1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// Copyright (c) 2021 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/lint/divergence_analysis.h"
#include "source/opt/basic_block.h"
#include "source/opt/control_dependence.h"
#include "source/opt/dataflow.h"
#include "source/opt/function.h"
#include "source/opt/instruction.h"
namespace spvtools {
namespace lint {
void DivergenceAnalysis::EnqueueSuccessors(opt::Instruction* inst) {
// Enqueue control dependents of block, if applicable.
// There are two ways for a dependence source to be updated:
// 1. control -> control: source block is marked divergent.
// 2. data -> control: branch condition is marked divergent.
uint32_t block_id;
if (inst->IsBlockTerminator()) {
block_id = context().get_instr_block(inst)->id();
} else if (inst->opcode() == spv::Op::OpLabel) {
block_id = inst->result_id();
opt::BasicBlock* bb = context().cfg()->block(block_id);
// Only enqueue phi instructions, as other uses don't affect divergence.
bb->ForEachPhiInst([this](opt::Instruction* phi) { Enqueue(phi); });
} else {
opt::ForwardDataFlowAnalysis::EnqueueUsers(inst);
return;
}
if (!cd_.HasBlock(block_id)) {
return;
}
for (const spvtools::opt::ControlDependence& dep :
cd_.GetDependenceTargets(block_id)) {
opt::Instruction* target_inst =
context().cfg()->block(dep.target_bb_id())->GetLabelInst();
Enqueue(target_inst);
}
}
opt::DataFlowAnalysis::VisitResult DivergenceAnalysis::Visit(
opt::Instruction* inst) {
if (inst->opcode() == spv::Op::OpLabel) {
return VisitBlock(inst->result_id());
} else {
return VisitInstruction(inst);
}
}
opt::DataFlowAnalysis::VisitResult DivergenceAnalysis::VisitBlock(uint32_t id) {
if (!cd_.HasBlock(id)) {
return opt::DataFlowAnalysis::VisitResult::kResultFixed;
}
DivergenceLevel& cur_level = divergence_[id];
if (cur_level == DivergenceLevel::kDivergent) {
return opt::DataFlowAnalysis::VisitResult::kResultFixed;
}
DivergenceLevel orig = cur_level;
for (const spvtools::opt::ControlDependence& dep :
cd_.GetDependenceSources(id)) {
if (divergence_[dep.source_bb_id()] > cur_level) {
cur_level = divergence_[dep.source_bb_id()];
divergence_source_[id] = dep.source_bb_id();
} else if (dep.source_bb_id() != 0) {
uint32_t condition_id = dep.GetConditionID(*context().cfg());
DivergenceLevel dep_level = divergence_[condition_id];
// Check if we are along the chain of unconditional branches starting from
// the branch target.
if (follow_unconditional_branches_[dep.branch_target_bb_id()] !=
follow_unconditional_branches_[dep.target_bb_id()]) {
// We must have reconverged in order to reach this block.
// Promote partially uniform to divergent.
if (dep_level == DivergenceLevel::kPartiallyUniform) {
dep_level = DivergenceLevel::kDivergent;
}
}
if (dep_level > cur_level) {
cur_level = dep_level;
divergence_source_[id] = condition_id;
divergence_dependence_source_[id] = dep.source_bb_id();
}
}
}
return cur_level > orig ? VisitResult::kResultChanged
: VisitResult::kResultFixed;
}
opt::DataFlowAnalysis::VisitResult DivergenceAnalysis::VisitInstruction(
opt::Instruction* inst) {
if (inst->IsBlockTerminator()) {
// This is called only when the condition has changed, so return changed.
return VisitResult::kResultChanged;
}
if (!inst->HasResultId()) {
return VisitResult::kResultFixed;
}
uint32_t id = inst->result_id();
DivergenceLevel& cur_level = divergence_[id];
if (cur_level == DivergenceLevel::kDivergent) {
return opt::DataFlowAnalysis::VisitResult::kResultFixed;
}
DivergenceLevel orig = cur_level;
cur_level = ComputeInstructionDivergence(inst);
return cur_level > orig ? VisitResult::kResultChanged
: VisitResult::kResultFixed;
}
DivergenceAnalysis::DivergenceLevel
DivergenceAnalysis::ComputeInstructionDivergence(opt::Instruction* inst) {
// TODO(kuhar): Check to see if inst is decorated with Uniform or UniformId
// and use that to short circuit other checks. Uniform is for subgroups which
// would satisfy derivative groups too. UniformId takes a scope, so if it is
// subgroup or greater it could satisfy derivative group and
// Device/QueueFamily could satisfy fully uniform.
uint32_t id = inst->result_id();
// Handle divergence roots.
if (inst->opcode() == spv::Op::OpFunctionParameter) {
divergence_source_[id] = 0;
return divergence_[id] = DivergenceLevel::kDivergent;
} else if (inst->IsLoad()) {
spvtools::opt::Instruction* var = inst->GetBaseAddress();
if (var->opcode() != spv::Op::OpVariable) {
// Assume divergent.
divergence_source_[id] = 0;
return DivergenceLevel::kDivergent;
}
DivergenceLevel ret = ComputeVariableDivergence(var);
if (ret > DivergenceLevel::kUniform) {
divergence_source_[inst->result_id()] = 0;
}
return divergence_[id] = ret;
}
// Get the maximum divergence of the operands.
DivergenceLevel ret = DivergenceLevel::kUniform;
inst->ForEachInId([this, inst, &ret](const uint32_t* op) {
if (!op) return;
if (divergence_[*op] > ret) {
divergence_source_[inst->result_id()] = *op;
ret = divergence_[*op];
}
});
divergence_[inst->result_id()] = ret;
return ret;
}
DivergenceAnalysis::DivergenceLevel
DivergenceAnalysis::ComputeVariableDivergence(opt::Instruction* var) {
uint32_t type_id = var->type_id();
spvtools::opt::analysis::Pointer* type =
context().get_type_mgr()->GetType(type_id)->AsPointer();
assert(type != nullptr);
uint32_t def_id = var->result_id();
DivergenceLevel ret;
switch (type->storage_class()) {
case spv::StorageClass::Function:
case spv::StorageClass::Generic:
case spv::StorageClass::AtomicCounter:
case spv::StorageClass::StorageBuffer:
case spv::StorageClass::PhysicalStorageBuffer:
case spv::StorageClass::Output:
case spv::StorageClass::Workgroup:
case spv::StorageClass::Image: // Image atomics probably aren't uniform.
case spv::StorageClass::Private:
ret = DivergenceLevel::kDivergent;
break;
case spv::StorageClass::Input:
ret = DivergenceLevel::kDivergent;
// If this variable has a Flat decoration, it is partially uniform.
// TODO(kuhar): Track access chain indices and also consider Flat members
// of a structure.
context().get_decoration_mgr()->WhileEachDecoration(
def_id, static_cast<uint32_t>(spv::Decoration::Flat),
[&ret](const opt::Instruction&) {
ret = DivergenceLevel::kPartiallyUniform;
return false;
});
break;
case spv::StorageClass::UniformConstant:
// May be a storage image which is also written to; mark those as
// divergent.
if (!var->IsVulkanStorageImage() || var->IsReadOnlyPointer()) {
ret = DivergenceLevel::kUniform;
} else {
ret = DivergenceLevel::kDivergent;
}
break;
case spv::StorageClass::Uniform:
case spv::StorageClass::PushConstant:
case spv::StorageClass::CrossWorkgroup: // Not for shaders; default
// uniform.
default:
ret = DivergenceLevel::kUniform;
break;
}
return ret;
}
void DivergenceAnalysis::Setup(opt::Function* function) {
// TODO(kuhar): Run functions called by |function| so we can detect
// reconvergence caused by multiple returns.
cd_.ComputeControlDependenceGraph(
*context().cfg(), *context().GetPostDominatorAnalysis(function));
context().cfg()->ForEachBlockInPostOrder(
function->entry().get(), [this](const opt::BasicBlock* bb) {
uint32_t id = bb->id();
if (bb->terminator() == nullptr ||
bb->terminator()->opcode() != spv::Op::OpBranch) {
follow_unconditional_branches_[id] = id;
} else {
uint32_t target_id = bb->terminator()->GetSingleWordInOperand(0);
// Target is guaranteed to have been visited before us in postorder.
follow_unconditional_branches_[id] =
follow_unconditional_branches_[target_id];
}
});
}
std::ostream& operator<<(std::ostream& os,
DivergenceAnalysis::DivergenceLevel level) {
switch (level) {
case DivergenceAnalysis::DivergenceLevel::kUniform:
return os << "uniform";
case DivergenceAnalysis::DivergenceLevel::kPartiallyUniform:
return os << "partially uniform";
case DivergenceAnalysis::DivergenceLevel::kDivergent:
return os << "divergent";
default:
return os << "<invalid divergence level>";
}
}
} // namespace lint
} // namespace spvtools
|