1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/shrinker.h"
#include <sstream>
#include "source/fuzz/added_function_reducer.h"
#include "source/fuzz/pseudo_random_generator.h"
#include "source/fuzz/replayer.h"
#include "source/opt/build_module.h"
#include "source/opt/ir_context.h"
#include "source/spirv_fuzzer_options.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace fuzz {
namespace {
// A helper to get the size of a protobuf transformation sequence in a less
// verbose manner.
uint32_t NumRemainingTransformations(
const protobufs::TransformationSequence& transformation_sequence) {
return static_cast<uint32_t>(transformation_sequence.transformation_size());
}
// A helper to return a transformation sequence identical to |transformations|,
// except that a chunk of size |chunk_size| starting from |chunk_index| x
// |chunk_size| is removed (or as many transformations as available if the whole
// chunk is not).
protobufs::TransformationSequence RemoveChunk(
const protobufs::TransformationSequence& transformations,
uint32_t chunk_index, uint32_t chunk_size) {
uint32_t lower = chunk_index * chunk_size;
uint32_t upper = std::min((chunk_index + 1) * chunk_size,
NumRemainingTransformations(transformations));
assert(lower < upper);
assert(upper <= NumRemainingTransformations(transformations));
protobufs::TransformationSequence result;
for (uint32_t j = 0; j < NumRemainingTransformations(transformations); j++) {
if (j >= lower && j < upper) {
continue;
}
protobufs::Transformation transformation =
transformations.transformation()[j];
*result.mutable_transformation()->Add() = transformation;
}
return result;
}
} // namespace
Shrinker::Shrinker(
spv_target_env target_env, MessageConsumer consumer,
const std::vector<uint32_t>& binary_in,
const protobufs::FactSequence& initial_facts,
const protobufs::TransformationSequence& transformation_sequence_in,
const InterestingnessFunction& interestingness_function,
uint32_t step_limit, bool validate_during_replay,
spv_validator_options validator_options)
: target_env_(target_env),
consumer_(std::move(consumer)),
binary_in_(binary_in),
initial_facts_(initial_facts),
transformation_sequence_in_(transformation_sequence_in),
interestingness_function_(interestingness_function),
step_limit_(step_limit),
validate_during_replay_(validate_during_replay),
validator_options_(validator_options) {}
Shrinker::~Shrinker() = default;
Shrinker::ShrinkerResult Shrinker::Run() {
// Check compatibility between the library version being linked with and the
// header files being used.
GOOGLE_PROTOBUF_VERIFY_VERSION;
SpirvTools tools(target_env_);
if (!tools.IsValid()) {
consumer_(SPV_MSG_ERROR, nullptr, {},
"Failed to create SPIRV-Tools interface; stopping.");
return {Shrinker::ShrinkerResultStatus::kFailedToCreateSpirvToolsInterface,
std::vector<uint32_t>(), protobufs::TransformationSequence()};
}
// Initial binary should be valid.
if (!tools.Validate(&binary_in_[0], binary_in_.size(), validator_options_)) {
consumer_(SPV_MSG_INFO, nullptr, {},
"Initial binary is invalid; stopping.");
return {Shrinker::ShrinkerResultStatus::kInitialBinaryInvalid,
std::vector<uint32_t>(), protobufs::TransformationSequence()};
}
// Run a replay of the initial transformation sequence to check that it
// succeeds.
auto initial_replay_result =
Replayer(target_env_, consumer_, binary_in_, initial_facts_,
transformation_sequence_in_,
static_cast<uint32_t>(
transformation_sequence_in_.transformation_size()),
validate_during_replay_, validator_options_)
.Run();
if (initial_replay_result.status !=
Replayer::ReplayerResultStatus::kComplete) {
return {ShrinkerResultStatus::kReplayFailed, std::vector<uint32_t>(),
protobufs::TransformationSequence()};
}
// Get the binary that results from running these transformations, and the
// subsequence of the initial transformations that actually apply (in
// principle this could be a strict subsequence).
std::vector<uint32_t> current_best_binary;
initial_replay_result.transformed_module->module()->ToBinary(
¤t_best_binary, false);
protobufs::TransformationSequence current_best_transformations =
std::move(initial_replay_result.applied_transformations);
// Check that the binary produced by applying the initial transformations is
// indeed interesting.
if (!interestingness_function_(current_best_binary, 0)) {
consumer_(SPV_MSG_INFO, nullptr, {},
"Initial binary is not interesting; stopping.");
return {ShrinkerResultStatus::kInitialBinaryNotInteresting,
std::vector<uint32_t>(), protobufs::TransformationSequence()};
}
uint32_t attempt = 0; // Keeps track of the number of shrink attempts that
// have been tried, whether successful or not.
uint32_t chunk_size =
std::max(1u, NumRemainingTransformations(current_best_transformations) /
2); // The number of contiguous transformations that the
// shrinker will try to remove in one go; starts
// high and decreases during the shrinking process.
// Keep shrinking until we:
// - reach the step limit,
// - run out of transformations to remove, or
// - cannot make the chunk size any smaller.
while (attempt < step_limit_ &&
!current_best_transformations.transformation().empty() &&
chunk_size > 0) {
bool progress_this_round =
false; // Used to decide whether to make the chunk size with which we
// remove transformations smaller. If we managed to remove at
// least one chunk of transformations at a particular chunk
// size, we set this flag so that we do not yet decrease the
// chunk size.
assert(chunk_size <=
NumRemainingTransformations(current_best_transformations) &&
"Chunk size should never exceed the number of transformations that "
"remain.");
// The number of chunks is the ceiling of (#remaining_transformations /
// chunk_size).
const uint32_t num_chunks =
(NumRemainingTransformations(current_best_transformations) +
chunk_size - 1) /
chunk_size;
assert(num_chunks >= 1 && "There should be at least one chunk.");
assert(num_chunks * chunk_size >=
NumRemainingTransformations(current_best_transformations) &&
"All transformations should be in some chunk.");
// We go through the transformations in reverse, in chunks of size
// |chunk_size|, using |chunk_index| to track which chunk to try removing
// next. The loop exits early if we reach the shrinking step limit.
for (int chunk_index = num_chunks - 1;
attempt < step_limit_ && chunk_index >= 0; chunk_index--) {
// Remove a chunk of transformations according to the current index and
// chunk size.
auto transformations_with_chunk_removed =
RemoveChunk(current_best_transformations,
static_cast<uint32_t>(chunk_index), chunk_size);
// Replay the smaller sequence of transformations to get a next binary and
// transformation sequence. Note that the transformations arising from
// replay might be even smaller than the transformations with the chunk
// removed, because removing those transformations might make further
// transformations inapplicable.
auto replay_result =
Replayer(
target_env_, consumer_, binary_in_, initial_facts_,
transformations_with_chunk_removed,
static_cast<uint32_t>(
transformations_with_chunk_removed.transformation_size()),
validate_during_replay_, validator_options_)
.Run();
if (replay_result.status != Replayer::ReplayerResultStatus::kComplete) {
// Replay should not fail; if it does, we need to abort shrinking.
return {ShrinkerResultStatus::kReplayFailed, std::vector<uint32_t>(),
protobufs::TransformationSequence()};
}
assert(
NumRemainingTransformations(replay_result.applied_transformations) >=
chunk_index * chunk_size &&
"Removing this chunk of transformations should not have an effect "
"on earlier chunks.");
std::vector<uint32_t> transformed_binary;
replay_result.transformed_module->module()->ToBinary(&transformed_binary,
false);
if (interestingness_function_(transformed_binary, attempt)) {
// If the binary arising from the smaller transformation sequence is
// interesting, this becomes our current best binary and transformation
// sequence.
current_best_binary = std::move(transformed_binary);
current_best_transformations =
std::move(replay_result.applied_transformations);
progress_this_round = true;
}
// Either way, this was a shrink attempt, so increment our count of shrink
// attempts.
attempt++;
}
if (!progress_this_round) {
// If we didn't manage to remove any chunks at this chunk size, try a
// smaller chunk size.
chunk_size /= 2;
}
// Decrease the chunk size until it becomes no larger than the number of
// remaining transformations.
while (chunk_size >
NumRemainingTransformations(current_best_transformations)) {
chunk_size /= 2;
}
}
// We now use spirv-reduce to minimise the functions associated with any
// AddFunction transformations that remain.
//
// Consider every remaining transformation.
for (uint32_t transformation_index = 0;
attempt < step_limit_ &&
transformation_index <
static_cast<uint32_t>(
current_best_transformations.transformation_size());
transformation_index++) {
// Skip all transformations apart from TransformationAddFunction.
if (!current_best_transformations.transformation(transformation_index)
.has_add_function()) {
continue;
}
// Invoke spirv-reduce on the function encoded in this AddFunction
// transformation. The details of this are rather involved, and so are
// encapsulated in a separate class.
auto added_function_reducer_result =
AddedFunctionReducer(target_env_, consumer_, binary_in_, initial_facts_,
current_best_transformations, transformation_index,
interestingness_function_, validate_during_replay_,
validator_options_, step_limit_, attempt)
.Run();
// Reducing the added function should succeed. If it doesn't, we report
// a shrinking error.
if (added_function_reducer_result.status !=
AddedFunctionReducer::AddedFunctionReducerResultStatus::kComplete) {
return {ShrinkerResultStatus::kAddedFunctionReductionFailed,
std::vector<uint32_t>(), protobufs::TransformationSequence()};
}
assert(current_best_transformations.transformation_size() ==
added_function_reducer_result.applied_transformations
.transformation_size() &&
"The number of transformations should not have changed.");
current_best_binary =
std::move(added_function_reducer_result.transformed_binary);
current_best_transformations =
std::move(added_function_reducer_result.applied_transformations);
// The added function reducer reports how many reduction attempts
// spirv-reduce took when reducing the function. We regard each of these
// as a shrinker attempt.
attempt += added_function_reducer_result.num_reduction_attempts;
}
// Indicate whether shrinking completed or was truncated due to reaching the
// step limit.
//
// Either way, the output from the shrinker is the best binary we saw, and the
// transformations that led to it.
assert(attempt <= step_limit_);
if (attempt == step_limit_) {
std::stringstream strstream;
strstream << "Shrinking did not complete; step limit " << step_limit_
<< " was reached.";
consumer_(SPV_MSG_WARNING, nullptr, {}, strstream.str().c_str());
return {Shrinker::ShrinkerResultStatus::kStepLimitReached,
std::move(current_best_binary),
std::move(current_best_transformations)};
}
return {Shrinker::ShrinkerResultStatus::kComplete,
std::move(current_best_binary),
std::move(current_best_transformations)};
}
uint32_t Shrinker::GetIdBound(const std::vector<uint32_t>& binary) const {
// Build the module from the input binary.
std::unique_ptr<opt::IRContext> ir_context =
BuildModule(target_env_, consumer_, binary.data(), binary.size());
assert(ir_context && "Error building module.");
return ir_context->module()->id_bound();
}
} // namespace fuzz
} // namespace spvtools
|