {
ReplaceForwardPointers(type.type());
}
// Delete the forward pointers now that they are not referenced anymore.
for (auto& type : incomplete_types_) {
if (type.type()->kind() == Type::kForwardPointer) {
type.ResetType(nullptr);
}
}
// Compare the complete types looking for types that are the same. If there
// are two types that are the same, then replace one with the other.
// Continue until we reach a fixed point.
bool restart = true;
while (restart) {
restart = false;
for (auto it1 = incomplete_types_.begin(); it1 != incomplete_types_.end();
++it1) {
uint32_t id1 = it1->id();
Type* type1 = it1->type();
if (!type1) {
continue;
}
for (auto it2 = it1 + 1; it2 != incomplete_types_.end(); ++it2) {
uint32_t id2 = it2->id();
(void)(id2 + id1);
Type* type2 = it2->type();
if (!type2) {
continue;
}
if (type1->IsSame(type2)) {
ReplaceType(type1, type2);
it2->ResetType(nullptr);
id_to_incomplete_type_[it2->id()] = type1;
restart = true;
}
}
}
}
// Add the remaining incomplete types to the type pool.
for (auto& type : incomplete_types_) {
if (type.type() && !type.type()->AsForwardPointer()) {
std::vector<Instruction*> decorations =
context()->get_decoration_mgr()->GetDecorationsFor(type.id(), true);
for (auto dec : decorations) {
AttachDecoration(*dec, type.type());
}
auto pair = type_pool_.insert(type.ReleaseType());
id_to_type_[type.id()] = pair.first->get();
type_to_id_[pair.first->get()] = type.id();
id_to_incomplete_type_.erase(type.id());
}
}
// Add a mapping for any ids that whose original type was replaced by an
// equivalent type.
for (auto& type : id_to_incomplete_type_) {
id_to_type_[type.first] = type.second;
}
#ifndef NDEBUG
// Check if the type pool contains two types that are the same. This
// is an indication that the hashing and comparison are wrong. It
// will cause a problem if the type pool gets resized and everything
// is rehashed.
for (auto& i : type_pool_) {
for (auto& j : type_pool_) {
Type* ti = i.get();
Type* tj = j.get();
assert((ti == tj || !ti->IsSame(tj)) &&
"Type pool contains two types that are the same.");
}
}
#endif
}
void TypeManager::RemoveId(uint32_t id) {
auto iter = id_to_type_.find(id);
if (iter == id_to_type_.end()) return;
auto& type = iter->second;
if (!type->IsUniqueType(true)) {
auto tIter = type_to_id_.find(type);
if (tIter != type_to_id_.end() && tIter->second == id) {
// |type| currently maps to |id|.
// Search for an equivalent type to re-map.
bool found = false;
for (auto& pair : id_to_type_) {
if (pair.first != id && *pair.second == *type) {
// Equivalent ambiguous type, re-map type.
type_to_id_.erase(type);
type_to_id_[pair.second] = pair.first;
found = true;
break;
}
}
// No equivalent ambiguous type, remove mapping.
if (!found) type_to_id_.erase(tIter);
}
} else {
// Unique type, so just erase the entry.
type_to_id_.erase(type);
}
// Erase the entry for |id|.
id_to_type_.erase(iter);
}
uint32_t TypeManager::GetTypeInstruction(const Type* type) {
uint32_t id = GetId(type);
if (id != 0) return id;
std::unique_ptr<Instruction> typeInst;
// TODO(1841): Handle id overflow.
id = context()->TakeNextId();
if (id == 0) {
return 0;
}
RegisterType(id, *type);
switch (type->kind()) {
#define DefineParameterlessCase(kind) \
case Type::k##kind: \
typeInst = MakeUnique<Instruction>(context(), SpvOpType##kind, 0, id, \
std::initializer_list<Operand>{}); \
break;
DefineParameterlessCase(Void);
DefineParameterlessCase(Bool);
DefineParameterlessCase(Sampler);
DefineParameterlessCase(Event);
DefineParameterlessCase(DeviceEvent);
DefineParameterlessCase(ReserveId);
DefineParameterlessCase(Queue);
DefineParameterlessCase(PipeStorage);
DefineParameterlessCase(NamedBarrier);
DefineParameterlessCase(AccelerationStructureNV);
#undef DefineParameterlessCase
case Type::kInteger:
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeInt, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {type->AsInteger()->width()}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER,
{(type->AsInteger()->IsSigned() ? 1u : 0u)}}});
break;
case Type::kFloat:
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeFloat, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {type->AsFloat()->width()}}});
break;
case Type::kVector: {
uint32_t subtype = GetTypeInstruction(type->AsVector()->element_type());
if (subtype == 0) {
return 0;
}
typeInst =
MakeUnique<Instruction>(context(), SpvOpTypeVector, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {subtype}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER,
{type->AsVector()->element_count()}}});
break;
}
case Type::kMatrix: {
uint32_t subtype = GetTypeInstruction(type->AsMatrix()->element_type());
if (subtype == 0) {
return 0;
}
typeInst =
MakeUnique<Instruction>(context(), SpvOpTypeMatrix, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {subtype}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER,
{type->AsMatrix()->element_count()}}});
break;
}
case Type::kImage: {
const Image* image = type->AsImage();
uint32_t subtype = GetTypeInstruction(image->sampled_type());
if (subtype == 0) {
return 0;
}
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeImage, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {subtype}},
{SPV_OPERAND_TYPE_DIMENSIONALITY,
{static_cast<uint32_t>(image->dim())}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {image->depth()}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER,
{(image->is_arrayed() ? 1u : 0u)}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER,
{(image->is_multisampled() ? 1u : 0u)}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {image->sampled()}},
{SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT,
{static_cast<uint32_t>(image->format())}},
{SPV_OPERAND_TYPE_ACCESS_QUALIFIER,
{static_cast<uint32_t>(image->access_qualifier())}}});
break;
}
case Type::kSampledImage: {
uint32_t subtype =
GetTypeInstruction(type->AsSampledImage()->image_type());
if (subtype == 0) {
return 0;
}
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeSampledImage, 0, id,
std::initializer_list<Operand>{{SPV_OPERAND_TYPE_ID, {subtype}}});
break;
}
case Type::kArray: {
uint32_t subtype = GetTypeInstruction(type->AsArray()->element_type());
if (subtype == 0) {
return 0;
}
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeArray, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {subtype}},
{SPV_OPERAND_TYPE_ID, {type->AsArray()->LengthId()}}});
break;
}
case Type::kRuntimeArray: {
uint32_t subtype =
GetTypeInstruction(type->AsRuntimeArray()->element_type());
if (subtype == 0) {
return 0;
}
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeRuntimeArray, 0, id,
std::initializer_list<Operand>{{SPV_OPERAND_TYPE_ID, {subtype}}});
break;
}
case Type::kStruct: {
std::vector<Operand> ops;
const Struct* structTy = type->AsStruct();
for (auto ty : structTy->element_types()) {
uint32_t member_type_id = GetTypeInstruction(ty);
if (member_type_id == 0) {
return 0;
}
ops.push_back(Operand(SPV_OPERAND_TYPE_ID, {member_type_id}));
}
typeInst =
MakeUnique<Instruction>(context(), SpvOpTypeStruct, 0, id, ops);
break;
}
case Type::kOpaque: {
const Opaque* opaque = type->AsOpaque();
size_t size = opaque->name().size();
// Convert to null-terminated packed UTF-8 string.
std::vector<uint32_t> words(size / 4 + 1, 0);
char* dst = reinterpret_cast<char*>(words.data());
strncpy(dst, opaque->name().c_str(), size);
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeOpaque, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_LITERAL_STRING, words}});
break;
}
case Type::kPointer: {
const Pointer* pointer = type->AsPointer();
uint32_t subtype = GetTypeInstruction(pointer->pointee_type());
if (subtype == 0) {
return 0;
}
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypePointer, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_STORAGE_CLASS,
{static_cast<uint32_t>(pointer->storage_class())}},
{SPV_OPERAND_TYPE_ID, {subtype}}});
break;
}
case Type::kFunction: {
std::vector<Operand> ops;
const Function* function = type->AsFunction();
uint32_t return_type_id = GetTypeInstruction(function->return_type());
if (return_type_id == 0) {
return 0;
}
ops.push_back(Operand(SPV_OPERAND_TYPE_ID, {return_type_id}));
for (auto ty : function->param_types()) {
uint32_t paramater_type_id = GetTypeInstruction(ty);
if (paramater_type_id == 0) {
return 0;
}
ops.push_back(Operand(SPV_OPERAND_TYPE_ID, {paramater_type_id}));
}
typeInst =
MakeUnique<Instruction>(context(), SpvOpTypeFunction, 0, id, ops);
break;
}
case Type::kPipe:
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypePipe, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ACCESS_QUALIFIER,
{static_cast<uint32_t>(type->AsPipe()->access_qualifier())}}});
break;
case Type::kForwardPointer:
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeForwardPointer, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {type->AsForwardPointer()->target_id()}},
{SPV_OPERAND_TYPE_STORAGE_CLASS,
{static_cast<uint32_t>(
type->AsForwardPointer()->storage_class())}}});
break;
case Type::kCooperativeMatrixNV: {
auto coop_mat = type->AsCooperativeMatrixNV();
uint32_t const component_type =
GetTypeInstruction(coop_mat->component_type());
if (component_type == 0) {
return 0;
}
typeInst = MakeUnique<Instruction>(
context(), SpvOpTypeCooperativeMatrixNV, 0, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {component_type}},
{SPV_OPERAND_TYPE_SCOPE_ID, {coop_mat->scope_id()}},
{SPV_OPERAND_TYPE_ID, {coop_mat->rows_id()}},
{SPV_OPERAND_TYPE_ID, {coop_mat->columns_id()}}});
break;
}
default:
assert(false && "Unexpected type");
break;
}
context()->AddType(std::move(typeInst));
context()->AnalyzeDefUse(&*--context()->types_values_end());
AttachDecorations(id, type);
return id;
}
uint32_t TypeManager::FindPointerToType(uint32_t type_id,
SpvStorageClass storage_class) {
Type* pointeeTy = GetType(type_id);
Pointer pointerTy(pointeeTy, storage_class);
if (pointeeTy->IsUniqueType(true)) {
// Non-ambiguous type. Get the pointer type through the type manager.
return GetTypeInstruction(&pointerTy);
}
// Ambiguous type, do a linear search.
Module::inst_iterator type_itr = context()->module()->types_values_begin();
for (; type_itr != context()->module()->types_values_end(); ++type_itr) {
const Instruction* type_inst = &*type_itr;
if (type_inst->opcode() == SpvOpTypePointer &&
type_inst->GetSingleWordOperand(kSpvTypePointerTypeIdInIdx) ==
type_id &&
type_inst->GetSingleWordOperand(kSpvTypePointerStorageClass) ==
storage_class)
return type_inst->result_id();
}
// Must create the pointer type.
// TODO(1841): Handle id overflow.
uint32_t resultId = context()->TakeNextId();
std::unique_ptr<Instruction> type_inst(
new Instruction(context(), SpvOpTypePointer, 0, resultId,
{{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS,
{uint32_t(storage_class)}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_id}}}));
context()->AddType(std::move(type_inst));
context()->get_type_mgr()->RegisterType(resultId, pointerTy);
return resultId;
}
void TypeManager::AttachDecorations(uint32_t id, const Type* type) {
for (auto vec : type->decorations()) {
CreateDecoration(id, vec);
}
if (const Struct* structTy = type->AsStruct()) {
for (auto pair : structTy->element_decorations()) {
uint32_t element = pair.first;
for (auto vec : pair.second) {
CreateDecoration(id, vec, element);
}
}
}
}
void TypeManager::CreateDecoration(uint32_t target,
const std::vector<uint32_t>& decoration,
uint32_t element) {
std::vector<Operand> ops;
ops.push_back(Operand(SPV_OPERAND_TYPE_ID, {target}));
if (element != 0) {
ops.push_back(Operand(SPV_OPERAND_TYPE_LITERAL_INTEGER, {element}));
}
ops.push_back(Operand(SPV_OPERAND_TYPE_DECORATION, {decoration[0]}));
for (size_t i = 1; i < decoration.size(); ++i) {
ops.push_back(Operand(SPV_OPERAND_TYPE_LITERAL_INTEGER, {decoration[i]}));
}
context()->AddAnnotationInst(MakeUnique<Instruction>(
context(), (element == 0 ? SpvOpDecorate : SpvOpMemberDecorate), 0, 0,
ops));
Instruction* inst = &*--context()->annotation_end();
context()->get_def_use_mgr()->AnalyzeInstUse(inst);
}
Type* TypeManager::RebuildType(const Type& type) {
// The comparison and hash on the type pool will avoid inserting the rebuilt
// type if an equivalent type already exists. The rebuilt type will be deleted
// when it goes out of scope at the end of the function in that case. Repeated
// insertions of the same Type will, at most, keep one corresponding object in
// the type pool.
std::unique_ptr<Type> rebuilt_ty;
switch (type.kind()) {
#define DefineNoSubtypeCase(kind) \
case Type::k##kind: \
rebuilt_ty.reset(type.Clone().release()); \
return type_pool_.insert(std::move(rebuilt_ty)).first->get();
DefineNoSubtypeCase(Void);
DefineNoSubtypeCase(Bool);
DefineNoSubtypeCase(Integer);
DefineNoSubtypeCase(Float);
DefineNoSubtypeCase(Sampler);
DefineNoSubtypeCase(Opaque);
DefineNoSubtypeCase(Event);
DefineNoSubtypeCase(DeviceEvent);
DefineNoSubtypeCase(ReserveId);
DefineNoSubtypeCase(Queue);
DefineNoSubtypeCase(Pipe);
DefineNoSubtypeCase(PipeStorage);
DefineNoSubtypeCase(NamedBarrier);
DefineNoSubtypeCase(AccelerationStructureNV);
#undef DefineNoSubtypeCase
case Type::kVector: {
const Vector* vec_ty = type.AsVector();
const Type* ele_ty = vec_ty->element_type();
rebuilt_ty =
MakeUnique<Vector>(RebuildType(*ele_ty), vec_ty->element_count());
break;
}
case Type::kMatrix: {
const Matrix* mat_ty = type.AsMatrix();
const Type* ele_ty = mat_ty->element_type();
rebuilt_ty =
MakeUnique<Matrix>(RebuildType(*ele_ty), mat_ty->element_count());
break;
}
case Type::kImage: {
const Image* image_ty = type.AsImage();
const Type* ele_ty = image_ty->sampled_type();
rebuilt_ty =
MakeUnique<Image>(RebuildType(*ele_ty), image_ty->dim(),
image_ty->depth(), image_ty->is_arrayed(),
image_ty->is_multisampled(), image_ty->sampled(),
image_ty->format(), image_ty->access_qualifier());
break;
}
case Type::kSampledImage: {
const SampledImage* image_ty = type.AsSampledImage();
const Type* ele_ty = image_ty->image_type();
rebuilt_ty = MakeUnique<SampledImage>(RebuildType(*ele_ty));
break;
}
case Type::kArray: {
const Array* array_ty = type.AsArray();
rebuilt_ty =
MakeUnique<Array>(array_ty->element_type(), array_ty->length_info());
break;
}
case Type::kRuntimeArray: {
const RuntimeArray* array_ty = type.AsRuntimeArray();
const Type* ele_ty = array_ty->element_type();
rebuilt_ty = MakeUnique<RuntimeArray>(RebuildType(*ele_ty));
break;
}
case Type::kStruct: {
const Struct* struct_ty = type.AsStruct();
std::vector<const Type*> subtypes;
subtypes.reserve(struct_ty->element_types().size());
for (const auto* ele_ty : struct_ty->element_types()) {
subtypes.push_back(RebuildType(*ele_ty));
}
rebuilt_ty = MakeUnique<Struct>(subtypes);
Struct* rebuilt_struct = rebuilt_ty->AsStruct();
for (auto pair : struct_ty->element_decorations()) {
uint32_t index = pair.first;
for (const auto& dec : pair.second) {
// Explicit copy intended.
std::vector<uint32_t> copy(dec);
rebuilt_struct->AddMemberDecoration(index, std::move(copy));
}
}
break;
}
case Type::kPointer: {
const Pointer* pointer_ty = type.AsPointer();
const Type* ele_ty = pointer_ty->pointee_type();
rebuilt_ty = MakeUnique<Pointer>(RebuildType(*ele_ty),
pointer_ty->storage_class());
break;
}
case Type::kFunction: {
const Function* function_ty = type.AsFunction();
const Type* ret_ty = function_ty->return_type();
std::vector<const Type*> param_types;
param_types.reserve(function_ty->param_types().size());
for (const auto* param_ty : function_ty->param_types()) {
param_types.push_back(RebuildType(*param_ty));
}
rebuilt_ty = MakeUnique<Function>(RebuildType(*ret_ty), param_types);
break;
}
case Type::kForwardPointer: {
const ForwardPointer* forward_ptr_ty = type.AsForwardPointer();
rebuilt_ty = MakeUnique<ForwardPointer>(forward_ptr_ty->target_id(),
forward_ptr_ty->storage_class());
const Pointer* target_ptr = forward_ptr_ty->target_pointer();
if (target_ptr) {
rebuilt_ty->AsForwardPointer()->SetTargetPointer(
RebuildType(*target_ptr)->AsPointer());
}
break;
}
case Type::kCooperativeMatrixNV: {
const CooperativeMatrixNV* cm_type = type.AsCooperativeMatrixNV();
const Type* component_type = cm_type->component_type();
rebuilt_ty = MakeUnique<CooperativeMatrixNV>(
RebuildType(*component_type), cm_type->scope_id(), cm_type->rows_id(),
cm_type->columns_id());
break;
}
default:
assert(false && "Unhandled type");
return nullptr;
}
for (const auto& dec : type.decorations()) {
// Explicit copy intended.
std::vector<uint32_t> copy(dec);
rebuilt_ty->AddDecoration(std::move(copy));
}
return type_pool_.insert(std::move(rebuilt_ty)).first->get();
}
void TypeManager::RegisterType(uint32_t id, const Type& type) {
// Rebuild |type| so it and all its constituent types are owned by the type
// pool.
Type* rebuilt = RebuildType(type);
assert(rebuilt->IsSame(&type));
id_to_type_[id] = rebuilt;
if (GetId(rebuilt) == 0) {
type_to_id_[rebuilt] = id;
}
}
Type* TypeManager::GetRegisteredType(const Type* type) {
uint32_t id = GetTypeInstruction(type);
if (id == 0) {
return nullptr;
}
return GetType(id);
}
Type* TypeManager::RecordIfTypeDefinition(const Instruction& inst) {
if (!IsTypeInst(inst.opcode())) return nullptr;
Type* type = nullptr;
switch (inst.opcode()) {
case SpvOpTypeVoid:
type = new Void();
break;
case SpvOpTypeBool:
type = new Bool();
break;
case SpvOpTypeInt:
type = new Integer(inst.GetSingleWordInOperand(0),
inst.GetSingleWordInOperand(1));
break;
case SpvOpTypeFloat:
type = new Float(inst.GetSingleWordInOperand(0));
break;
case SpvOpTypeVector:
type = new Vector(GetType(inst.GetSingleWordInOperand(0)),
inst.GetSingleWordInOperand(1));
break;
case SpvOpTypeMatrix:
type = new Matrix(GetType(inst.GetSingleWordInOperand(0)),
inst.GetSingleWordInOperand(1));
break;
case SpvOpTypeImage: {
const SpvAccessQualifier access =
inst.NumInOperands() < 8
? SpvAccessQualifierReadOnly
: static_cast<SpvAccessQualifier>(inst.GetSingleWordInOperand(7));
type = new Image(
GetType(inst.GetSingleWordInOperand(0)),
static_cast<SpvDim>(inst.GetSingleWordInOperand(1)),
inst.GetSingleWordInOperand(2), inst.GetSingleWordInOperand(3) == 1,
inst.GetSingleWordInOperand(4) == 1, inst.GetSingleWordInOperand(5),
static_cast<SpvImageFormat>(inst.GetSingleWordInOperand(6)), access);
} break;
case SpvOpTypeSampler:
type = new Sampler();
break;
case SpvOpTypeSampledImage:
type = new SampledImage(GetType(inst.GetSingleWordInOperand(0)));
break;
case SpvOpTypeArray: {
const uint32_t length_id = inst.GetSingleWordInOperand(1);
const Instruction* length_constant_inst = id_to_constant_inst_[length_id];
assert(length_constant_inst);
// How will we distinguish one length value from another?
// Determine extra words required to distinguish this array length
// from another.
std::vector<uint32_t> extra_words{Array::LengthInfo::kDefiningId};
// If it is a specialised constant, retrieve its SpecId.
// Only OpSpecConstant has a SpecId.
uint32_t spec_id = 0u;
bool has_spec_id = false;
if (length_constant_inst->opcode() == SpvOpSpecConstant) {
context()->get_decoration_mgr()->ForEachDecoration(
length_id, SpvDecorationSpecId,
[&spec_id, &has_spec_id](const Instruction& decoration) {
assert(decoration.opcode() == SpvOpDecorate);
spec_id = decoration.GetSingleWordOperand(2u);
has_spec_id = true;
});
}
const auto opcode = length_constant_inst->opcode();
if (has_spec_id) {
extra_words.push_back(spec_id);
}
if ((opcode == SpvOpConstant) || (opcode == SpvOpSpecConstant)) {
// Always include the literal constant words. In the spec constant
// case, the constant might not be overridden, so it's still
// significant.
extra_words.insert(extra_words.end(),
length_constant_inst->GetOperand(2).words.begin(),
length_constant_inst->GetOperand(2).words.end());
extra_words[0] = has_spec_id ? Array::LengthInfo::kConstantWithSpecId
: Array::LengthInfo::kConstant;
} else {
assert(extra_words[0] == Array::LengthInfo::kDefiningId);
extra_words.push_back(length_id);
}
assert(extra_words.size() >= 2);
Array::LengthInfo length_info{length_id, extra_words};
type = new Array(GetType(inst.GetSingleWordInOperand(0)), length_info);
if (id_to_incomplete_type_.count(inst.GetSingleWordInOperand(0))) {
incomplete_types_.emplace_back(inst.result_id(), type);
id_to_incomplete_type_[inst.result_id()] = type;
return type;
}
} break;
case SpvOpTypeRuntimeArray:
type = new RuntimeArray(GetType(inst.GetSingleWordInOperand(0)));
if (id_to_incomplete_type_.count(inst.GetSingleWordInOperand(0))) {
incomplete_types_.emplace_back(inst.result_id(), type);
id_to_incomplete_type_[inst.result_id()] = type;
return type;
}
break;
case SpvOpTypeStruct: {
std::vector<const Type*> element_types;
bool incomplete_type = false;
for (uint32_t i = 0; i < inst.NumInOperands(); ++i) {
uint32_t type_id = inst.GetSingleWordInOperand(i);
element_types.push_back(GetType(type_id));
if (id_to_incomplete_type_.count(type_id)) {
incomplete_type = true;
}
}
type = new Struct(element_types);
if (incomplete_type) {
incomplete_types_.emplace_back(inst.result_id(), type);
id_to_incomplete_type_[inst.result_id()] = type;
return type;
}
} break;
case SpvOpTypeOpaque: {
const uint32_t* data = inst.GetInOperand(0).words.data();
type = new Opaque(reinterpret_cast<const char*>(data));
} break;
case SpvOpTypePointer: {
uint32_t pointee_type_id = inst.GetSingleWordInOperand(1);
type = new Pointer(
GetType(pointee_type_id),
static_cast<SpvStorageClass>(inst.GetSingleWordInOperand(0)));
if (id_to_incomplete_type_.count(pointee_type_id)) {
incomplete_types_.emplace_back(inst.result_id(), type);
id_to_incomplete_type_[inst.result_id()] = type;
return type;
}
id_to_incomplete_type_.erase(inst.result_id());
} break;
case SpvOpTypeFunction: {
bool incomplete_type = false;
uint32_t return_type_id = inst.GetSingleWordInOperand(0);
if (id_to_incomplete_type_.count(return_type_id)) {
incomplete_type = true;
}
Type* return_type = GetType(return_type_id);
std::vector<const Type*> param_types;
for (uint32_t i = 1; i < inst.NumInOperands(); ++i) {
uint32_t param_type_id = inst.GetSingleWordInOperand(i);
param_types.push_back(GetType(param_type_id));
if (id_to_incomplete_type_.count(param_type_id)) {
incomplete_type = true;
}
}
type = new Function(return_type, param_types);
if (incomplete_type) {
incomplete_types_.emplace_back(inst.result_id(), type);
id_to_incomplete_type_[inst.result_id()] = type;
return type;
}
} break;
case SpvOpTypeEvent:
type = new Event();
break;
case SpvOpTypeDeviceEvent:
type = new DeviceEvent();
break;
case SpvOpTypeReserveId:
type = new ReserveId();
break;
case SpvOpTypeQueue:
type = new Queue();
break;
case SpvOpTypePipe:
type = new Pipe(
static_cast<SpvAccessQualifier>(inst.GetSingleWordInOperand(0)));
break;
case SpvOpTypeForwardPointer: {
// Handling of forward pointers is different from the other types.
uint32_t target_id = inst.GetSingleWordInOperand(0);
type = new ForwardPointer(target_id, static_cast<SpvStorageClass>(
inst.GetSingleWordInOperand(1)));
incomplete_types_.emplace_back(target_id, type);
id_to_incomplete_type_[target_id] = type;
return type;
}
case SpvOpTypePipeStorage:
type = new PipeStorage();
break;
case SpvOpTypeNamedBarrier:
type = new NamedBarrier();
break;
case SpvOpTypeAccelerationStructureNV:
type = new AccelerationStructureNV();
break;
case SpvOpTypeCooperativeMatrixNV:
type = new CooperativeMatrixNV(GetType(inst.GetSingleWordInOperand(0)),
inst.GetSingleWordInOperand(1),
inst.GetSingleWordInOperand(2),
inst.GetSingleWordInOperand(3));
break;
case SpvOpTypeRayQueryKHR:
type = new RayQueryKHR();
break;
default:
SPIRV_UNIMPLEMENTED(consumer_, "unhandled type");
break;
}
uint32_t id = inst.result_id();
SPIRV_ASSERT(consumer_, id != 0, "instruction without result id found");
SPIRV_ASSERT(consumer_, type != nullptr,
"type should not be nullptr at this point");
std::vector<Instruction*> decorations =
context()->get_decoration_mgr()->GetDecorationsFor(id, true);
for (auto dec : decorations) {
AttachDecoration(*dec, type);
}
std::unique_ptr<Type> unique(type);
auto pair = type_pool_.insert(std::move(unique));
id_to_type_[id] = pair.first->get();
type_to_id_[pair.first->get()] = id;
return type;
}
void TypeManager::AttachDecoration(const Instruction& inst, Type* type) {
const SpvOp opcode = inst.opcode();
if (!IsAnnotationInst(opcode)) return;
switch (opcode) {
case SpvOpDecorate: {
const auto count = inst.NumOperands();
std::vector<uint32_t> data;
for (uint32_t i = 1; i < count; ++i) {
data.push_back(inst.GetSingleWordOperand(i));
}
type->AddDecoration(std::move(data));
} break;
case SpvOpMemberDecorate: {
const auto count = inst.NumOperands();
const uint32_t index = inst.GetSingleWordOperand(1);
std::vector<uint32_t> data;
for (uint32_t i = 2; i < count; ++i) {
data.push_back(inst.GetSingleWordOperand(i));
}
if (Struct* st = type->AsStruct()) {
st->AddMemberDecoration(index, std::move(data));
} else {
SPIRV_UNIMPLEMENTED(consumer_, "OpMemberDecorate non-struct type");
}
} break;
default:
SPIRV_UNREACHABLE(consumer_);
break;
}
}
const Type* TypeManager::GetMemberType(
const Type* parent_type, const std::vector<uint32_t>& access_chain) {
for (uint32_t element_index : access_chain) {
if (const Struct* struct_type = parent_type->AsStruct()) {
parent_type = struct_type->element_types()[element_index];
} else if (const Array* array_type = parent_type->AsArray()) {
parent_type = array_type->element_type();
} else if (const RuntimeArray* runtime_array_type =
parent_type->AsRuntimeArray()) {
parent_type = runtime_array_type->element_type();
} else if (const Vector* vector_type = parent_type->AsVector()) {
parent_type = vector_type->element_type();
} else if (const Matrix* matrix_type = parent_type->AsMatrix()) {
parent_type = matrix_type->element_type();
} else {
assert(false && "Trying to get a member of a type without members.");
}
}
return parent_type;
}
void TypeManager::ReplaceForwardPointers(Type* type) {
switch (type->kind()) {
case Type::kArray: {
const ForwardPointer* element_type =
type->AsArray()->element_type()->AsForwardPointer();
if (element_type) {
type->AsArray()->ReplaceElementType(element_type->target_pointer());
}
} break;
case Type::kRuntimeArray: {
const ForwardPointer* element_type =
type->AsRuntimeArray()->element_type()->AsForwardPointer();
if (element_type) {
type->AsRuntimeArray()->ReplaceElementType(
element_type->target_pointer());
}
} break;
case Type::kStruct: {
auto& member_types = type->AsStruct()->element_types();
for (auto& member_type : member_types) {
if (member_type->AsForwardPointer()) {
member_type = member_type->AsForwardPointer()->target_pointer();
assert(member_type);
}
}
} break;
case Type::kPointer: {
const ForwardPointer* pointee_type =
type->AsPointer()->pointee_type()->AsForwardPointer();
if (pointee_type) {
type->AsPointer()->SetPointeeType(pointee_type->target_pointer());
}
} break;
case Type::kFunction: {
Function* func_type = type->AsFunction();
const ForwardPointer* return_type =
func_type->return_type()->AsForwardPointer();
if (return_type) {
func_type->SetReturnType(return_type->target_pointer());
}
auto& param_types = func_type->param_types();
for (auto& param_type : param_types) {
if (param_type->AsForwardPointer()) {
param_type = param_type->AsForwardPointer()->target_pointer();
}
}
} break;
default:
break;
}
}
void TypeManager::ReplaceType(Type* new_type, Type* original_type) {
assert(original_type->kind() == new_type->kind() &&
"Types must be the same for replacement.\n");
for (auto& p : incomplete_types_) {
Type* type = p.type();
if (!type) {
continue;
}
switch (type->kind()) {
case Type::kArray: {
const Type* element_type = type->AsArray()->element_type();
if (element_type == original_type) {
type->AsArray()->ReplaceElementType(new_type);
}
} break;
case Type::kRuntimeArray: {
const Type* element_type = type->AsRuntimeArray()->element_type();
if (element_type == original_type) {
type->AsRuntimeArray()->ReplaceElementType(new_type);
}
} break;
case Type::kStruct: {
auto& member_types = type->AsStruct()->element_types();
for (auto& member_type : member_types) {
if (member_type == original_type) {
member_type = new_type;
}
}
} break;
case Type::kPointer: {
const Type* pointee_type = type->AsPointer()->pointee_type();
if (pointee_type == original_type) {
type->AsPointer()->SetPointeeType(new_type);
}
} break;
case Type::kFunction: {
Function* func_type = type->AsFunction();
const Type* return_type = func_type->return_type();
if (return_type == original_type) {
func_type->SetReturnType(new_type);
}
auto& param_types = func_type->param_types();
for (auto& param_type : param_types) {
if (param_type == original_type) {
param_type = new_type;
}
}
} break;
default:
break;
}
}
}
} // namespace analysis
} // namespace opt
} // namespace spvtools
|