1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_CFA_H_
#define SOURCE_CFA_H_
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
namespace spvtools {
// Control Flow Analysis of control flow graphs of basic block nodes |BB|.
template <class BB>
class CFA {
using bb_ptr = BB*;
using cbb_ptr = const BB*;
using bb_iter = typename std::vector<BB*>::const_iterator;
using get_blocks_func = std::function<const std::vector<BB*>*(const BB*)>;
struct block_info {
cbb_ptr block; ///< pointer to the block
bb_iter iter; ///< Iterator to the current child node being processed
};
/// Returns true if a block with @p id is found in the @p work_list vector
///
/// @param[in] work_list Set of blocks visited in the depth first
/// traversal
/// of the CFG
/// @param[in] id The ID of the block being checked
///
/// @return true if the edge work_list.back().block->id() => id is a back-edge
static bool FindInWorkList(const std::vector<block_info>& work_list,
uint32_t id);
public:
/// @brief Depth first traversal starting from the \p entry BasicBlock
///
/// This function performs a depth first traversal from the \p entry
/// BasicBlock and calls the pre/postorder functions when it needs to process
/// the node in pre order, post order.
///
/// @param[in] entry The root BasicBlock of a CFG
/// @param[in] successor_func A function which will return a pointer to the
/// successor nodes
/// @param[in] preorder A function that will be called for every block in a
/// CFG following preorder traversal semantics
/// @param[in] postorder A function that will be called for every block in a
/// CFG following postorder traversal semantics
/// @param[in] terminal A function that will be called to determine if the
/// search should stop at the given node.
/// NOTE: The @p successor_func and predecessor_func each return a pointer to
/// a collection such that iterators to that collection remain valid for the
/// lifetime of the algorithm.
static void DepthFirstTraversal(const BB* entry,
get_blocks_func successor_func,
std::function<void(cbb_ptr)> preorder,
std::function<void(cbb_ptr)> postorder,
std::function<bool(cbb_ptr)> terminal);
/// @brief Depth first traversal starting from the \p entry BasicBlock
///
/// This function performs a depth first traversal from the \p entry
/// BasicBlock and calls the pre/postorder functions when it needs to process
/// the node in pre order, post order. It also calls the backedge function
/// when a back edge is encountered. The backedge function can be empty. The
/// runtime of the algorithm is improved if backedge is empty.
///
/// @param[in] entry The root BasicBlock of a CFG
/// @param[in] successor_func A function which will return a pointer to the
/// successor nodes
/// @param[in] preorder A function that will be called for every block in a
/// CFG following preorder traversal semantics
/// @param[in] postorder A function that will be called for every block in a
/// CFG following postorder traversal semantics
/// @param[in] backedge A function that will be called when a backedge is
/// encountered during a traversal.
/// @param[in] terminal A function that will be called to determine if the
/// search should stop at the given node.
/// NOTE: The @p successor_func and predecessor_func each return a pointer to
/// a collection such that iterators to that collection remain valid for the
/// lifetime of the algorithm.
static void DepthFirstTraversal(
const BB* entry, get_blocks_func successor_func,
std::function<void(cbb_ptr)> preorder,
std::function<void(cbb_ptr)> postorder,
std::function<void(cbb_ptr, cbb_ptr)> backedge,
std::function<bool(cbb_ptr)> terminal);
/// @brief Calculates dominator edges for a set of blocks
///
/// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy
/// "A Simple, Fast Dominance Algorithm", 2001.
///
/// The algorithm assumes there is a unique root node (a node without
/// predecessors), and it is therefore at the end of the postorder vector.
///
/// This function calculates the dominator edges for a set of blocks in the
/// CFG.
/// Uses the dominator algorithm by Cooper et al.
///
/// @param[in] postorder A vector of blocks in post order traversal
/// order
/// in a CFG
/// @param[in] predecessor_func Function used to get the predecessor nodes of
/// a
/// block
///
/// @return the dominator tree of the graph, as a vector of pairs of nodes.
/// The first node in the pair is a node in the graph. The second node in the
/// pair is its immediate dominator in the sense of Cooper et.al., where a
/// block
/// without predecessors (such as the root node) is its own immediate
/// dominator.
static std::vector<std::pair<BB*, BB*>> CalculateDominators(
const std::vector<cbb_ptr>& postorder, get_blocks_func predecessor_func);
// Computes a minimal set of root nodes required to traverse, in the forward
// direction, the CFG represented by the given vector of blocks, and successor
// and predecessor functions. When considering adding two nodes, each having
// predecessors, favour using the one that appears earlier on the input blocks
// list.
static std::vector<BB*> TraversalRoots(const std::vector<BB*>& blocks,
get_blocks_func succ_func,
get_blocks_func pred_func);
static void ComputeAugmentedCFG(
std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
BB* pseudo_exit_block,
std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
std::unordered_map<const BB*, std::vector<BB*>>*
augmented_predecessors_map,
get_blocks_func succ_func, get_blocks_func pred_func);
};
template <class BB>
bool CFA<BB>::FindInWorkList(const std::vector<block_info>& work_list,
uint32_t id) {
for (const auto& b : work_list) {
if (b.block->id() == id) return true;
}
return false;
}
template <class BB>
void CFA<BB>::DepthFirstTraversal(const BB* entry,
get_blocks_func successor_func,
std::function<void(cbb_ptr)> preorder,
std::function<void(cbb_ptr)> postorder,
std::function<bool(cbb_ptr)> terminal) {
DepthFirstTraversal(entry, successor_func, preorder, postorder,
/* backedge = */ {}, terminal);
}
template <class BB>
void CFA<BB>::DepthFirstTraversal(
const BB* entry, get_blocks_func successor_func,
std::function<void(cbb_ptr)> preorder,
std::function<void(cbb_ptr)> postorder,
std::function<void(cbb_ptr, cbb_ptr)> backedge,
std::function<bool(cbb_ptr)> terminal) {
assert(successor_func && "The successor function cannot be empty.");
assert(preorder && "The preorder function cannot be empty.");
assert(postorder && "The postorder function cannot be empty.");
assert(terminal && "The terminal function cannot be empty.");
std::unordered_set<uint32_t> processed;
/// NOTE: work_list is the sequence of nodes from the root node to the node
/// being processed in the traversal
std::vector<block_info> work_list;
work_list.reserve(10);
work_list.push_back({entry, std::begin(*successor_func(entry))});
preorder(entry);
processed.insert(entry->id());
while (!work_list.empty()) {
block_info& top = work_list.back();
if (terminal(top.block) || top.iter == end(*successor_func(top.block))) {
postorder(top.block);
work_list.pop_back();
} else {
BB* child = *top.iter;
top.iter++;
if (backedge && FindInWorkList(work_list, child->id())) {
backedge(top.block, child);
}
if (processed.count(child->id()) == 0) {
preorder(child);
work_list.emplace_back(
block_info{child, std::begin(*successor_func(child))});
processed.insert(child->id());
}
}
}
}
template <class BB>
std::vector<std::pair<BB*, BB*>> CFA<BB>::CalculateDominators(
const std::vector<cbb_ptr>& postorder, get_blocks_func predecessor_func) {
struct block_detail {
size_t dominator; ///< The index of blocks's dominator in post order array
size_t postorder_index; ///< The index of the block in the post order array
};
const size_t undefined_dom = postorder.size();
std::unordered_map<cbb_ptr, block_detail> idoms;
for (size_t i = 0; i < postorder.size(); i++) {
idoms[postorder[i]] = {undefined_dom, i};
}
idoms[postorder.back()].dominator = idoms[postorder.back()].postorder_index;
bool changed = true;
while (changed) {
changed = false;
for (auto b = postorder.rbegin() + 1; b != postorder.rend(); ++b) {
const std::vector<BB*>& predecessors = *predecessor_func(*b);
// Find the first processed/reachable predecessor that is reachable
// in the forward traversal.
auto res = std::find_if(std::begin(predecessors), std::end(predecessors),
[&idoms, undefined_dom](BB* pred) {
return idoms.count(pred) &&
idoms[pred].dominator != undefined_dom;
});
if (res == end(predecessors)) continue;
const BB* idom = *res;
size_t idom_idx = idoms[idom].postorder_index;
// all other predecessors
for (const auto* p : predecessors) {
if (idom == p) continue;
// Only consider nodes reachable in the forward traversal.
// Otherwise the intersection doesn't make sense and will never
// terminate.
if (!idoms.count(p)) continue;
if (idoms[p].dominator != undefined_dom) {
size_t finger1 = idoms[p].postorder_index;
size_t finger2 = idom_idx;
while (finger1 != finger2) {
while (finger1 < finger2) {
finger1 = idoms[postorder[finger1]].dominator;
}
while (finger2 < finger1) {
finger2 = idoms[postorder[finger2]].dominator;
}
}
idom_idx = finger1;
}
}
if (idoms[*b].dominator != idom_idx) {
idoms[*b].dominator = idom_idx;
changed = true;
}
}
}
std::vector<std::pair<bb_ptr, bb_ptr>> out;
for (auto idom : idoms) {
// At this point if there is no dominator for the node, just make it
// reflexive.
auto dominator = std::get<1>(idom).dominator;
if (dominator == undefined_dom) {
dominator = std::get<1>(idom).postorder_index;
}
// NOTE: performing a const cast for convenient usage with
// UpdateImmediateDominators
out.push_back({const_cast<BB*>(std::get<0>(idom)),
const_cast<BB*>(postorder[dominator])});
}
// Sort by postorder index to generate a deterministic ordering of edges.
std::sort(
out.begin(), out.end(),
[&idoms](const std::pair<bb_ptr, bb_ptr>& lhs,
const std::pair<bb_ptr, bb_ptr>& rhs) {
assert(lhs.first);
assert(lhs.second);
assert(rhs.first);
assert(rhs.second);
auto lhs_indices = std::make_pair(idoms[lhs.first].postorder_index,
idoms[lhs.second].postorder_index);
auto rhs_indices = std::make_pair(idoms[rhs.first].postorder_index,
idoms[rhs.second].postorder_index);
return lhs_indices < rhs_indices;
});
return out;
}
template <class BB>
std::vector<BB*> CFA<BB>::TraversalRoots(const std::vector<BB*>& blocks,
get_blocks_func succ_func,
get_blocks_func pred_func) {
// The set of nodes which have been visited from any of the roots so far.
std::unordered_set<const BB*> visited;
auto mark_visited = [&visited](const BB* b) { visited.insert(b); };
auto ignore_block = [](const BB*) {};
auto no_terminal_blocks = [](const BB*) { return false; };
auto traverse_from_root = [&mark_visited, &succ_func, &ignore_block,
&no_terminal_blocks](const BB* entry) {
DepthFirstTraversal(entry, succ_func, mark_visited, ignore_block,
no_terminal_blocks);
};
std::vector<BB*> result;
// First collect nodes without predecessors.
for (auto block : blocks) {
if (pred_func(block)->empty()) {
assert(visited.count(block) == 0 && "Malformed graph!");
result.push_back(block);
traverse_from_root(block);
}
}
// Now collect other stranded nodes. These must be in unreachable cycles.
for (auto block : blocks) {
if (visited.count(block) == 0) {
result.push_back(block);
traverse_from_root(block);
}
}
return result;
}
template <class BB>
void CFA<BB>::ComputeAugmentedCFG(
std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
BB* pseudo_exit_block,
std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
std::unordered_map<const BB*, std::vector<BB*>>* augmented_predecessors_map,
get_blocks_func succ_func, get_blocks_func pred_func) {
// Compute the successors of the pseudo-entry block, and
// the predecessors of the pseudo exit block.
auto sources = TraversalRoots(ordered_blocks, succ_func, pred_func);
// For the predecessor traversals, reverse the order of blocks. This
// will affect the post-dominance calculation as follows:
// - Suppose you have blocks A and B, with A appearing before B in
// the list of blocks.
// - Also, A branches only to B, and B branches only to A.
// - We want to compute A as dominating B, and B as post-dominating B.
// By using reversed blocks for predecessor traversal roots discovery,
// we'll add an edge from B to the pseudo-exit node, rather than from A.
// All this is needed to correctly process the dominance/post-dominance
// constraint when A is a loop header that points to itself as its
// own continue target, and B is the latch block for the loop.
std::vector<BB*> reversed_blocks(ordered_blocks.rbegin(),
ordered_blocks.rend());
auto sinks = TraversalRoots(reversed_blocks, pred_func, succ_func);
// Wire up the pseudo entry block.
(*augmented_successors_map)[pseudo_entry_block] = sources;
for (auto block : sources) {
auto& augmented_preds = (*augmented_predecessors_map)[block];
const auto preds = pred_func(block);
augmented_preds.reserve(1 + preds->size());
augmented_preds.push_back(pseudo_entry_block);
augmented_preds.insert(augmented_preds.end(), preds->begin(), preds->end());
}
// Wire up the pseudo exit block.
(*augmented_predecessors_map)[pseudo_exit_block] = sinks;
for (auto block : sinks) {
auto& augmented_succ = (*augmented_successors_map)[block];
const auto succ = succ_func(block);
augmented_succ.reserve(1 + succ->size());
augmented_succ.push_back(pseudo_exit_block);
augmented_succ.insert(augmented_succ.end(), succ->begin(), succ->end());
}
}
} // namespace spvtools
#endif // SOURCE_CFA_H_
|