1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
// Copyright (c) 2015-2020 The Khronos Group Inc.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/binary.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>
#include "source/assembly_grammar.h"
#include "source/diagnostic.h"
#include "source/ext_inst.h"
#include "source/latest_version_spirv_header.h"
#include "source/opcode.h"
#include "source/operand.h"
#include "source/spirv_constant.h"
#include "source/spirv_endian.h"
#include "source/util/string_utils.h"
spv_result_t spvBinaryHeaderGet(const spv_const_binary binary,
const spv_endianness_t endian,
spv_header_t* pHeader) {
if (!binary->code) return SPV_ERROR_INVALID_BINARY;
if (binary->wordCount < SPV_INDEX_INSTRUCTION)
return SPV_ERROR_INVALID_BINARY;
if (!pHeader) return SPV_ERROR_INVALID_POINTER;
// TODO: Validation checking?
pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian);
pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian);
// Per 2.3.1 version's high and low bytes are 0
if ((pHeader->version & 0x000000ff) || pHeader->version & 0xff000000)
return SPV_ERROR_INVALID_BINARY;
// Minimum version was 1.0 and max version is defined by SPV_VERSION.
if (pHeader->version < SPV_SPIRV_VERSION_WORD(1, 0) ||
pHeader->version > SPV_VERSION)
return SPV_ERROR_INVALID_BINARY;
pHeader->generator =
spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian);
pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian);
pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian);
pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION];
return SPV_SUCCESS;
}
std::string spvDecodeLiteralStringOperand(const spv_parsed_instruction_t& inst,
const uint16_t operand_index) {
assert(operand_index < inst.num_operands);
const spv_parsed_operand_t& operand = inst.operands[operand_index];
return spvtools::utils::MakeString(inst.words + operand.offset,
operand.num_words);
}
namespace {
// A SPIR-V binary parser. A parser instance communicates detailed parse
// results via callbacks.
class Parser {
public:
// The user_data value is provided to the callbacks as context.
Parser(const spv_const_context context, void* user_data,
spv_parsed_header_fn_t parsed_header_fn,
spv_parsed_instruction_fn_t parsed_instruction_fn)
: grammar_(context),
consumer_(context->consumer),
user_data_(user_data),
parsed_header_fn_(parsed_header_fn),
parsed_instruction_fn_(parsed_instruction_fn) {}
// Parses the specified binary SPIR-V module, issuing callbacks on a parsed
// header and for each parsed instruction. Returns SPV_SUCCESS on success.
// Otherwise returns an error code and issues a diagnostic.
spv_result_t parse(const uint32_t* words, size_t num_words,
spv_diagnostic* diagnostic);
private:
// All remaining methods work on the current module parse state.
// Like the parse method, but works on the current module parse state.
spv_result_t parseModule();
// Parses an instruction at the current position of the binary. Assumes
// the header has been parsed, the endian has been set, and the word index is
// still in range. Advances the parsing position past the instruction, and
// updates other parsing state for the current module.
// On success, returns SPV_SUCCESS and issues the parsed-instruction callback.
// On failure, returns an error code and issues a diagnostic.
spv_result_t parseInstruction();
// Parses an instruction operand with the given type, for an instruction
// starting at inst_offset words into the SPIR-V binary.
// If the SPIR-V binary is the same endianness as the host, then the
// endian_converted_inst_words parameter is ignored. Otherwise, this method
// appends the words for this operand, converted to host native endianness,
// to the end of endian_converted_inst_words. This method also updates the
// expected_operands parameter, and the scalar members of the inst parameter.
// On success, returns SPV_SUCCESS, advances past the operand, and pushes a
// new entry on to the operands vector. Otherwise returns an error code and
// issues a diagnostic.
spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst,
const spv_operand_type_t type,
std::vector<uint32_t>* endian_converted_inst_words,
std::vector<spv_parsed_operand_t>* operands,
spv_operand_pattern_t* expected_operands);
// Records the numeric type for an operand according to the type information
// associated with the given non-zero type Id. This can fail if the type Id
// is not a type Id, or if the type Id does not reference a scalar numeric
// type. On success, return SPV_SUCCESS and populates the num_words,
// number_kind, and number_bit_width fields of parsed_operand.
spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand,
uint32_t type_id);
// Records the number type for an instruction at the given offset, if that
// instruction generates a type. For types that aren't scalar numbers,
// record something with number kind SPV_NUMBER_NONE.
void recordNumberType(size_t inst_offset,
const spv_parsed_instruction_t* inst);
// Returns a diagnostic stream object initialized with current position in
// the input stream, and for the given error code. Any data written to the
// returned object will be propagated to the current parse's diagnostic
// object.
spvtools::DiagnosticStream diagnostic(spv_result_t error) {
return spvtools::DiagnosticStream({0, 0, _.instruction_count}, consumer_,
"", error);
}
// Returns a diagnostic stream object with the default parse error code.
spvtools::DiagnosticStream diagnostic() {
// The default failure for parsing is invalid binary.
return diagnostic(SPV_ERROR_INVALID_BINARY);
}
// Issues a diagnostic describing an exhaustion of input condition when
// trying to decode an instruction operand, and returns
// SPV_ERROR_INVALID_BINARY.
spv_result_t exhaustedInputDiagnostic(size_t inst_offset, spv::Op opcode,
spv_operand_type_t type) {
return diagnostic() << "End of input reached while decoding Op"
<< spvOpcodeString(opcode) << " starting at word "
<< inst_offset
<< ((_.word_index < _.num_words) ? ": truncated "
: ": missing ")
<< spvOperandTypeStr(type) << " operand at word offset "
<< _.word_index - inst_offset << ".";
}
// Returns the endian-corrected word at the current position.
uint32_t peek() const { return peekAt(_.word_index); }
// Returns the endian-corrected word at the given position.
uint32_t peekAt(size_t index) const {
assert(index < _.num_words);
return spvFixWord(_.words[index], _.endian);
}
// Data members
const spvtools::AssemblyGrammar grammar_; // SPIR-V syntax utility.
const spvtools::MessageConsumer& consumer_; // Message consumer callback.
void* const user_data_; // Context for the callbacks
const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback
const spv_parsed_instruction_fn_t
parsed_instruction_fn_; // Parsed instruction callback
// Describes the format of a typed literal number.
struct NumberType {
spv_number_kind_t type;
uint32_t bit_width;
};
// The state used to parse a single SPIR-V binary module.
struct State {
State(const uint32_t* words_arg, size_t num_words_arg,
spv_diagnostic* diagnostic_arg)
: words(words_arg),
num_words(num_words_arg),
diagnostic(diagnostic_arg),
word_index(0),
instruction_count(0),
endian(),
requires_endian_conversion(false) {
// Temporary storage for parser state within a single instruction.
// Most instructions require fewer than 25 words or operands.
operands.reserve(25);
endian_converted_words.reserve(25);
expected_operands.reserve(25);
}
State() : State(0, 0, nullptr) {}
const uint32_t* words; // Words in the binary SPIR-V module.
size_t num_words; // Number of words in the module.
spv_diagnostic* diagnostic; // Where diagnostics go.
size_t word_index; // The current position in words.
size_t instruction_count; // The count of processed instructions
spv_endianness_t endian; // The endianness of the binary.
// Is the SPIR-V binary in a different endianness from the host native
// endianness?
bool requires_endian_conversion;
// Maps a result ID to its type ID. By convention:
// - a result ID that is a type definition maps to itself.
// - a result ID without a type maps to 0. (E.g. for OpLabel)
std::unordered_map<uint32_t, uint32_t> id_to_type_id;
// Maps a type ID to its number type description.
std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info;
// Maps an ExtInstImport id to the extended instruction type.
std::unordered_map<uint32_t, spv_ext_inst_type_t>
import_id_to_ext_inst_type;
// Used by parseOperand
std::vector<spv_parsed_operand_t> operands;
std::vector<uint32_t> endian_converted_words;
spv_operand_pattern_t expected_operands;
} _;
};
spv_result_t Parser::parse(const uint32_t* words, size_t num_words,
spv_diagnostic* diagnostic_arg) {
_ = State(words, num_words, diagnostic_arg);
const spv_result_t result = parseModule();
// Clear the module state. The tables might be big.
_ = State();
return result;
}
spv_result_t Parser::parseModule() {
if (!_.words) return diagnostic() << "Missing module.";
if (_.num_words < SPV_INDEX_INSTRUCTION)
return diagnostic() << "Module has incomplete header: only " << _.num_words
<< " words instead of " << SPV_INDEX_INSTRUCTION;
// Check the magic number and detect the module's endianness.
spv_const_binary_t binary{_.words, _.num_words};
if (spvBinaryEndianness(&binary, &_.endian)) {
return diagnostic() << "Invalid SPIR-V magic number '" << std::hex
<< _.words[0] << "'.";
}
_.requires_endian_conversion = !spvIsHostEndian(_.endian);
// Process the header.
spv_header_t header;
if (spvBinaryHeaderGet(&binary, _.endian, &header)) {
// It turns out there is no way to trigger this error since the only
// failure cases are already handled above, with better messages.
return diagnostic(SPV_ERROR_INTERNAL)
<< "Internal error: unhandled header parse failure";
}
if (parsed_header_fn_) {
if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic,
header.version, header.generator,
header.bound, header.schema)) {
return error;
}
}
// Process the instructions.
_.word_index = SPV_INDEX_INSTRUCTION;
while (_.word_index < _.num_words)
if (auto error = parseInstruction()) return error;
// Running off the end should already have been reported earlier.
assert(_.word_index == _.num_words);
return SPV_SUCCESS;
}
spv_result_t Parser::parseInstruction() {
_.instruction_count++;
// The zero values for all members except for opcode are the
// correct initial values.
spv_parsed_instruction_t inst = {};
const uint32_t first_word = peek();
// If the module's endianness is different from the host native endianness,
// then converted_words contains the endian-translated words in the
// instruction.
_.endian_converted_words.clear();
_.endian_converted_words.push_back(first_word);
// After a successful parse of the instruction, the inst.operands member
// will point to this vector's storage.
_.operands.clear();
assert(_.word_index < _.num_words);
// Decompose and check the first word.
uint16_t inst_word_count = 0;
spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode);
if (inst_word_count < 1) {
return diagnostic() << "Invalid instruction word count: "
<< inst_word_count;
}
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(static_cast<spv::Op>(inst.opcode), &opcode_desc))
return diagnostic() << "Invalid opcode: " << inst.opcode;
// Advance past the opcode word. But remember the of the start
// of the instruction.
const size_t inst_offset = _.word_index;
_.word_index++;
// Maintains the ordered list of expected operand types.
// For many instructions we only need the {numTypes, operandTypes}
// entries in opcode_desc. However, sometimes we need to modify
// the list as we parse the operands. This occurs when an operand
// has its own logical operands (such as the LocalSize operand for
// ExecutionMode), or for extended instructions that may have their
// own operands depending on the selected extended instruction.
_.expected_operands.clear();
for (auto i = 0; i < opcode_desc->numTypes; i++)
_.expected_operands.push_back(
opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]);
while (_.word_index < inst_offset + inst_word_count) {
const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset);
if (_.expected_operands.empty()) {
return diagnostic() << "Invalid instruction Op" << opcode_desc->name
<< " starting at word " << inst_offset
<< ": expected no more operands after "
<< inst_word_index
<< " words, but stated word count is "
<< inst_word_count << ".";
}
spv_operand_type_t type =
spvTakeFirstMatchableOperand(&_.expected_operands);
if (auto error =
parseOperand(inst_offset, &inst, type, &_.endian_converted_words,
&_.operands, &_.expected_operands)) {
return error;
}
}
if (!_.expected_operands.empty() &&
!spvOperandIsOptional(_.expected_operands.back())) {
return diagnostic() << "End of input reached while decoding Op"
<< opcode_desc->name << " starting at word "
<< inst_offset << ": expected more operands after "
<< inst_word_count << " words.";
}
if ((inst_offset + inst_word_count) != _.word_index) {
return diagnostic() << "Invalid word count: Op" << opcode_desc->name
<< " starting at word " << inst_offset
<< " says it has " << inst_word_count
<< " words, but found " << _.word_index - inst_offset
<< " words instead.";
}
// Check the computed length of the endian-converted words vector against
// the declared number of words in the instruction. If endian conversion
// is required, then they should match. If no endian conversion was
// performed, then the vector only contains the initial opcode/word-count
// word.
assert(!_.requires_endian_conversion ||
(inst_word_count == _.endian_converted_words.size()));
assert(_.requires_endian_conversion ||
(_.endian_converted_words.size() == 1));
recordNumberType(inst_offset, &inst);
if (_.requires_endian_conversion) {
// We must wait until here to set this pointer, because the vector might
// have been be resized while we accumulated its elements.
inst.words = _.endian_converted_words.data();
} else {
// If no conversion is required, then just point to the underlying binary.
// This saves time and space.
inst.words = _.words + inst_offset;
}
inst.num_words = inst_word_count;
// We must wait until here to set this pointer, because the vector might
// have been be resized while we accumulated its elements.
inst.operands = _.operands.data();
inst.num_operands = uint16_t(_.operands.size());
// Issue the callback. The callee should know that all the storage in inst
// is transient, and will disappear immediately afterward.
if (parsed_instruction_fn_) {
if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error;
}
return SPV_SUCCESS;
}
spv_result_t Parser::parseOperand(size_t inst_offset,
spv_parsed_instruction_t* inst,
const spv_operand_type_t type,
std::vector<uint32_t>* words,
std::vector<spv_parsed_operand_t>* operands,
spv_operand_pattern_t* expected_operands) {
const spv::Op opcode = static_cast<spv::Op>(inst->opcode);
// We'll fill in this result as we go along.
spv_parsed_operand_t parsed_operand;
parsed_operand.offset = uint16_t(_.word_index - inst_offset);
// Most operands occupy one word. This might be be adjusted later.
parsed_operand.num_words = 1;
// The type argument is the one used by the grammar to parse the instruction.
// But it can exposes internal parser details such as whether an operand is
// optional or actually represents a variable-length sequence of operands.
// The resulting type should be adjusted to avoid those internal details.
// In most cases, the resulting operand type is the same as the grammar type.
parsed_operand.type = type;
// Assume non-numeric values. This will be updated for literal numbers.
parsed_operand.number_kind = SPV_NUMBER_NONE;
parsed_operand.number_bit_width = 0;
if (_.word_index >= _.num_words)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
const uint32_t word = peek();
// Do the words in this operand have to be converted to native endianness?
// True for all but literal strings.
bool convert_operand_endianness = true;
switch (type) {
case SPV_OPERAND_TYPE_TYPE_ID:
if (!word)
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0";
inst->type_id = word;
break;
case SPV_OPERAND_TYPE_RESULT_ID:
if (!word)
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0";
inst->result_id = word;
// Save the result ID to type ID mapping.
// In the grammar, type ID always appears before result ID.
if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end())
return diagnostic(SPV_ERROR_INVALID_ID)
<< "Id " << inst->result_id << " is defined more than once";
// Record it.
// A regular value maps to its type. Some instructions (e.g. OpLabel)
// have no type Id, and will map to 0. The result Id for a
// type-generating instruction (e.g. OpTypeInt) maps to itself.
_.id_to_type_id[inst->result_id] =
spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id;
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0";
parsed_operand.type = SPV_OPERAND_TYPE_ID;
if (opcode == spv::Op::OpExtInst && parsed_operand.offset == 3) {
// The current word is the extended instruction set Id.
// Set the extended instruction set type for the current instruction.
auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word);
if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) {
return diagnostic(SPV_ERROR_INVALID_ID)
<< "OpExtInst set Id " << word
<< " does not reference an OpExtInstImport result Id";
}
inst->ext_inst_type = ext_inst_type_iter->second;
}
break;
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
// Check for trivially invalid values. The operand descriptions already
// have the word "ID" in them.
if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0";
break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
assert(spv::Op::OpExtInst == opcode);
assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE);
spv_ext_inst_desc ext_inst;
if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst) ==
SPV_SUCCESS) {
// if we know about this ext inst, push the expected operands
spvPushOperandTypes(ext_inst->operandTypes, expected_operands);
} else {
// if we don't know this extended instruction and the set isn't
// non-semantic, we cannot process further
if (!spvExtInstIsNonSemantic(inst->ext_inst_type)) {
return diagnostic()
<< "Invalid extended instruction number: " << word;
} else {
// for non-semantic instruction sets, we know the form of all such
// extended instructions contains a series of IDs as parameters
expected_operands->push_back(SPV_OPERAND_TYPE_VARIABLE_ID);
}
}
} break;
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
assert(spv::Op::OpSpecConstantOp == opcode);
if (word > static_cast<uint32_t>(spv::Op::Max) ||
grammar_.lookupSpecConstantOpcode(spv::Op(word))) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(type) << ": " << word;
}
spv_opcode_desc opcode_entry = nullptr;
if (grammar_.lookupOpcode(spv::Op(word), &opcode_entry)) {
return diagnostic(SPV_ERROR_INTERNAL)
<< "OpSpecConstant opcode table out of sync";
}
// OpSpecConstant opcodes must have a type and result. We've already
// processed them, so skip them when preparing to parse the other
// operants for the opcode.
assert(opcode_entry->hasType);
assert(opcode_entry->hasResult);
assert(opcode_entry->numTypes >= 2);
spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands);
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER:
// These are regular single-word literal integer operands.
// Post-parsing validation should check the range of the parsed value.
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER;
// It turns out they are always unsigned integers!
parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT;
parsed_operand.number_bit_width = 32;
break;
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER:
parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER;
if (opcode == spv::Op::OpSwitch) {
// The literal operands have the same type as the value
// referenced by the selector Id.
const uint32_t selector_id = peekAt(inst_offset + 1);
const auto type_id_iter = _.id_to_type_id.find(selector_id);
if (type_id_iter == _.id_to_type_id.end() ||
type_id_iter->second == 0) {
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " has no type";
}
uint32_t type_id = type_id_iter->second;
if (selector_id == type_id) {
// Recall that by convention, a result ID that is a type definition
// maps to itself.
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " is a type, not a value";
}
if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id))
return error;
if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT &&
parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) {
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " is not a scalar integer";
}
} else {
assert(opcode == spv::Op::OpConstant ||
opcode == spv::Op::OpSpecConstant);
// The literal number type is determined by the type Id for the
// constant.
assert(inst->type_id);
if (auto error =
setNumericTypeInfoForType(&parsed_operand, inst->type_id))
return error;
}
break;
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
const size_t max_words = _.num_words - _.word_index;
std::string string =
spvtools::utils::MakeString(_.words + _.word_index, max_words, false);
if (string.length() == max_words * 4)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
// Make sure we can record the word count without overflow.
//
// This error can't currently be triggered because of validity
// checks elsewhere.
const size_t string_num_words = string.length() / 4 + 1;
if (string_num_words > std::numeric_limits<uint16_t>::max()) {
return diagnostic() << "Literal string is longer than "
<< std::numeric_limits<uint16_t>::max()
<< " words: " << string_num_words << " words long";
}
parsed_operand.num_words = uint16_t(string_num_words);
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING;
if (spv::Op::OpExtInstImport == opcode) {
// Record the extended instruction type for the ID for this import.
// There is only one string literal argument to OpExtInstImport,
// so it's sufficient to guard this just on the opcode.
const spv_ext_inst_type_t ext_inst_type =
spvExtInstImportTypeGet(string.c_str());
if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) {
return diagnostic()
<< "Invalid extended instruction import '" << string << "'";
}
// We must have parsed a valid result ID. It's a condition
// of the grammar, and we only accept non-zero result Ids.
assert(inst->result_id);
_.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type;
}
} break;
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_RAY_FLAGS:
case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION:
case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE:
case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE:
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_DEBUG_OPERATION:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY:
case SPV_OPERAND_TYPE_FPDENORM_MODE:
case SPV_OPERAND_TYPE_FPOPERATION_MODE:
case SPV_OPERAND_TYPE_QUANTIZATION_MODES:
case SPV_OPERAND_TYPE_OVERFLOW_MODES:
case SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT:
case SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT: {
// A single word that is a plain enum value.
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER)
parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER;
if (type == SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT)
parsed_operand.type = SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, word, &entry)) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
<< " operand: " << word;
}
// Prepare to accept operands to this operand, if needed.
spvPushOperandTypes(entry->operandTypes, expected_operands);
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS:
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: {
// This operand is a mask.
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE)
parsed_operand.type = SPV_OPERAND_TYPE_IMAGE;
else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS)
parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS;
// Check validity of set mask bits. Also prepare for operands for those
// masks if they have any. To get operand order correct, scan from
// MSB to LSB since we can only prepend operands to a pattern.
// The only case in the grammar where you have more than one mask bit
// having an operand is for image operands. See SPIR-V 3.14 Image
// Operands.
uint32_t remaining_word = word;
for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) {
if (remaining_word & mask) {
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry)) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
<< " operand: " << word << " has invalid mask component "
<< mask;
}
remaining_word ^= mask;
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
if (word == 0) {
// An all-zeroes mask *might* also be valid.
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) {
// Prepare for its operands, if any.
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
} break;
default:
return diagnostic() << "Internal error: Unhandled operand type: " << type;
}
assert(spvOperandIsConcrete(parsed_operand.type));
operands->push_back(parsed_operand);
const size_t index_after_operand = _.word_index + parsed_operand.num_words;
// Avoid buffer overrun for the cases where the operand has more than one
// word, and where it isn't a string. (Those other cases have already been
// handled earlier.) For example, this error can occur for a multi-word
// argument to OpConstant, or a multi-word case literal operand for OpSwitch.
if (_.num_words < index_after_operand)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
if (_.requires_endian_conversion) {
// Copy instruction words. Translate to native endianness as needed.
if (convert_operand_endianness) {
const spv_endianness_t endianness = _.endian;
std::transform(_.words + _.word_index, _.words + index_after_operand,
std::back_inserter(*words),
[endianness](const uint32_t raw_word) {
return spvFixWord(raw_word, endianness);
});
} else {
words->insert(words->end(), _.words + _.word_index,
_.words + index_after_operand);
}
}
// Advance past the operand.
_.word_index = index_after_operand;
return SPV_SUCCESS;
}
spv_result_t Parser::setNumericTypeInfoForType(
spv_parsed_operand_t* parsed_operand, uint32_t type_id) {
assert(type_id != 0);
auto type_info_iter = _.type_id_to_number_type_info.find(type_id);
if (type_info_iter == _.type_id_to_number_type_info.end()) {
return diagnostic() << "Type Id " << type_id << " is not a type";
}
const NumberType& info = type_info_iter->second;
if (info.type == SPV_NUMBER_NONE) {
// This is a valid type, but for something other than a scalar number.
return diagnostic() << "Type Id " << type_id
<< " is not a scalar numeric type";
}
parsed_operand->number_kind = info.type;
parsed_operand->number_bit_width = info.bit_width;
// Round up the word count.
parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32);
return SPV_SUCCESS;
}
void Parser::recordNumberType(size_t inst_offset,
const spv_parsed_instruction_t* inst) {
const spv::Op opcode = static_cast<spv::Op>(inst->opcode);
if (spvOpcodeGeneratesType(opcode)) {
NumberType info = {SPV_NUMBER_NONE, 0};
if (spv::Op::OpTypeInt == opcode) {
const bool is_signed = peekAt(inst_offset + 3) != 0;
info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT;
info.bit_width = peekAt(inst_offset + 2);
} else if (spv::Op::OpTypeFloat == opcode) {
info.type = SPV_NUMBER_FLOATING;
info.bit_width = peekAt(inst_offset + 2);
}
// The *result* Id of a type generating instruction is the type Id.
_.type_id_to_number_type_info[inst->result_id] = info;
}
}
} // anonymous namespace
spv_result_t spvBinaryParse(const spv_const_context context, void* user_data,
const uint32_t* code, const size_t num_words,
spv_parsed_header_fn_t parsed_header,
spv_parsed_instruction_fn_t parsed_instruction,
spv_diagnostic* diagnostic) {
spv_context_t hijack_context = *context;
if (diagnostic) {
*diagnostic = nullptr;
spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic);
}
Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction);
return parser.parse(code, num_words, diagnostic);
}
// TODO(dneto): This probably belongs in text.cpp since that's the only place
// that a spv_binary_t value is created.
void spvBinaryDestroy(spv_binary binary) {
if (binary) {
if (binary->code) delete[] binary->code;
delete binary;
}
}
size_t spv_strnlen_s(const char* str, size_t strsz) {
if (!str) return 0;
for (size_t i = 0; i < strsz; i++) {
if (!str[i]) return i;
}
return strsz;
}
|