1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/propagator.h"
namespace spvtools {
namespace opt {
void SSAPropagator::AddControlEdge(const Edge& edge) {
BasicBlock* dest_bb = edge.dest;
// Refuse to add the exit block to the work list.
if (dest_bb == ctx_->cfg()->pseudo_exit_block()) {
return;
}
// Try to mark the edge executable. If it was already in the set of
// executable edges, do nothing.
if (!MarkEdgeExecutable(edge)) {
return;
}
// If the edge had not already been marked executable, add the destination
// basic block to the work list.
blocks_.push(dest_bb);
}
void SSAPropagator::AddSSAEdges(Instruction* instr) {
// Ignore instructions that produce no result.
if (instr->result_id() == 0) {
return;
}
get_def_use_mgr()->ForEachUser(
instr->result_id(), [this](Instruction* use_instr) {
// If the basic block for |use_instr| has not been simulated yet, do
// nothing. The instruction |use_instr| will be simulated next time the
// block is scheduled.
if (!BlockHasBeenSimulated(ctx_->get_instr_block(use_instr))) {
return;
}
if (ShouldSimulateAgain(use_instr)) {
ssa_edge_uses_.push(use_instr);
}
});
}
bool SSAPropagator::IsPhiArgExecutable(Instruction* phi, uint32_t i) const {
BasicBlock* phi_bb = ctx_->get_instr_block(phi);
uint32_t in_label_id = phi->GetSingleWordOperand(i + 1);
Instruction* in_label_instr = get_def_use_mgr()->GetDef(in_label_id);
BasicBlock* in_bb = ctx_->get_instr_block(in_label_instr);
return IsEdgeExecutable(Edge(in_bb, phi_bb));
}
bool SSAPropagator::SetStatus(Instruction* inst, PropStatus status) {
bool has_old_status = false;
PropStatus old_status = kVarying;
if (HasStatus(inst)) {
has_old_status = true;
old_status = Status(inst);
}
assert((!has_old_status || old_status <= status) &&
"Invalid lattice transition");
bool status_changed = !has_old_status || (old_status != status);
if (status_changed) statuses_[inst] = status;
return status_changed;
}
bool SSAPropagator::Simulate(Instruction* instr) {
bool changed = false;
// Don't bother visiting instructions that should not be simulated again.
if (!ShouldSimulateAgain(instr)) {
return changed;
}
BasicBlock* dest_bb = nullptr;
PropStatus status = visit_fn_(instr, &dest_bb);
bool status_changed = SetStatus(instr, status);
if (status == kVarying) {
// The statement produces a varying result, add it to the list of statements
// not to simulate anymore and add its SSA def-use edges for simulation.
DontSimulateAgain(instr);
if (status_changed) {
AddSSAEdges(instr);
}
// If |instr| is a block terminator, add all the control edges out of its
// block.
if (instr->IsBlockTerminator()) {
BasicBlock* block = ctx_->get_instr_block(instr);
for (const auto& e : bb_succs_.at(block)) {
AddControlEdge(e);
}
}
return false;
} else if (status == kInteresting) {
// Add the SSA edges coming out of this instruction if the propagation
// status has changed.
if (status_changed) {
AddSSAEdges(instr);
}
// If there are multiple outgoing control flow edges and we know which one
// will be taken, add the destination block to the CFG work list.
if (dest_bb) {
AddControlEdge(Edge(ctx_->get_instr_block(instr), dest_bb));
}
changed = true;
}
// At this point, we are dealing with instructions that are in status
// kInteresting or kNotInteresting. To decide whether this instruction should
// be simulated again, we examine its operands. If at least one operand O is
// defined at an instruction D that should be simulated again, then the output
// of D might affect |instr|, so we should simulate |instr| again.
bool has_operands_to_simulate = false;
if (instr->opcode() == spv::Op::OpPhi) {
// For Phi instructions, an operand causes the Phi to be simulated again if
// the operand comes from an edge that has not yet been traversed or if its
// definition should be simulated again.
for (uint32_t i = 2; i < instr->NumOperands(); i += 2) {
// Phi arguments come in pairs. Index 'i' contains the
// variable id, index 'i + 1' is the originating block id.
assert(i % 2 == 0 && i < instr->NumOperands() - 1 &&
"malformed Phi arguments");
uint32_t arg_id = instr->GetSingleWordOperand(i);
Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
if (!IsPhiArgExecutable(instr, i) || ShouldSimulateAgain(arg_def_instr)) {
has_operands_to_simulate = true;
break;
}
}
} else {
// For regular instructions, check if the defining instruction of each
// operand needs to be simulated again. If so, then this instruction should
// also be simulated again.
has_operands_to_simulate =
!instr->WhileEachInId([this](const uint32_t* use) {
Instruction* def_instr = get_def_use_mgr()->GetDef(*use);
if (ShouldSimulateAgain(def_instr)) {
return false;
}
return true;
});
}
if (!has_operands_to_simulate) {
DontSimulateAgain(instr);
}
return changed;
}
bool SSAPropagator::Simulate(BasicBlock* block) {
if (block == ctx_->cfg()->pseudo_exit_block()) {
return false;
}
// Always simulate Phi instructions, even if we have simulated this block
// before. We do this because Phi instructions receive their inputs from
// incoming edges. When those edges are marked executable, the corresponding
// operand can be simulated.
bool changed = false;
block->ForEachPhiInst(
[&changed, this](Instruction* instr) { changed |= Simulate(instr); });
// If this is the first time this block is being simulated, simulate every
// statement in it.
if (!BlockHasBeenSimulated(block)) {
block->ForEachInst([this, &changed](Instruction* instr) {
if (instr->opcode() != spv::Op::OpPhi) {
changed |= Simulate(instr);
}
});
MarkBlockSimulated(block);
// If this block has exactly one successor, mark the edge to its successor
// as executable.
if (bb_succs_.at(block).size() == 1) {
AddControlEdge(bb_succs_.at(block).at(0));
}
}
return changed;
}
void SSAPropagator::Initialize(Function* fn) {
// Compute predecessor and successor blocks for every block in |fn|'s CFG.
// TODO(dnovillo): Move this to CFG and always build them. Alternately,
// move it to IRContext and build CFG preds/succs on-demand.
bb_succs_[ctx_->cfg()->pseudo_entry_block()].push_back(
Edge(ctx_->cfg()->pseudo_entry_block(), fn->entry().get()));
for (auto& block : *fn) {
const auto& const_block = block;
const_block.ForEachSuccessorLabel([this, &block](const uint32_t label_id) {
BasicBlock* succ_bb =
ctx_->get_instr_block(get_def_use_mgr()->GetDef(label_id));
bb_succs_[&block].push_back(Edge(&block, succ_bb));
bb_preds_[succ_bb].push_back(Edge(succ_bb, &block));
});
if (block.IsReturnOrAbort()) {
bb_succs_[&block].push_back(
Edge(&block, ctx_->cfg()->pseudo_exit_block()));
bb_preds_[ctx_->cfg()->pseudo_exit_block()].push_back(
Edge(ctx_->cfg()->pseudo_exit_block(), &block));
}
}
// Add the edges out of the entry block to seed the propagator.
const auto& entry_succs = bb_succs_[ctx_->cfg()->pseudo_entry_block()];
for (const auto& e : entry_succs) {
AddControlEdge(e);
}
}
bool SSAPropagator::Run(Function* fn) {
Initialize(fn);
bool changed = false;
while (!blocks_.empty() || !ssa_edge_uses_.empty()) {
// Simulate all blocks first. Simulating blocks will add SSA edges to
// follow after all the blocks have been simulated.
if (!blocks_.empty()) {
auto block = blocks_.front();
changed |= Simulate(block);
blocks_.pop();
continue;
}
// Simulate edges from the SSA queue.
if (!ssa_edge_uses_.empty()) {
Instruction* instr = ssa_edge_uses_.front();
changed |= Simulate(instr);
ssa_edge_uses_.pop();
}
}
#ifndef NDEBUG
// Verify all visited values have settled. No value that has been simulated
// should end on not interesting.
fn->ForEachInst([this](Instruction* inst) {
assert(
(!HasStatus(inst) || Status(inst) != SSAPropagator::kNotInteresting) &&
"Unsettled value");
});
#endif
return changed;
}
std::ostream& operator<<(std::ostream& str,
const SSAPropagator::PropStatus& status) {
switch (status) {
case SSAPropagator::kVarying:
str << "Varying";
break;
case SSAPropagator::kInteresting:
str << "Interesting";
break;
default:
str << "Not interesting";
break;
}
return str;
}
} // namespace opt
} // namespace spvtools
|