File: fuzzer_pass.cpp

package info (click to toggle)
spirv-tools 2023.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 25,608 kB
  • sloc: cpp: 408,882; javascript: 5,890; python: 2,847; ansic: 403; sh: 385; ruby: 88; makefile: 17; lisp: 9
file content (801 lines) | stat: -rw-r--r-- 32,174 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/fuzz/fuzzer_pass.h"

#include <set>

#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/id_use_descriptor.h"
#include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/transformation_add_constant_boolean.h"
#include "source/fuzz/transformation_add_constant_composite.h"
#include "source/fuzz/transformation_add_constant_null.h"
#include "source/fuzz/transformation_add_constant_scalar.h"
#include "source/fuzz/transformation_add_global_undef.h"
#include "source/fuzz/transformation_add_global_variable.h"
#include "source/fuzz/transformation_add_local_variable.h"
#include "source/fuzz/transformation_add_loop_preheader.h"
#include "source/fuzz/transformation_add_type_boolean.h"
#include "source/fuzz/transformation_add_type_float.h"
#include "source/fuzz/transformation_add_type_function.h"
#include "source/fuzz/transformation_add_type_int.h"
#include "source/fuzz/transformation_add_type_matrix.h"
#include "source/fuzz/transformation_add_type_pointer.h"
#include "source/fuzz/transformation_add_type_struct.h"
#include "source/fuzz/transformation_add_type_vector.h"
#include "source/fuzz/transformation_split_block.h"

namespace spvtools {
namespace fuzz {

FuzzerPass::FuzzerPass(opt::IRContext* ir_context,
                       TransformationContext* transformation_context,
                       FuzzerContext* fuzzer_context,
                       protobufs::TransformationSequence* transformations,
                       bool ignore_inapplicable_transformations)
    : ir_context_(ir_context),
      transformation_context_(transformation_context),
      fuzzer_context_(fuzzer_context),
      transformations_(transformations),
      ignore_inapplicable_transformations_(
          ignore_inapplicable_transformations) {}

FuzzerPass::~FuzzerPass() = default;

std::vector<opt::Instruction*> FuzzerPass::FindAvailableInstructions(
    opt::Function* function, opt::BasicBlock* block,
    const opt::BasicBlock::iterator& inst_it,
    std::function<bool(opt::IRContext*, opt::Instruction*)>
        instruction_is_relevant) const {
  // TODO(afd) The following is (relatively) simple, but may end up being
  //  prohibitively inefficient, as it walks the whole dominator tree for
  //  every instruction that is considered.

  std::vector<opt::Instruction*> result;
  // Consider all global declarations
  for (auto& global : GetIRContext()->module()->types_values()) {
    if (instruction_is_relevant(GetIRContext(), &global)) {
      result.push_back(&global);
    }
  }

  // Consider all function parameters
  function->ForEachParam(
      [this, &instruction_is_relevant, &result](opt::Instruction* param) {
        if (instruction_is_relevant(GetIRContext(), param)) {
          result.push_back(param);
        }
      });

  // Consider all previous instructions in this block
  for (auto prev_inst_it = block->begin(); prev_inst_it != inst_it;
       ++prev_inst_it) {
    if (instruction_is_relevant(GetIRContext(), &*prev_inst_it)) {
      result.push_back(&*prev_inst_it);
    }
  }

  // Walk the dominator tree to consider all instructions from dominating
  // blocks
  auto dominator_analysis = GetIRContext()->GetDominatorAnalysis(function);
  for (auto next_dominator = dominator_analysis->ImmediateDominator(block);
       next_dominator != nullptr;
       next_dominator =
           dominator_analysis->ImmediateDominator(next_dominator)) {
    for (auto& dominating_inst : *next_dominator) {
      if (instruction_is_relevant(GetIRContext(), &dominating_inst)) {
        result.push_back(&dominating_inst);
      }
    }
  }
  return result;
}

void FuzzerPass::ForEachInstructionWithInstructionDescriptor(
    opt::Function* function,
    std::function<
        void(opt::BasicBlock* block, opt::BasicBlock::iterator inst_it,
             const protobufs::InstructionDescriptor& instruction_descriptor)>
        action) {
  // Consider only reachable blocks. We do this in a separate loop to avoid
  // recomputing the dominator analysis every time |action| changes the
  // module.
  std::vector<opt::BasicBlock*> reachable_blocks;

  for (auto& block : *function) {
    if (GetIRContext()->IsReachable(block)) {
      reachable_blocks.push_back(&block);
    }
  }

  for (auto* block : reachable_blocks) {
    // We now consider every instruction in the block, randomly deciding
    // whether to apply a transformation before it.

    // In order for transformations to insert new instructions, they need to
    // be able to identify the instruction to insert before.  We describe an
    // instruction via its opcode, 'opc', a base instruction 'base' that has a
    // result id, and the number of instructions with opcode 'opc' that we
    // should skip when searching from 'base' for the desired instruction.
    // (An instruction that has a result id is represented by its own opcode,
    // itself as 'base', and a skip-count of 0.)
    std::vector<std::tuple<uint32_t, spv::Op, uint32_t>>
        base_opcode_skip_triples;

    // The initial base instruction is the block label.
    uint32_t base = block->id();

    // Counts the number of times we have seen each opcode since we reset the
    // base instruction.
    std::map<spv::Op, uint32_t> skip_count;

    // Consider every instruction in the block.  The label is excluded: it is
    // only necessary to consider it as a base in case the first instruction
    // in the block does not have a result id.
    for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) {
      if (inst_it->HasResultId()) {
        // In the case that the instruction has a result id, we use the
        // instruction as its own base, and clear the skip counts we have
        // collected.
        base = inst_it->result_id();
        skip_count.clear();
      }
      const spv::Op opcode = inst_it->opcode();

      // Invoke the provided function, which might apply a transformation.
      action(block, inst_it,
             MakeInstructionDescriptor(
                 base, opcode,
                 skip_count.count(opcode) ? skip_count.at(opcode) : 0));

      if (!inst_it->HasResultId()) {
        skip_count[opcode] =
            skip_count.count(opcode) ? skip_count.at(opcode) + 1 : 1;
      }
    }
  }
}

void FuzzerPass::ForEachInstructionWithInstructionDescriptor(
    std::function<
        void(opt::Function* function, opt::BasicBlock* block,
             opt::BasicBlock::iterator inst_it,
             const protobufs::InstructionDescriptor& instruction_descriptor)>
        action) {
  // Consider every block in every function.
  for (auto& function : *GetIRContext()->module()) {
    ForEachInstructionWithInstructionDescriptor(
        &function,
        [&action, &function](
            opt::BasicBlock* block, opt::BasicBlock::iterator inst_it,
            const protobufs::InstructionDescriptor& instruction_descriptor) {
          action(&function, block, inst_it, instruction_descriptor);
        });
  }
}

void FuzzerPass::ApplyTransformation(const Transformation& transformation) {
  if (ignore_inapplicable_transformations_) {
    // If an applicable-by-construction transformation turns out to be
    // inapplicable, this is a bug in the fuzzer. However, when deploying the
    // fuzzer at scale for finding bugs in SPIR-V processing tools it is
    // desirable to silently ignore such bugs. This code path caters for that
    // scenario.
    if (!transformation.IsApplicable(GetIRContext(),
                                     *GetTransformationContext())) {
      return;
    }
  } else {
    // This code path caters for debugging bugs in the fuzzer, where an
    // applicable-by-construction transformation turns out to be inapplicable.
    assert(transformation.IsApplicable(GetIRContext(),
                                       *GetTransformationContext()) &&
           "Transformation should be applicable by construction.");
  }
  transformation.Apply(GetIRContext(), GetTransformationContext());
  auto transformation_message = transformation.ToMessage();
  assert(transformation_message.transformation_case() !=
             protobufs::Transformation::TRANSFORMATION_NOT_SET &&
         "Bad transformation.");
  *GetTransformations()->add_transformation() =
      std::move(transformation_message);
}

bool FuzzerPass::MaybeApplyTransformation(
    const Transformation& transformation) {
  if (transformation.IsApplicable(GetIRContext(),
                                  *GetTransformationContext())) {
    transformation.Apply(GetIRContext(), GetTransformationContext());
    auto transformation_message = transformation.ToMessage();
    assert(transformation_message.transformation_case() !=
               protobufs::Transformation::TRANSFORMATION_NOT_SET &&
           "Bad transformation.");
    *GetTransformations()->add_transformation() =
        std::move(transformation_message);
    return true;
  }
  return false;
}

uint32_t FuzzerPass::FindOrCreateBoolType() {
  if (auto existing_id = fuzzerutil::MaybeGetBoolType(GetIRContext())) {
    return existing_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddTypeBoolean(result));
  return result;
}

uint32_t FuzzerPass::FindOrCreateIntegerType(uint32_t width, bool is_signed) {
  opt::analysis::Integer int_type(width, is_signed);
  auto existing_id = GetIRContext()->get_type_mgr()->GetId(&int_type);
  if (existing_id) {
    return existing_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddTypeInt(result, width, is_signed));
  return result;
}

uint32_t FuzzerPass::FindOrCreateFloatType(uint32_t width) {
  opt::analysis::Float float_type(width);
  auto existing_id = GetIRContext()->get_type_mgr()->GetId(&float_type);
  if (existing_id) {
    return existing_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddTypeFloat(result, width));
  return result;
}

uint32_t FuzzerPass::FindOrCreateFunctionType(
    uint32_t return_type_id, const std::vector<uint32_t>& argument_id) {
  // FindFunctionType has a single argument for OpTypeFunction operands
  // so we will have to copy them all in this vector
  std::vector<uint32_t> type_ids(argument_id.size() + 1);
  type_ids[0] = return_type_id;
  std::copy(argument_id.begin(), argument_id.end(), type_ids.begin() + 1);

  // Check if type exists
  auto existing_id = fuzzerutil::FindFunctionType(GetIRContext(), type_ids);
  if (existing_id) {
    return existing_id;
  }

  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(
      TransformationAddTypeFunction(result, return_type_id, argument_id));
  return result;
}

uint32_t FuzzerPass::FindOrCreateVectorType(uint32_t component_type_id,
                                            uint32_t component_count) {
  assert(component_count >= 2 && component_count <= 4 &&
         "Precondition: component count must be in range [2, 4].");
  opt::analysis::Type* component_type =
      GetIRContext()->get_type_mgr()->GetType(component_type_id);
  assert(component_type && "Precondition: the component type must exist.");
  opt::analysis::Vector vector_type(component_type, component_count);
  auto existing_id = GetIRContext()->get_type_mgr()->GetId(&vector_type);
  if (existing_id) {
    return existing_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(
      TransformationAddTypeVector(result, component_type_id, component_count));
  return result;
}

uint32_t FuzzerPass::FindOrCreateMatrixType(uint32_t column_count,
                                            uint32_t row_count) {
  assert(column_count >= 2 && column_count <= 4 &&
         "Precondition: column count must be in range [2, 4].");
  assert(row_count >= 2 && row_count <= 4 &&
         "Precondition: row count must be in range [2, 4].");
  uint32_t column_type_id =
      FindOrCreateVectorType(FindOrCreateFloatType(32), row_count);
  opt::analysis::Type* column_type =
      GetIRContext()->get_type_mgr()->GetType(column_type_id);
  opt::analysis::Matrix matrix_type(column_type, column_count);
  auto existing_id = GetIRContext()->get_type_mgr()->GetId(&matrix_type);
  if (existing_id) {
    return existing_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(
      TransformationAddTypeMatrix(result, column_type_id, column_count));
  return result;
}

uint32_t FuzzerPass::FindOrCreateStructType(
    const std::vector<uint32_t>& component_type_ids) {
  if (auto existing_id =
          fuzzerutil::MaybeGetStructType(GetIRContext(), component_type_ids)) {
    return existing_id;
  }
  auto new_id = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddTypeStruct(new_id, component_type_ids));
  return new_id;
}

uint32_t FuzzerPass::FindOrCreatePointerType(uint32_t base_type_id,
                                             spv::StorageClass storage_class) {
  // We do not use the type manager here, due to problems related to isomorphic
  // but distinct structs not being regarded as different.
  auto existing_id = fuzzerutil::MaybeGetPointerType(
      GetIRContext(), base_type_id, storage_class);
  if (existing_id) {
    return existing_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(
      TransformationAddTypePointer(result, storage_class, base_type_id));
  return result;
}

uint32_t FuzzerPass::FindOrCreatePointerToIntegerType(
    uint32_t width, bool is_signed, spv::StorageClass storage_class) {
  return FindOrCreatePointerType(FindOrCreateIntegerType(width, is_signed),
                                 storage_class);
}

uint32_t FuzzerPass::FindOrCreateIntegerConstant(
    const std::vector<uint32_t>& words, uint32_t width, bool is_signed,
    bool is_irrelevant) {
  auto int_type_id = FindOrCreateIntegerType(width, is_signed);
  if (auto constant_id = fuzzerutil::MaybeGetScalarConstant(
          GetIRContext(), *GetTransformationContext(), words, int_type_id,
          is_irrelevant)) {
    return constant_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddConstantScalar(result, int_type_id,
                                                      words, is_irrelevant));
  return result;
}

uint32_t FuzzerPass::FindOrCreateFloatConstant(
    const std::vector<uint32_t>& words, uint32_t width, bool is_irrelevant) {
  auto float_type_id = FindOrCreateFloatType(width);
  if (auto constant_id = fuzzerutil::MaybeGetScalarConstant(
          GetIRContext(), *GetTransformationContext(), words, float_type_id,
          is_irrelevant)) {
    return constant_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddConstantScalar(result, float_type_id,
                                                      words, is_irrelevant));
  return result;
}

uint32_t FuzzerPass::FindOrCreateBoolConstant(bool value, bool is_irrelevant) {
  auto bool_type_id = FindOrCreateBoolType();
  if (auto constant_id = fuzzerutil::MaybeGetScalarConstant(
          GetIRContext(), *GetTransformationContext(), {value ? 1u : 0u},
          bool_type_id, is_irrelevant)) {
    return constant_id;
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(
      TransformationAddConstantBoolean(result, value, is_irrelevant));
  return result;
}

uint32_t FuzzerPass::FindOrCreateConstant(const std::vector<uint32_t>& words,
                                          uint32_t type_id,
                                          bool is_irrelevant) {
  assert(type_id && "Constant's type id can't be 0.");

  const auto* type = GetIRContext()->get_type_mgr()->GetType(type_id);
  assert(type && "Type does not exist.");

  if (type->AsBool()) {
    assert(words.size() == 1);
    return FindOrCreateBoolConstant(words[0], is_irrelevant);
  } else if (const auto* integer = type->AsInteger()) {
    return FindOrCreateIntegerConstant(words, integer->width(),
                                       integer->IsSigned(), is_irrelevant);
  } else if (const auto* floating = type->AsFloat()) {
    return FindOrCreateFloatConstant(words, floating->width(), is_irrelevant);
  }

  // This assertion will fail in debug build but not in release build
  // so we return 0 to make compiler happy.
  assert(false && "Constant type is not supported");
  return 0;
}

uint32_t FuzzerPass::FindOrCreateCompositeConstant(
    const std::vector<uint32_t>& component_ids, uint32_t type_id,
    bool is_irrelevant) {
  if (auto existing_constant = fuzzerutil::MaybeGetCompositeConstant(
          GetIRContext(), *GetTransformationContext(), component_ids, type_id,
          is_irrelevant)) {
    return existing_constant;
  }
  uint32_t result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddConstantComposite(
      result, type_id, component_ids, is_irrelevant));
  return result;
}

uint32_t FuzzerPass::FindOrCreateGlobalUndef(uint32_t type_id) {
  for (auto& inst : GetIRContext()->types_values()) {
    if (inst.opcode() == spv::Op::OpUndef && inst.type_id() == type_id) {
      return inst.result_id();
    }
  }
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddGlobalUndef(result, type_id));
  return result;
}

uint32_t FuzzerPass::FindOrCreateNullConstant(uint32_t type_id) {
  // Find existing declaration
  opt::analysis::NullConstant null_constant(
      GetIRContext()->get_type_mgr()->GetType(type_id));
  auto existing_constant =
      GetIRContext()->get_constant_mgr()->FindConstant(&null_constant);

  // Return if found
  if (existing_constant) {
    return GetIRContext()
        ->get_constant_mgr()
        ->GetDefiningInstruction(existing_constant)
        ->result_id();
  }

  // Create new if not found
  auto result = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddConstantNull(result, type_id));
  return result;
}

std::pair<std::vector<uint32_t>, std::map<uint32_t, std::vector<uint32_t>>>
FuzzerPass::GetAvailableBasicTypesAndPointers(
    spv::StorageClass storage_class) const {
  // Records all of the basic types available in the module.
  std::set<uint32_t> basic_types;

  // For each basic type, records all the associated pointer types that target
  // the basic type and that have |storage_class| as their storage class.
  std::map<uint32_t, std::vector<uint32_t>> basic_type_to_pointers;

  for (auto& inst : GetIRContext()->types_values()) {
    // For each basic type that we come across, record type, and the fact that
    // we cannot yet have seen any pointers that use the basic type as its
    // pointee type.
    //
    // For pointer types with basic pointee types, associate the pointer type
    // with the basic type.
    switch (inst.opcode()) {
      case spv::Op::OpTypeBool:
      case spv::Op::OpTypeFloat:
      case spv::Op::OpTypeInt:
      case spv::Op::OpTypeMatrix:
      case spv::Op::OpTypeVector:
        // These are all basic types.
        basic_types.insert(inst.result_id());
        basic_type_to_pointers.insert({inst.result_id(), {}});
        break;
      case spv::Op::OpTypeArray:
        // An array type is basic if its base type is basic.
        if (basic_types.count(inst.GetSingleWordInOperand(0))) {
          basic_types.insert(inst.result_id());
          basic_type_to_pointers.insert({inst.result_id(), {}});
        }
        break;
      case spv::Op::OpTypeStruct: {
        // A struct type is basic if it does not have the Block/BufferBlock
        // decoration, and if all of its members are basic.
        if (!fuzzerutil::HasBlockOrBufferBlockDecoration(GetIRContext(),
                                                         inst.result_id())) {
          bool all_members_are_basic_types = true;
          for (uint32_t i = 0; i < inst.NumInOperands(); i++) {
            if (!basic_types.count(inst.GetSingleWordInOperand(i))) {
              all_members_are_basic_types = false;
              break;
            }
          }
          if (all_members_are_basic_types) {
            basic_types.insert(inst.result_id());
            basic_type_to_pointers.insert({inst.result_id(), {}});
          }
        }
        break;
      }
      case spv::Op::OpTypePointer: {
        // We are interested in the pointer if its pointee type is basic and it
        // has the right storage class.
        auto pointee_type = inst.GetSingleWordInOperand(1);
        if (spv::StorageClass(inst.GetSingleWordInOperand(0)) ==
                storage_class &&
            basic_types.count(pointee_type)) {
          // The pointer has the desired storage class, and its pointee type is
          // a basic type, so we are interested in it.  Associate it with its
          // basic type.
          basic_type_to_pointers.at(pointee_type).push_back(inst.result_id());
        }
        break;
      }
      default:
        break;
    }
  }
  return {{basic_types.begin(), basic_types.end()}, basic_type_to_pointers};
}

uint32_t FuzzerPass::FindOrCreateZeroConstant(
    uint32_t scalar_or_composite_type_id, bool is_irrelevant) {
  auto type_instruction =
      GetIRContext()->get_def_use_mgr()->GetDef(scalar_or_composite_type_id);
  assert(type_instruction && "The type instruction must exist.");
  switch (type_instruction->opcode()) {
    case spv::Op::OpTypeBool:
      return FindOrCreateBoolConstant(false, is_irrelevant);
    case spv::Op::OpTypeFloat: {
      auto width = type_instruction->GetSingleWordInOperand(0);
      auto num_words = (width + 32 - 1) / 32;
      return FindOrCreateFloatConstant(std::vector<uint32_t>(num_words, 0),
                                       width, is_irrelevant);
    }
    case spv::Op::OpTypeInt: {
      auto width = type_instruction->GetSingleWordInOperand(0);
      auto num_words = (width + 32 - 1) / 32;
      return FindOrCreateIntegerConstant(
          std::vector<uint32_t>(num_words, 0), width,
          type_instruction->GetSingleWordInOperand(1), is_irrelevant);
    }
    case spv::Op::OpTypeArray: {
      auto component_type_id = type_instruction->GetSingleWordInOperand(0);
      auto num_components =
          fuzzerutil::GetArraySize(*type_instruction, GetIRContext());
      return FindOrCreateCompositeConstant(
          std::vector<uint32_t>(
              num_components,
              FindOrCreateZeroConstant(component_type_id, is_irrelevant)),
          scalar_or_composite_type_id, is_irrelevant);
    }
    case spv::Op::OpTypeMatrix:
    case spv::Op::OpTypeVector: {
      auto component_type_id = type_instruction->GetSingleWordInOperand(0);
      auto num_components = type_instruction->GetSingleWordInOperand(1);
      return FindOrCreateCompositeConstant(
          std::vector<uint32_t>(
              num_components,
              FindOrCreateZeroConstant(component_type_id, is_irrelevant)),
          scalar_or_composite_type_id, is_irrelevant);
    }
    case spv::Op::OpTypeStruct: {
      assert(!fuzzerutil::HasBlockOrBufferBlockDecoration(
                 GetIRContext(), scalar_or_composite_type_id) &&
             "We do not construct constants of struct types decorated with "
             "Block or BufferBlock.");
      std::vector<uint32_t> field_zero_ids;
      for (uint32_t index = 0; index < type_instruction->NumInOperands();
           index++) {
        field_zero_ids.push_back(FindOrCreateZeroConstant(
            type_instruction->GetSingleWordInOperand(index), is_irrelevant));
      }
      return FindOrCreateCompositeConstant(
          field_zero_ids, scalar_or_composite_type_id, is_irrelevant);
    }
    default:
      assert(false && "Unknown type.");
      return 0;
  }
}

void FuzzerPass::MaybeAddUseToReplace(
    opt::Instruction* use_inst, uint32_t use_index, uint32_t replacement_id,
    std::vector<std::pair<protobufs::IdUseDescriptor, uint32_t>>*
        uses_to_replace) {
  // Only consider this use if it is in a block
  if (!GetIRContext()->get_instr_block(use_inst)) {
    return;
  }

  // Get the index of the operand restricted to input operands.
  uint32_t in_operand_index =
      fuzzerutil::InOperandIndexFromOperandIndex(*use_inst, use_index);
  auto id_use_descriptor =
      MakeIdUseDescriptorFromUse(GetIRContext(), use_inst, in_operand_index);
  uses_to_replace->emplace_back(
      std::make_pair(id_use_descriptor, replacement_id));
}

opt::BasicBlock* FuzzerPass::GetOrCreateSimpleLoopPreheader(
    uint32_t header_id) {
  auto header_block = fuzzerutil::MaybeFindBlock(GetIRContext(), header_id);

  assert(header_block && header_block->IsLoopHeader() &&
         "|header_id| should be the label id of a loop header");

  auto predecessors = GetIRContext()->cfg()->preds(header_id);

  assert(predecessors.size() >= 2 &&
         "The block |header_id| should be reachable.");

  auto function = header_block->GetParent();

  if (predecessors.size() == 2) {
    // The header has a single out-of-loop predecessor, which could be a
    // preheader.

    opt::BasicBlock* maybe_preheader;

    if (GetIRContext()->GetDominatorAnalysis(function)->Dominates(
            header_id, predecessors[0])) {
      // The first predecessor is the back-edge block, because the header
      // dominates it, so the second one is out of the loop.
      maybe_preheader = &*function->FindBlock(predecessors[1]);
    } else {
      // The first predecessor is out of the loop.
      maybe_preheader = &*function->FindBlock(predecessors[0]);
    }

    // |maybe_preheader| is a preheader if it branches unconditionally to
    // the header. We also require it not to be a loop header.
    if (maybe_preheader->terminator()->opcode() == spv::Op::OpBranch &&
        !maybe_preheader->IsLoopHeader()) {
      return maybe_preheader;
    }
  }

  // We need to add a preheader.

  // Get a fresh id for the preheader.
  uint32_t preheader_id = GetFuzzerContext()->GetFreshId();

  // Get a fresh id for each OpPhi instruction, if there is more than one
  // out-of-loop predecessor.
  std::vector<uint32_t> phi_ids;
  if (predecessors.size() > 2) {
    header_block->ForEachPhiInst(
        [this, &phi_ids](opt::Instruction* /* unused */) {
          phi_ids.push_back(GetFuzzerContext()->GetFreshId());
        });
  }

  // Add the preheader.
  ApplyTransformation(
      TransformationAddLoopPreheader(header_id, preheader_id, phi_ids));

  // Make the newly-created preheader the new entry block.
  return &*function->FindBlock(preheader_id);
}

opt::BasicBlock* FuzzerPass::SplitBlockAfterOpPhiOrOpVariable(
    uint32_t block_id) {
  auto block = fuzzerutil::MaybeFindBlock(GetIRContext(), block_id);
  assert(block && "|block_id| must be a block label");
  assert(!block->IsLoopHeader() && "|block_id| cannot be a loop header");

  // Find the first non-OpPhi and non-OpVariable instruction.
  auto non_phi_or_var_inst = &*block->begin();
  while (non_phi_or_var_inst->opcode() == spv::Op::OpPhi ||
         non_phi_or_var_inst->opcode() == spv::Op::OpVariable) {
    non_phi_or_var_inst = non_phi_or_var_inst->NextNode();
  }

  // Split the block.
  uint32_t new_block_id = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationSplitBlock(
      MakeInstructionDescriptor(GetIRContext(), non_phi_or_var_inst),
      new_block_id));

  // We need to return the newly-created block.
  return &*block->GetParent()->FindBlock(new_block_id);
}

uint32_t FuzzerPass::FindOrCreateLocalVariable(
    uint32_t pointer_type_id, uint32_t function_id,
    bool pointee_value_is_irrelevant) {
  auto pointer_type = GetIRContext()->get_type_mgr()->GetType(pointer_type_id);
  // No unused variables in release mode.
  (void)pointer_type;
  assert(pointer_type && pointer_type->AsPointer() &&
         pointer_type->AsPointer()->storage_class() ==
             spv::StorageClass::Function &&
         "The pointer_type_id must refer to a defined pointer type with "
         "storage class Function");
  auto function = fuzzerutil::FindFunction(GetIRContext(), function_id);
  assert(function && "The function must be defined.");

  // First we try to find a suitable existing variable.
  // All of the local variable declarations are located in the first block.
  for (auto& instruction : *function->begin()) {
    if (instruction.opcode() != spv::Op::OpVariable) {
      continue;
    }
    // The existing OpVariable must have type |pointer_type_id|.
    if (instruction.type_id() != pointer_type_id) {
      continue;
    }
    // Check if the found variable is marked with PointeeValueIsIrrelevant
    // according to |pointee_value_is_irrelevant|.
    if (GetTransformationContext()->GetFactManager()->PointeeValueIsIrrelevant(
            instruction.result_id()) != pointee_value_is_irrelevant) {
      continue;
    }
    return instruction.result_id();
  }

  // No such variable was found. Apply a transformation to get one.
  uint32_t pointee_type_id = fuzzerutil::GetPointeeTypeIdFromPointerType(
      GetIRContext(), pointer_type_id);
  uint32_t result_id = GetFuzzerContext()->GetFreshId();
  ApplyTransformation(TransformationAddLocalVariable(
      result_id, pointer_type_id, function_id,
      FindOrCreateZeroConstant(pointee_type_id, pointee_value_is_irrelevant),
      pointee_value_is_irrelevant));
  return result_id;
}

uint32_t FuzzerPass::FindOrCreateGlobalVariable(
    uint32_t pointer_type_id, bool pointee_value_is_irrelevant) {
  auto pointer_type = GetIRContext()->get_type_mgr()->GetType(pointer_type_id);
  // No unused variables in release mode.
  (void)pointer_type;
  assert(
      pointer_type && pointer_type->AsPointer() &&
      (pointer_type->AsPointer()->storage_class() ==
           spv::StorageClass::Private ||
       pointer_type->AsPointer()->storage_class() ==
           spv::StorageClass::Workgroup) &&
      "The pointer_type_id must refer to a defined pointer type with storage "
      "class Private or Workgroup");

  // First we try to find a suitable existing variable.
  for (auto& instruction : GetIRContext()->module()->types_values()) {
    if (instruction.opcode() != spv::Op::OpVariable) {
      continue;
    }
    // The existing OpVariable must have type |pointer_type_id|.
    if (instruction.type_id() != pointer_type_id) {
      continue;
    }
    // Check if the found variable is marked with PointeeValueIsIrrelevant
    // according to |pointee_value_is_irrelevant|.
    if (GetTransformationContext()->GetFactManager()->PointeeValueIsIrrelevant(
            instruction.result_id()) != pointee_value_is_irrelevant) {
      continue;
    }
    return instruction.result_id();
  }

  // No such variable was found. Apply a transformation to get one.
  uint32_t pointee_type_id = fuzzerutil::GetPointeeTypeIdFromPointerType(
      GetIRContext(), pointer_type_id);
  auto storage_class = fuzzerutil::GetStorageClassFromPointerType(
      GetIRContext(), pointer_type_id);
  uint32_t result_id = GetFuzzerContext()->GetFreshId();

  // A variable with storage class Workgroup shouldn't have an initializer.
  if (storage_class == spv::StorageClass::Workgroup) {
    ApplyTransformation(TransformationAddGlobalVariable(
        result_id, pointer_type_id, spv::StorageClass::Workgroup, 0,
        pointee_value_is_irrelevant));
  } else {
    ApplyTransformation(TransformationAddGlobalVariable(
        result_id, pointer_type_id, spv::StorageClass::Private,
        FindOrCreateZeroConstant(pointee_type_id, pointee_value_is_irrelevant),
        pointee_value_is_irrelevant));
  }
  return result_id;
}

}  // namespace fuzz
}  // namespace spvtools