1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/transformation_add_loop_to_create_int_constant_synonym.h"
#include "source/fuzz/fuzzer_util.h"
namespace spvtools {
namespace fuzz {
namespace {
uint32_t kMaxNumOfIterations = 32;
}
TransformationAddLoopToCreateIntConstantSynonym::
TransformationAddLoopToCreateIntConstantSynonym(
protobufs::TransformationAddLoopToCreateIntConstantSynonym message)
: message_(std::move(message)) {}
TransformationAddLoopToCreateIntConstantSynonym::
TransformationAddLoopToCreateIntConstantSynonym(
uint32_t constant_id, uint32_t initial_val_id, uint32_t step_val_id,
uint32_t num_iterations_id, uint32_t block_after_loop_id,
uint32_t syn_id, uint32_t loop_id, uint32_t ctr_id, uint32_t temp_id,
uint32_t eventual_syn_id, uint32_t incremented_ctr_id, uint32_t cond_id,
uint32_t additional_block_id) {
message_.set_constant_id(constant_id);
message_.set_initial_val_id(initial_val_id);
message_.set_step_val_id(step_val_id);
message_.set_num_iterations_id(num_iterations_id);
message_.set_block_after_loop_id(block_after_loop_id);
message_.set_syn_id(syn_id);
message_.set_loop_id(loop_id);
message_.set_ctr_id(ctr_id);
message_.set_temp_id(temp_id);
message_.set_eventual_syn_id(eventual_syn_id);
message_.set_incremented_ctr_id(incremented_ctr_id);
message_.set_cond_id(cond_id);
message_.set_additional_block_id(additional_block_id);
}
bool TransformationAddLoopToCreateIntConstantSynonym::IsApplicable(
opt::IRContext* ir_context,
const TransformationContext& transformation_context) const {
// Check that |message_.constant_id|, |message_.initial_val_id| and
// |message_.step_val_id| are existing constants, and that their values are
// not irrelevant.
auto constant = ir_context->get_constant_mgr()->FindDeclaredConstant(
message_.constant_id());
auto initial_val = ir_context->get_constant_mgr()->FindDeclaredConstant(
message_.initial_val_id());
auto step_val = ir_context->get_constant_mgr()->FindDeclaredConstant(
message_.step_val_id());
if (!constant || !initial_val || !step_val) {
return false;
}
if (transformation_context.GetFactManager()->IdIsIrrelevant(
message_.constant_id()) ||
transformation_context.GetFactManager()->IdIsIrrelevant(
message_.initial_val_id()) ||
transformation_context.GetFactManager()->IdIsIrrelevant(
message_.step_val_id())) {
return false;
}
// Check that the type of |constant| is integer scalar or vector with integer
// components.
if (!constant->AsIntConstant() &&
(!constant->AsVectorConstant() ||
!constant->type()->AsVector()->element_type()->AsInteger())) {
return false;
}
// Check that the component bit width of |constant| is <= 64.
// Consider the width of the constant if it is an integer, of a single
// component if it is a vector.
uint32_t bit_width =
constant->AsIntConstant()
? constant->type()->AsInteger()->width()
: constant->type()->AsVector()->element_type()->AsInteger()->width();
if (bit_width > 64) {
return false;
}
auto constant_def =
ir_context->get_def_use_mgr()->GetDef(message_.constant_id());
auto initial_val_def =
ir_context->get_def_use_mgr()->GetDef(message_.initial_val_id());
auto step_val_def =
ir_context->get_def_use_mgr()->GetDef(message_.step_val_id());
// Check that |constant|, |initial_val| and |step_val| have the same type,
// with possibly different signedness.
if (!fuzzerutil::TypesAreEqualUpToSign(ir_context, constant_def->type_id(),
initial_val_def->type_id()) ||
!fuzzerutil::TypesAreEqualUpToSign(ir_context, constant_def->type_id(),
step_val_def->type_id())) {
return false;
}
// |message_.num_iterations_id| must be a non-irrelevant integer constant with
// bit width 32.
auto num_iterations = ir_context->get_constant_mgr()->FindDeclaredConstant(
message_.num_iterations_id());
if (!num_iterations || !num_iterations->AsIntConstant() ||
num_iterations->type()->AsInteger()->width() != 32 ||
transformation_context.GetFactManager()->IdIsIrrelevant(
message_.num_iterations_id())) {
return false;
}
// Check that the number of iterations is > 0 and <= 32.
uint32_t num_iterations_value =
num_iterations->AsIntConstant()->GetU32BitValue();
if (num_iterations_value == 0 || num_iterations_value > kMaxNumOfIterations) {
return false;
}
// Check that the module contains 32-bit signed integer scalar constants of
// value 0 and 1.
if (!fuzzerutil::MaybeGetIntegerConstant(ir_context, transformation_context,
{0}, 32, true, false)) {
return false;
}
if (!fuzzerutil::MaybeGetIntegerConstant(ir_context, transformation_context,
{1}, 32, true, false)) {
return false;
}
// Check that the module contains the Bool type.
if (!fuzzerutil::MaybeGetBoolType(ir_context)) {
return false;
}
// Check that the equation C = I - S * N is satisfied.
// Collect the components in vectors (if the constants are scalars, these
// vectors will contain the constants themselves).
std::vector<const opt::analysis::Constant*> c_components;
std::vector<const opt::analysis::Constant*> i_components;
std::vector<const opt::analysis::Constant*> s_components;
if (constant->AsIntConstant()) {
c_components.emplace_back(constant);
i_components.emplace_back(initial_val);
s_components.emplace_back(step_val);
} else {
// It is a vector: get all the components.
c_components = constant->AsVectorConstant()->GetComponents();
i_components = initial_val->AsVectorConstant()->GetComponents();
s_components = step_val->AsVectorConstant()->GetComponents();
}
// Check the value of the components satisfy the equation.
for (uint32_t i = 0; i < c_components.size(); i++) {
// Use 64-bits integers to be able to handle constants of any width <= 64.
uint64_t c_value = c_components[i]->AsIntConstant()->GetZeroExtendedValue();
uint64_t i_value = i_components[i]->AsIntConstant()->GetZeroExtendedValue();
uint64_t s_value = s_components[i]->AsIntConstant()->GetZeroExtendedValue();
uint64_t result = i_value - s_value * num_iterations_value;
// Use bit shifts to ignore the first bits in excess (if there are any). By
// shifting left, we discard the first |64 - bit_width| bits. By shifting
// right, we move the bits back to their correct position.
result = (result << (64 - bit_width)) >> (64 - bit_width);
if (c_value != result) {
return false;
}
}
// Check that |message_.block_after_loop_id| is the label of a block.
auto block =
fuzzerutil::MaybeFindBlock(ir_context, message_.block_after_loop_id());
// Check that the block exists and has a single predecessor.
if (!block || ir_context->cfg()->preds(block->id()).size() != 1) {
return false;
}
// Check that the block is not dead. If it is then the new loop would be
// dead and the data it computes would be irrelevant, so we would not be able
// to make a synonym.
if (transformation_context.GetFactManager()->BlockIsDead(block->id())) {
return false;
}
// Check that the block is not a merge block.
if (ir_context->GetStructuredCFGAnalysis()->IsMergeBlock(block->id())) {
return false;
}
// Check that the block is not a continue block.
if (ir_context->GetStructuredCFGAnalysis()->IsContinueBlock(block->id())) {
return false;
}
// Check that the block is not a loop header.
if (block->IsLoopHeader()) {
return false;
}
// Check all the fresh ids.
std::set<uint32_t> fresh_ids_used;
for (uint32_t id : {message_.syn_id(), message_.loop_id(), message_.ctr_id(),
message_.temp_id(), message_.eventual_syn_id(),
message_.incremented_ctr_id(), message_.cond_id()}) {
if (!id || !CheckIdIsFreshAndNotUsedByThisTransformation(id, ir_context,
&fresh_ids_used)) {
return false;
}
}
// Check the additional block id if it is non-zero.
return !message_.additional_block_id() ||
CheckIdIsFreshAndNotUsedByThisTransformation(
message_.additional_block_id(), ir_context, &fresh_ids_used);
}
void TransformationAddLoopToCreateIntConstantSynonym::Apply(
opt::IRContext* ir_context,
TransformationContext* transformation_context) const {
// Find 32-bit signed integer constants 0 and 1.
uint32_t const_0_id = fuzzerutil::MaybeGetIntegerConstant(
ir_context, *transformation_context, {0}, 32, true, false);
auto const_0_def = ir_context->get_def_use_mgr()->GetDef(const_0_id);
uint32_t const_1_id = fuzzerutil::MaybeGetIntegerConstant(
ir_context, *transformation_context, {1}, 32, true, false);
// Retrieve the instruction defining the initial value constant.
auto initial_val_def =
ir_context->get_def_use_mgr()->GetDef(message_.initial_val_id());
// Retrieve the block before which we want to insert the loop.
auto block_after_loop =
ir_context->get_instr_block(message_.block_after_loop_id());
// Find the predecessor of the block.
uint32_t pred_id =
ir_context->cfg()->preds(message_.block_after_loop_id())[0];
// Get the id for the last block in the new loop. It will be
// |message_.additional_block_id| if this is non_zero, |message_.loop_id|
// otherwise.
uint32_t last_loop_block_id = message_.additional_block_id()
? message_.additional_block_id()
: message_.loop_id();
// Create the loop header block.
std::unique_ptr<opt::BasicBlock> loop_block =
MakeUnique<opt::BasicBlock>(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpLabel, 0, message_.loop_id(),
opt::Instruction::OperandList{}));
// Add OpPhi instructions to retrieve the current value of the counter and of
// the temporary variable that will be decreased at each operation.
loop_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpPhi, const_0_def->type_id(), message_.ctr_id(),
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {const_0_id}},
{SPV_OPERAND_TYPE_ID, {pred_id}},
{SPV_OPERAND_TYPE_ID, {message_.incremented_ctr_id()}},
{SPV_OPERAND_TYPE_ID, {last_loop_block_id}}}));
loop_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpPhi, initial_val_def->type_id(),
message_.temp_id(),
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.initial_val_id()}},
{SPV_OPERAND_TYPE_ID, {pred_id}},
{SPV_OPERAND_TYPE_ID, {message_.eventual_syn_id()}},
{SPV_OPERAND_TYPE_ID, {last_loop_block_id}}}));
// Collect the other instructions in a list. These will be added to an
// additional block if |message_.additional_block_id| is defined, to the loop
// header otherwise.
std::vector<std::unique_ptr<opt::Instruction>> other_instructions;
// Add an instruction to subtract the step value from the temporary value.
// The value of this id will converge to the constant in the last iteration.
other_instructions.push_back(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpISub, initial_val_def->type_id(),
message_.eventual_syn_id(),
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.temp_id()}},
{SPV_OPERAND_TYPE_ID, {message_.step_val_id()}}}));
// Add an instruction to increment the counter.
other_instructions.push_back(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpIAdd, const_0_def->type_id(),
message_.incremented_ctr_id(),
opt::Instruction::OperandList{{SPV_OPERAND_TYPE_ID, {message_.ctr_id()}},
{SPV_OPERAND_TYPE_ID, {const_1_id}}}));
// Add an instruction to decide whether the condition holds.
other_instructions.push_back(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpSLessThan,
fuzzerutil::MaybeGetBoolType(ir_context), message_.cond_id(),
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.incremented_ctr_id()}},
{SPV_OPERAND_TYPE_ID, {message_.num_iterations_id()}}}));
// Define the OpLoopMerge instruction for the loop header. The merge block is
// the existing block, the continue block is the last block in the loop
// (either the loop itself or the additional block).
std::unique_ptr<opt::Instruction> merge_inst = MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpLoopMerge, 0, 0,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.block_after_loop_id()}},
{SPV_OPERAND_TYPE_ID, {last_loop_block_id}},
{SPV_OPERAND_TYPE_LOOP_CONTROL,
{uint32_t(spv::LoopControlMask::MaskNone)}}});
// Define a conditional branch instruction, branching to the loop header if
// the condition holds, and to the existing block otherwise. This instruction
// will be added to the last block in the loop.
std::unique_ptr<opt::Instruction> conditional_branch =
MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpBranchConditional, 0, 0,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.cond_id()}},
{SPV_OPERAND_TYPE_ID, {message_.loop_id()}},
{SPV_OPERAND_TYPE_ID, {message_.block_after_loop_id()}}});
if (message_.additional_block_id()) {
// If an id for the additional block is specified, create an additional
// block, containing the instructions in the list and a branching
// instruction.
std::unique_ptr<opt::BasicBlock> additional_block =
MakeUnique<opt::BasicBlock>(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpLabel, 0, message_.additional_block_id(),
opt::Instruction::OperandList{}));
for (auto& instruction : other_instructions) {
additional_block->AddInstruction(std::move(instruction));
}
additional_block->AddInstruction(std::move(conditional_branch));
// Add the merge instruction to the header.
loop_block->AddInstruction(std::move(merge_inst));
// Add an unconditional branch from the header to the additional block.
loop_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpBranch, 0, 0,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.additional_block_id()}}}));
// Insert the two loop blocks before the existing block.
block_after_loop->GetParent()->InsertBasicBlockBefore(std::move(loop_block),
block_after_loop);
block_after_loop->GetParent()->InsertBasicBlockBefore(
std::move(additional_block), block_after_loop);
} else {
// If no id for an additional block is specified, the loop will only be made
// up of one block, so we need to add all the instructions to it.
for (auto& instruction : other_instructions) {
loop_block->AddInstruction(std::move(instruction));
}
// Add the merge and conditional branch instructions.
loop_block->AddInstruction(std::move(merge_inst));
loop_block->AddInstruction(std::move(conditional_branch));
// Insert the header before the existing block.
block_after_loop->GetParent()->InsertBasicBlockBefore(std::move(loop_block),
block_after_loop);
}
// Update the branching instructions leading to this block.
ir_context->get_def_use_mgr()->ForEachUse(
message_.block_after_loop_id(),
[this](opt::Instruction* instruction, uint32_t operand_index) {
assert(instruction->opcode() != spv::Op::OpLoopMerge &&
instruction->opcode() != spv::Op::OpSelectionMerge &&
"The block should not be referenced by OpLoopMerge or "
"OpSelectionMerge, by construction.");
// Replace all uses of the label inside branch instructions.
if (instruction->opcode() == spv::Op::OpBranch ||
instruction->opcode() == spv::Op::OpBranchConditional ||
instruction->opcode() == spv::Op::OpSwitch) {
instruction->SetOperand(operand_index, {message_.loop_id()});
}
});
// Update all the OpPhi instructions in the block after the loop: its
// predecessor is now the last block in the loop.
block_after_loop->ForEachPhiInst(
[last_loop_block_id](opt::Instruction* phi_inst) {
// Since the block only had one predecessor, the id of the predecessor
// is input operand 1.
phi_inst->SetInOperand(1, {last_loop_block_id});
});
// Add a new OpPhi instruction at the beginning of the block after the loop,
// defining the synonym of the constant. The type id will be the same as
// |message_.initial_value_id|, since this is the value that is decremented in
// the loop.
block_after_loop->begin()->InsertBefore(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpPhi, initial_val_def->type_id(), message_.syn_id(),
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {message_.eventual_syn_id()}},
{SPV_OPERAND_TYPE_ID, {last_loop_block_id}}}));
// Update the module id bound with all the fresh ids used.
for (uint32_t id : {message_.syn_id(), message_.loop_id(), message_.ctr_id(),
message_.temp_id(), message_.eventual_syn_id(),
message_.incremented_ctr_id(), message_.cond_id(),
message_.cond_id(), message_.additional_block_id()}) {
fuzzerutil::UpdateModuleIdBound(ir_context, id);
}
// Since we changed the structure of the module, we need to invalidate all the
// analyses.
ir_context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
// Record that |message_.syn_id| is synonymous with |message_.constant_id|.
transformation_context->GetFactManager()->AddFactDataSynonym(
MakeDataDescriptor(message_.syn_id(), {}),
MakeDataDescriptor(message_.constant_id(), {}));
}
protobufs::Transformation
TransformationAddLoopToCreateIntConstantSynonym::ToMessage() const {
protobufs::Transformation result;
*result.mutable_add_loop_to_create_int_constant_synonym() = message_;
return result;
}
std::unordered_set<uint32_t>
TransformationAddLoopToCreateIntConstantSynonym::GetFreshIds() const {
return {message_.syn_id(), message_.loop_id(),
message_.ctr_id(), message_.temp_id(),
message_.eventual_syn_id(), message_.incremented_ctr_id(),
message_.cond_id(), message_.additional_block_id()};
}
} // namespace fuzz
} // namespace spvtools
|