1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/transformation_vector_shuffle.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"
namespace spvtools {
namespace fuzz {
TransformationVectorShuffle::TransformationVectorShuffle(
protobufs::TransformationVectorShuffle message)
: message_(std::move(message)) {}
TransformationVectorShuffle::TransformationVectorShuffle(
const protobufs::InstructionDescriptor& instruction_to_insert_before,
uint32_t fresh_id, uint32_t vector1, uint32_t vector2,
const std::vector<uint32_t>& component) {
*message_.mutable_instruction_to_insert_before() =
instruction_to_insert_before;
message_.set_fresh_id(fresh_id);
message_.set_vector1(vector1);
message_.set_vector2(vector2);
for (auto a_component : component) {
message_.add_component(a_component);
}
}
bool TransformationVectorShuffle::IsApplicable(
opt::IRContext* ir_context, const TransformationContext& /*unused*/) const {
// The fresh id must not already be in use.
if (!fuzzerutil::IsFreshId(ir_context, message_.fresh_id())) {
return false;
}
// The instruction before which the shuffle will be inserted must exist.
auto instruction_to_insert_before =
FindInstruction(message_.instruction_to_insert_before(), ir_context);
if (!instruction_to_insert_before) {
return false;
}
// The first vector must be an instruction with a type id
auto vector1_instruction =
ir_context->get_def_use_mgr()->GetDef(message_.vector1());
if (!vector1_instruction || !vector1_instruction->type_id()) {
return false;
}
// The second vector must be an instruction with a type id
auto vector2_instruction =
ir_context->get_def_use_mgr()->GetDef(message_.vector2());
if (!vector2_instruction || !vector2_instruction->type_id()) {
return false;
}
auto vector1_type =
ir_context->get_type_mgr()->GetType(vector1_instruction->type_id());
// The first vector instruction's type must actually be a vector type.
if (!vector1_type->AsVector()) {
return false;
}
auto vector2_type =
ir_context->get_type_mgr()->GetType(vector2_instruction->type_id());
// The second vector instruction's type must actually be a vector type.
if (!vector2_type->AsVector()) {
return false;
}
// The element types of the vectors must be the same.
if (vector1_type->AsVector()->element_type() !=
vector2_type->AsVector()->element_type()) {
return false;
}
uint32_t combined_size = vector1_type->AsVector()->element_count() +
vector2_type->AsVector()->element_count();
for (auto a_compoment : message_.component()) {
// 0xFFFFFFFF is used to represent an undefined component. Unless
// undefined, a component must be less than the combined size of the
// vectors.
if (a_compoment != 0xFFFFFFFF && a_compoment >= combined_size) {
return false;
}
}
// The module must already declare an appropriate type in which to store the
// result of the shuffle.
if (!GetResultTypeId(ir_context, *vector1_type->AsVector()->element_type())) {
return false;
}
// Each of the vectors used in the shuffle must be available at the insertion
// point.
for (auto used_instruction : {vector1_instruction, vector2_instruction}) {
if (auto block = ir_context->get_instr_block(used_instruction)) {
if (!ir_context->GetDominatorAnalysis(block->GetParent())
->Dominates(used_instruction, instruction_to_insert_before)) {
return false;
}
}
}
// It must be legitimate to insert an OpVectorShuffle before the identified
// instruction.
return fuzzerutil::CanInsertOpcodeBeforeInstruction(
spv::Op::OpVectorShuffle, instruction_to_insert_before);
}
void TransformationVectorShuffle::Apply(
opt::IRContext* ir_context,
TransformationContext* transformation_context) const {
// Make input operands for a shuffle instruction - these comprise the two
// vectors being shuffled, followed by the integer literal components.
opt::Instruction::OperandList shuffle_operands = {
{SPV_OPERAND_TYPE_ID, {message_.vector1()}},
{SPV_OPERAND_TYPE_ID, {message_.vector2()}}};
for (auto a_component : message_.component()) {
shuffle_operands.push_back(
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {a_component}});
}
uint32_t result_type_id = GetResultTypeId(
ir_context,
*GetVectorType(ir_context, message_.vector1())->element_type());
// Add a shuffle instruction right before the instruction identified by
// |message_.instruction_to_insert_before|.
auto insert_before =
FindInstruction(message_.instruction_to_insert_before(), ir_context);
opt::Instruction* new_instruction =
insert_before->InsertBefore(MakeUnique<opt::Instruction>(
ir_context, spv::Op::OpVectorShuffle, result_type_id,
message_.fresh_id(), shuffle_operands));
fuzzerutil::UpdateModuleIdBound(ir_context, message_.fresh_id());
// Inform the def-use manager about the new instruction and record its basic
// block.
ir_context->get_def_use_mgr()->AnalyzeInstDefUse(new_instruction);
ir_context->set_instr_block(new_instruction,
ir_context->get_instr_block(insert_before));
AddDataSynonymFacts(ir_context, transformation_context);
}
protobufs::Transformation TransformationVectorShuffle::ToMessage() const {
protobufs::Transformation result;
*result.mutable_vector_shuffle() = message_;
return result;
}
uint32_t TransformationVectorShuffle::GetResultTypeId(
opt::IRContext* ir_context, const opt::analysis::Type& element_type) const {
opt::analysis::Vector result_type(
&element_type, static_cast<uint32_t>(message_.component_size()));
return ir_context->get_type_mgr()->GetId(&result_type);
}
opt::analysis::Vector* TransformationVectorShuffle::GetVectorType(
opt::IRContext* ir_context, uint32_t id_of_vector) {
return ir_context->get_type_mgr()
->GetType(ir_context->get_def_use_mgr()->GetDef(id_of_vector)->type_id())
->AsVector();
}
std::unordered_set<uint32_t> TransformationVectorShuffle::GetFreshIds() const {
return {message_.fresh_id()};
}
void TransformationVectorShuffle::AddDataSynonymFacts(
opt::IRContext* ir_context,
TransformationContext* transformation_context) const {
// If the new instruction is irrelevant (because it is in a dead block), it
// cannot participate in any DataSynonym fact.
if (transformation_context->GetFactManager()->IdIsIrrelevant(
message_.fresh_id())) {
return;
}
// Add synonym facts relating the defined elements of the shuffle result to
// the vector components that they come from.
for (uint32_t component_index = 0;
component_index < static_cast<uint32_t>(message_.component_size());
component_index++) {
uint32_t component = message_.component(component_index);
if (component == 0xFFFFFFFF) {
// This component is undefined, we do not introduce a synonym.
continue;
}
// This describes the element of the result vector associated with
// |component_index|.
protobufs::DataDescriptor descriptor_for_result_component =
MakeDataDescriptor(message_.fresh_id(), {component_index});
protobufs::DataDescriptor descriptor_for_source_component;
// Get a data descriptor for the component of the input vector to which
// |component| refers.
if (component <
GetVectorType(ir_context, message_.vector1())->element_count()) {
// Check that the first vector can participate in data synonym facts.
if (!fuzzerutil::CanMakeSynonymOf(
ir_context, *transformation_context,
*ir_context->get_def_use_mgr()->GetDef(message_.vector1()))) {
continue;
}
descriptor_for_source_component =
MakeDataDescriptor(message_.vector1(), {component});
} else {
// Check that the second vector can participate in data synonym facts.
if (!fuzzerutil::CanMakeSynonymOf(
ir_context, *transformation_context,
*ir_context->get_def_use_mgr()->GetDef(message_.vector2()))) {
continue;
}
auto index_into_vector_2 =
component -
GetVectorType(ir_context, message_.vector1())->element_count();
assert(
index_into_vector_2 <
GetVectorType(ir_context, message_.vector2())->element_count() &&
"Vector shuffle index is out of bounds.");
descriptor_for_source_component =
MakeDataDescriptor(message_.vector2(), {index_into_vector_2});
}
// Add a fact relating this input vector component with the associated
// result component.
transformation_context->GetFactManager()->AddFactDataSynonym(
descriptor_for_result_component, descriptor_for_source_component);
}
}
} // namespace fuzz
} // namespace spvtools
|