1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
// Copyright (c) 2015-2020 The Khronos Group Inc.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains a disassembler: It converts a SPIR-V binary
// to text.
#include "source/disassemble.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iomanip>
#include <ios>
#include <memory>
#include <set>
#include <sstream>
#include <stack>
#include <unordered_map>
#include <utility>
#include "source/assembly_grammar.h"
#include "source/binary.h"
#include "source/diagnostic.h"
#include "source/ext_inst.h"
#include "source/opcode.h"
#include "source/parsed_operand.h"
#include "source/print.h"
#include "source/spirv_constant.h"
#include "source/spirv_endian.h"
#include "source/util/hex_float.h"
#include "source/util/make_unique.h"
#include "spirv-tools/libspirv.h"
namespace spvtools {
namespace {
// Indices to ControlFlowGraph's list of blocks from one block to its successors
struct BlockSuccessors {
// Merge block in OpLoopMerge and OpSelectionMerge
uint32_t merge_block_id = 0;
// The continue block in OpLoopMerge
uint32_t continue_block_id = 0;
// The true and false blocks in OpBranchConditional
uint32_t true_block_id = 0;
uint32_t false_block_id = 0;
// The body block of a loop, as specified by OpBranch after a merge
// instruction
uint32_t body_block_id = 0;
// The same-nesting-level block that follows this one, indicated by an
// OpBranch with no merge instruction.
uint32_t next_block_id = 0;
// The cases (including default) of an OpSwitch
std::vector<uint32_t> case_block_ids;
};
class ParsedInstruction {
public:
ParsedInstruction(const spv_parsed_instruction_t* instruction) {
// Make a copy of the parsed instruction, including stable memory for its
// operands.
instruction_ = *instruction;
operands_ =
std::make_unique<spv_parsed_operand_t[]>(instruction->num_operands);
memcpy(operands_.get(), instruction->operands,
instruction->num_operands * sizeof(*instruction->operands));
instruction_.operands = operands_.get();
}
const spv_parsed_instruction_t* get() const { return &instruction_; }
private:
spv_parsed_instruction_t instruction_;
std::unique_ptr<spv_parsed_operand_t[]> operands_;
};
// One block in the CFG
struct SingleBlock {
// The byte offset in the SPIR-V where the block starts. Used for printing in
// a comment.
size_t byte_offset;
// Block instructions
std::vector<ParsedInstruction> instructions;
// Successors of this block
BlockSuccessors successors;
// The nesting level for this block.
uint32_t nest_level = 0;
bool nest_level_assigned = false;
// Whether the block was reachable
bool reachable = false;
};
// CFG for one function
struct ControlFlowGraph {
std::vector<SingleBlock> blocks;
};
// A Disassembler instance converts a SPIR-V binary to its assembly
// representation.
class Disassembler {
public:
Disassembler(const AssemblyGrammar& grammar, uint32_t options,
NameMapper name_mapper)
: print_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options)),
nested_indent_(
spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NESTED_INDENT, options)),
reorder_blocks_(
spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_REORDER_BLOCKS, options)),
text_(),
out_(print_ ? out_stream() : out_stream(text_)),
instruction_disassembler_(grammar, out_.get(), options, name_mapper),
header_(!spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NO_HEADER, options)),
byte_offset_(0) {}
// Emits the assembly header for the module, and sets up internal state
// so subsequent callbacks can handle the cases where the entire module
// is either big-endian or little-endian.
spv_result_t HandleHeader(spv_endianness_t endian, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema);
// Emits the assembly text for the given instruction.
spv_result_t HandleInstruction(const spv_parsed_instruction_t& inst);
// If not printing, populates text_result with the accumulated text.
// Returns SPV_SUCCESS on success.
spv_result_t SaveTextResult(spv_text* text_result) const;
private:
void EmitCFG();
const bool print_; // Should we also print to the standard output stream?
const bool nested_indent_; // Should the blocks be indented according to the
// control flow structure?
const bool
reorder_blocks_; // Should the blocks be reordered for readability?
spv_endianness_t endian_; // The detected endianness of the binary.
std::stringstream text_; // Captures the text, if not printing.
out_stream out_; // The Output stream. Either to text_ or standard output.
disassemble::InstructionDisassembler instruction_disassembler_;
const bool header_; // Should we output header as the leading comment?
size_t byte_offset_; // The number of bytes processed so far.
bool inserted_decoration_space_ = false;
bool inserted_debug_space_ = false;
bool inserted_type_space_ = false;
// The CFG for the current function
ControlFlowGraph current_function_cfg_;
};
spv_result_t Disassembler::HandleHeader(spv_endianness_t endian,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t schema) {
endian_ = endian;
if (header_) {
instruction_disassembler_.EmitHeaderSpirv();
instruction_disassembler_.EmitHeaderVersion(version);
instruction_disassembler_.EmitHeaderGenerator(generator);
instruction_disassembler_.EmitHeaderIdBound(id_bound);
instruction_disassembler_.EmitHeaderSchema(schema);
}
byte_offset_ = SPV_INDEX_INSTRUCTION * sizeof(uint32_t);
return SPV_SUCCESS;
}
spv_result_t Disassembler::HandleInstruction(
const spv_parsed_instruction_t& inst) {
instruction_disassembler_.EmitSectionComment(inst, inserted_decoration_space_,
inserted_debug_space_,
inserted_type_space_);
// When nesting needs to be calculated or when the blocks are reordered, we
// have to have the full picture of the CFG first. Defer processing of the
// instructions until the entire function is visited. This is not done
// without those options (even if simpler) to improve debuggability; for
// example to be able to see whatever is parsed so far even if there is a
// parse error.
if (nested_indent_ || reorder_blocks_) {
switch (static_cast<spv::Op>(inst.opcode)) {
case spv::Op::OpLabel: {
// Add a new block to the CFG
SingleBlock new_block;
new_block.byte_offset = byte_offset_;
new_block.instructions.emplace_back(&inst);
current_function_cfg_.blocks.push_back(std::move(new_block));
break;
}
case spv::Op::OpFunctionEnd:
// Process the CFG and output the instructions
EmitCFG();
// Output OpFunctionEnd itself too
[[fallthrough]];
default:
if (!current_function_cfg_.blocks.empty()) {
// If in a function, stash the instruction for later.
current_function_cfg_.blocks.back().instructions.emplace_back(&inst);
} else {
// Otherwise emit the instruction right away.
instruction_disassembler_.EmitInstruction(inst, byte_offset_);
}
break;
}
} else {
instruction_disassembler_.EmitInstruction(inst, byte_offset_);
}
byte_offset_ += inst.num_words * sizeof(uint32_t);
return SPV_SUCCESS;
}
// Helper to get the operand of an instruction as an id.
uint32_t GetOperand(const spv_parsed_instruction_t* instruction,
uint32_t operand) {
return instruction->words[instruction->operands[operand].offset];
}
std::unordered_map<uint32_t, uint32_t> BuildControlFlowGraph(
ControlFlowGraph& cfg) {
std::unordered_map<uint32_t, uint32_t> id_to_index;
for (size_t index = 0; index < cfg.blocks.size(); ++index) {
SingleBlock& block = cfg.blocks[index];
// For future use, build the ID->index map
assert(static_cast<spv::Op>(block.instructions[0].get()->opcode) ==
spv::Op::OpLabel);
const uint32_t id = block.instructions[0].get()->result_id;
id_to_index[id] = static_cast<uint32_t>(index);
// Look for a merge instruction first. The function of OpBranch depends on
// that.
if (block.instructions.size() >= 3) {
const spv_parsed_instruction_t* maybe_merge =
block.instructions[block.instructions.size() - 2].get();
switch (static_cast<spv::Op>(maybe_merge->opcode)) {
case spv::Op::OpLoopMerge:
block.successors.merge_block_id = GetOperand(maybe_merge, 0);
block.successors.continue_block_id = GetOperand(maybe_merge, 1);
break;
case spv::Op::OpSelectionMerge:
block.successors.merge_block_id = GetOperand(maybe_merge, 0);
break;
default:
break;
}
}
// Then look at the last instruction; it must be a branch
assert(block.instructions.size() >= 2);
const spv_parsed_instruction_t* branch = block.instructions.back().get();
switch (static_cast<spv::Op>(branch->opcode)) {
case spv::Op::OpBranch:
if (block.successors.merge_block_id != 0) {
block.successors.body_block_id = GetOperand(branch, 0);
} else {
block.successors.next_block_id = GetOperand(branch, 0);
}
break;
case spv::Op::OpBranchConditional:
block.successors.true_block_id = GetOperand(branch, 1);
block.successors.false_block_id = GetOperand(branch, 2);
break;
case spv::Op::OpSwitch:
for (uint32_t case_index = 1; case_index < branch->num_operands;
case_index += 2) {
block.successors.case_block_ids.push_back(
GetOperand(branch, case_index));
}
break;
default:
break;
}
}
return id_to_index;
}
// Helper to deal with nesting and non-existing ids / previously-assigned
// levels. It assigns a given nesting level `level` to the block identified by
// `id` (unless that block already has a nesting level assigned).
void Nest(ControlFlowGraph& cfg,
const std::unordered_map<uint32_t, uint32_t>& id_to_index,
uint32_t id, uint32_t level) {
if (id == 0) {
return;
}
const uint32_t block_index = id_to_index.at(id);
SingleBlock& block = cfg.blocks[block_index];
if (!block.nest_level_assigned) {
block.nest_level = level;
block.nest_level_assigned = true;
}
}
// For a given block, assign nesting level to its successors.
void NestSuccessors(ControlFlowGraph& cfg, const SingleBlock& block,
const std::unordered_map<uint32_t, uint32_t>& id_to_index) {
assert(block.nest_level_assigned);
// Nest loops as such:
//
// %loop = OpLabel
// OpLoopMerge %merge %cont ...
// OpBranch %body
// %body = OpLabel
// Op...
// %cont = OpLabel
// Op...
// %merge = OpLabel
// Op...
//
// Nest conditional branches as such:
//
// %header = OpLabel
// OpSelectionMerge %merge ...
// OpBranchConditional ... %true %false
// %true = OpLabel
// Op...
// %false = OpLabel
// Op...
// %merge = OpLabel
// Op...
//
// Nest switch/case as such:
//
// %header = OpLabel
// OpSelectionMerge %merge ...
// OpSwitch ... %default ... %case0 ... %case1 ...
// %default = OpLabel
// Op...
// %case0 = OpLabel
// Op...
// %case1 = OpLabel
// Op...
// ...
// %merge = OpLabel
// Op...
//
// The following can be observed:
//
// - In all cases, the merge block has the same nesting as this block
// - The continue block of loops is nested 1 level deeper
// - The body/branches/cases are nested 2 levels deeper
//
// Back branches to the header block, branches to the merge block, etc
// are correctly handled by processing the header block first (that is
// _this_ block, already processed), then following the above rules
// (in the same order) for any block that is not already processed.
Nest(cfg, id_to_index, block.successors.merge_block_id, block.nest_level);
Nest(cfg, id_to_index, block.successors.continue_block_id,
block.nest_level + 1);
Nest(cfg, id_to_index, block.successors.true_block_id, block.nest_level + 2);
Nest(cfg, id_to_index, block.successors.false_block_id, block.nest_level + 2);
Nest(cfg, id_to_index, block.successors.body_block_id, block.nest_level + 2);
Nest(cfg, id_to_index, block.successors.next_block_id, block.nest_level);
for (uint32_t case_block_id : block.successors.case_block_ids) {
Nest(cfg, id_to_index, case_block_id, block.nest_level + 2);
}
}
struct StackEntry {
// The index of the block (in ControlFlowGraph::blocks) to process.
uint32_t block_index;
// Whether this is the pre or post visit of the block. Because a post-visit
// traversal is needed, the same block is pushed back on the stack on
// pre-visit so it can be visited again on post-visit.
bool post_visit = false;
};
// Helper to deal with DFS traversal and non-existing ids
void VisitSuccesor(std::stack<StackEntry>* dfs_stack,
const std::unordered_map<uint32_t, uint32_t>& id_to_index,
uint32_t id) {
if (id != 0) {
dfs_stack->push({id_to_index.at(id), false});
}
}
// Given the control flow graph, calculates and returns the reverse post-order
// ordering of the blocks. The blocks are then disassembled in that order for
// readability.
std::vector<uint32_t> OrderBlocks(
ControlFlowGraph& cfg,
const std::unordered_map<uint32_t, uint32_t>& id_to_index) {
std::vector<uint32_t> post_order;
// Nest level of a function's first block is 0.
cfg.blocks[0].nest_level = 0;
cfg.blocks[0].nest_level_assigned = true;
// Stack of block indices as they are visited.
std::stack<StackEntry> dfs_stack;
dfs_stack.push({0, false});
std::set<uint32_t> visited;
while (!dfs_stack.empty()) {
const uint32_t block_index = dfs_stack.top().block_index;
const bool post_visit = dfs_stack.top().post_visit;
dfs_stack.pop();
// If this is the second time the block is visited, that's the post-order
// visit.
if (post_visit) {
post_order.push_back(block_index);
continue;
}
// If already visited, another path got to it first (like a case
// fallthrough), avoid reprocessing it.
if (visited.count(block_index) > 0) {
continue;
}
visited.insert(block_index);
// Push it back in the stack for post-order visit
dfs_stack.push({block_index, true});
SingleBlock& block = cfg.blocks[block_index];
// Assign nest levels of successors right away. The successors are either
// nested under this block, or are back or forward edges to blocks outside
// this nesting level (no farther than the merge block), whose nesting
// levels are already assigned before this block is visited.
NestSuccessors(cfg, block, id_to_index);
block.reachable = true;
// The post-order visit yields the order in which the blocks are naturally
// ordered _backwards_. So blocks to be ordered last should be visited
// first. In other words, they should be pushed to the DFS stack last.
VisitSuccesor(&dfs_stack, id_to_index, block.successors.true_block_id);
VisitSuccesor(&dfs_stack, id_to_index, block.successors.false_block_id);
VisitSuccesor(&dfs_stack, id_to_index, block.successors.body_block_id);
VisitSuccesor(&dfs_stack, id_to_index, block.successors.next_block_id);
for (uint32_t case_block_id : block.successors.case_block_ids) {
VisitSuccesor(&dfs_stack, id_to_index, case_block_id);
}
VisitSuccesor(&dfs_stack, id_to_index, block.successors.continue_block_id);
VisitSuccesor(&dfs_stack, id_to_index, block.successors.merge_block_id);
}
std::vector<uint32_t> order(post_order.rbegin(), post_order.rend());
// Finally, dump all unreachable blocks at the end
for (size_t index = 0; index < cfg.blocks.size(); ++index) {
SingleBlock& block = cfg.blocks[index];
if (!block.reachable) {
order.push_back(static_cast<uint32_t>(index));
block.nest_level = 0;
block.nest_level_assigned = true;
}
}
return order;
}
void Disassembler::EmitCFG() {
// Build the CFG edges. At the same time, build an ID->block index map to
// simplify building the CFG edges.
const std::unordered_map<uint32_t, uint32_t> id_to_index =
BuildControlFlowGraph(current_function_cfg_);
// Walk the CFG in reverse post-order to find the best ordering of blocks for
// presentation
std::vector<uint32_t> block_order =
OrderBlocks(current_function_cfg_, id_to_index);
assert(block_order.size() == current_function_cfg_.blocks.size());
// Walk the CFG either in block order or input order based on whether the
// reorder_blocks_ option is given.
for (uint32_t index = 0; index < current_function_cfg_.blocks.size();
++index) {
const uint32_t block_index = reorder_blocks_ ? block_order[index] : index;
const SingleBlock& block = current_function_cfg_.blocks[block_index];
// Emit instructions for this block
size_t byte_offset = block.byte_offset;
assert(block.nest_level_assigned);
for (const ParsedInstruction& inst : block.instructions) {
instruction_disassembler_.EmitInstructionInBlock(*inst.get(), byte_offset,
block.nest_level);
byte_offset += inst.get()->num_words * sizeof(uint32_t);
}
}
current_function_cfg_.blocks.clear();
}
spv_result_t Disassembler::SaveTextResult(spv_text* text_result) const {
if (!print_) {
size_t length = text_.str().size();
char* str = new char[length + 1];
if (!str) return SPV_ERROR_OUT_OF_MEMORY;
strncpy(str, text_.str().c_str(), length + 1);
spv_text text = new spv_text_t();
if (!text) {
delete[] str;
return SPV_ERROR_OUT_OF_MEMORY;
}
text->str = str;
text->length = length;
*text_result = text;
}
return SPV_SUCCESS;
}
spv_result_t DisassembleHeader(void* user_data, spv_endianness_t endian,
uint32_t /* magic */, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema) {
assert(user_data);
auto disassembler = static_cast<Disassembler*>(user_data);
return disassembler->HandleHeader(endian, version, generator, id_bound,
schema);
}
spv_result_t DisassembleInstruction(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
assert(user_data);
auto disassembler = static_cast<Disassembler*>(user_data);
return disassembler->HandleInstruction(*parsed_instruction);
}
// Simple wrapper class to provide extra data necessary for targeted
// instruction disassembly.
class WrappedDisassembler {
public:
WrappedDisassembler(Disassembler* dis, const uint32_t* binary, size_t wc)
: disassembler_(dis), inst_binary_(binary), word_count_(wc) {}
Disassembler* disassembler() { return disassembler_; }
const uint32_t* inst_binary() const { return inst_binary_; }
size_t word_count() const { return word_count_; }
private:
Disassembler* disassembler_;
const uint32_t* inst_binary_;
const size_t word_count_;
};
spv_result_t DisassembleTargetHeader(void* user_data, spv_endianness_t endian,
uint32_t /* magic */, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema) {
assert(user_data);
auto wrapped = static_cast<WrappedDisassembler*>(user_data);
return wrapped->disassembler()->HandleHeader(endian, version, generator,
id_bound, schema);
}
spv_result_t DisassembleTargetInstruction(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
assert(user_data);
auto wrapped = static_cast<WrappedDisassembler*>(user_data);
// Check if this is the instruction we want to disassemble.
if (wrapped->word_count() == parsed_instruction->num_words &&
std::equal(wrapped->inst_binary(),
wrapped->inst_binary() + wrapped->word_count(),
parsed_instruction->words)) {
// Found the target instruction. Disassemble it and signal that we should
// stop searching so we don't output the same instruction again.
if (auto error =
wrapped->disassembler()->HandleInstruction(*parsed_instruction))
return error;
return SPV_REQUESTED_TERMINATION;
}
return SPV_SUCCESS;
}
uint32_t GetLineLengthWithoutColor(const std::string line) {
// Currently, every added color is in the form \x1b...m, so instead of doing a
// lot of string comparisons with spvtools::clr::* strings, we just ignore
// those ranges.
uint32_t length = 0;
for (size_t i = 0; i < line.size(); ++i) {
if (line[i] == '\x1b') {
do {
++i;
} while (i < line.size() && line[i] != 'm');
continue;
}
++length;
}
return length;
}
constexpr int kStandardIndent = 15;
constexpr int kBlockNestIndent = 2;
constexpr int kBlockBodyIndentOffset = 2;
constexpr uint32_t kCommentColumn = 50;
} // namespace
namespace disassemble {
InstructionDisassembler::InstructionDisassembler(const AssemblyGrammar& grammar,
std::ostream& stream,
uint32_t options,
NameMapper name_mapper)
: grammar_(grammar),
stream_(stream),
print_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options)),
color_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COLOR, options)),
indent_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_INDENT, options)
? kStandardIndent
: 0),
nested_indent_(
spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NESTED_INDENT, options)),
comment_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COMMENT, options)),
show_byte_offset_(
spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET, options)),
name_mapper_(std::move(name_mapper)),
last_instruction_comment_alignment_(0) {}
void InstructionDisassembler::EmitHeaderSpirv() { stream_ << "; SPIR-V\n"; }
void InstructionDisassembler::EmitHeaderVersion(uint32_t version) {
stream_ << "; Version: " << SPV_SPIRV_VERSION_MAJOR_PART(version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(version) << "\n";
}
void InstructionDisassembler::EmitHeaderGenerator(uint32_t generator) {
const char* generator_tool =
spvGeneratorStr(SPV_GENERATOR_TOOL_PART(generator));
stream_ << "; Generator: " << generator_tool;
// For unknown tools, print the numeric tool value.
if (0 == strcmp("Unknown", generator_tool)) {
stream_ << "(" << SPV_GENERATOR_TOOL_PART(generator) << ")";
}
// Print the miscellaneous part of the generator word on the same
// line as the tool name.
stream_ << "; " << SPV_GENERATOR_MISC_PART(generator) << "\n";
}
void InstructionDisassembler::EmitHeaderIdBound(uint32_t id_bound) {
stream_ << "; Bound: " << id_bound << "\n";
}
void InstructionDisassembler::EmitHeaderSchema(uint32_t schema) {
stream_ << "; Schema: " << schema << "\n";
}
void InstructionDisassembler::EmitInstruction(
const spv_parsed_instruction_t& inst, size_t inst_byte_offset) {
EmitInstructionImpl(inst, inst_byte_offset, 0, false);
}
void InstructionDisassembler::EmitInstructionInBlock(
const spv_parsed_instruction_t& inst, size_t inst_byte_offset,
uint32_t block_indent) {
EmitInstructionImpl(inst, inst_byte_offset, block_indent, true);
}
void InstructionDisassembler::EmitInstructionImpl(
const spv_parsed_instruction_t& inst, size_t inst_byte_offset,
uint32_t block_indent, bool is_in_block) {
auto opcode = static_cast<spv::Op>(inst.opcode);
// To better align the comments (if any), write the instruction to a line
// first so its length can be readily available.
std::ostringstream line;
if (nested_indent_ && opcode == spv::Op::OpLabel) {
// Separate the blocks by an empty line to make them easier to separate
stream_ << std::endl;
}
if (inst.result_id) {
SetBlue();
const std::string id_name = name_mapper_(inst.result_id);
if (indent_)
line << std::setw(std::max(0, indent_ - 3 - int(id_name.size())));
line << "%" << id_name;
ResetColor();
line << " = ";
} else {
line << std::string(indent_, ' ');
}
if (nested_indent_ && is_in_block) {
// Output OpLabel at the specified nest level, and instructions inside
// blocks nested a little more.
uint32_t indent = block_indent;
bool body_indent = opcode != spv::Op::OpLabel;
line << std::string(
indent * kBlockNestIndent + (body_indent ? kBlockBodyIndentOffset : 0),
' ');
}
line << "Op" << spvOpcodeString(opcode);
for (uint16_t i = 0; i < inst.num_operands; i++) {
const spv_operand_type_t type = inst.operands[i].type;
assert(type != SPV_OPERAND_TYPE_NONE);
if (type == SPV_OPERAND_TYPE_RESULT_ID) continue;
line << " ";
EmitOperand(line, inst, i);
}
// For the sake of comment generation, store information from some
// instructions for the future.
if (comment_) {
GenerateCommentForDecoratedId(inst);
}
std::ostringstream comments;
const char* comment_separator = "";
if (show_byte_offset_) {
SetGrey(comments);
auto saved_flags = comments.flags();
auto saved_fill = comments.fill();
comments << comment_separator << "0x" << std::setw(8) << std::hex
<< std::setfill('0') << inst_byte_offset;
comments.flags(saved_flags);
comments.fill(saved_fill);
ResetColor(comments);
comment_separator = ", ";
}
if (comment_ && opcode == spv::Op::OpName) {
const spv_parsed_operand_t& operand = inst.operands[0];
const uint32_t word = inst.words[operand.offset];
comments << comment_separator << "id %" << word;
comment_separator = ", ";
}
if (comment_ && inst.result_id && id_comments_.count(inst.result_id) > 0) {
comments << comment_separator << id_comments_[inst.result_id].str();
comment_separator = ", ";
}
stream_ << line.str();
if (!comments.str().empty()) {
// Align the comments
const uint32_t line_length = GetLineLengthWithoutColor(line.str());
uint32_t align = std::max(
{line_length + 2, last_instruction_comment_alignment_, kCommentColumn});
// Round up the alignment to a multiple of 4 for more niceness.
align = (align + 3) & ~0x3u;
last_instruction_comment_alignment_ = align;
stream_ << std::string(align - line_length, ' ') << "; " << comments.str();
} else {
last_instruction_comment_alignment_ = 0;
}
stream_ << "\n";
}
void InstructionDisassembler::GenerateCommentForDecoratedId(
const spv_parsed_instruction_t& inst) {
assert(comment_);
auto opcode = static_cast<spv::Op>(inst.opcode);
std::ostringstream partial;
uint32_t id = 0;
const char* separator = "";
switch (opcode) {
case spv::Op::OpDecorate:
// Take everything after `OpDecorate %id` and associate it with id.
id = inst.words[inst.operands[0].offset];
for (uint16_t i = 1; i < inst.num_operands; i++) {
partial << separator;
separator = " ";
EmitOperand(partial, inst, i);
}
break;
default:
break;
}
if (id == 0) {
return;
}
// Add the new comment to the comments of this id
std::ostringstream& id_comment = id_comments_[id];
if (!id_comment.str().empty()) {
id_comment << ", ";
}
id_comment << partial.str();
}
void InstructionDisassembler::EmitSectionComment(
const spv_parsed_instruction_t& inst, bool& inserted_decoration_space,
bool& inserted_debug_space, bool& inserted_type_space) {
auto opcode = static_cast<spv::Op>(inst.opcode);
if (comment_ && opcode == spv::Op::OpFunction) {
stream_ << std::endl;
if (nested_indent_) {
// Double the empty lines between Function sections since nested_indent_
// also separates blocks by a blank.
stream_ << std::endl;
}
stream_ << std::string(indent_, ' ');
stream_ << "; Function " << name_mapper_(inst.result_id) << std::endl;
}
if (comment_ && !inserted_decoration_space && spvOpcodeIsDecoration(opcode)) {
inserted_decoration_space = true;
stream_ << std::endl;
stream_ << std::string(indent_, ' ');
stream_ << "; Annotations" << std::endl;
}
if (comment_ && !inserted_debug_space && spvOpcodeIsDebug(opcode)) {
inserted_debug_space = true;
stream_ << std::endl;
stream_ << std::string(indent_, ' ');
stream_ << "; Debug Information" << std::endl;
}
if (comment_ && !inserted_type_space && spvOpcodeGeneratesType(opcode)) {
inserted_type_space = true;
stream_ << std::endl;
stream_ << std::string(indent_, ' ');
stream_ << "; Types, variables and constants" << std::endl;
}
}
void InstructionDisassembler::EmitOperand(std::ostream& stream,
const spv_parsed_instruction_t& inst,
const uint16_t operand_index) const {
assert(operand_index < inst.num_operands);
const spv_parsed_operand_t& operand = inst.operands[operand_index];
const uint32_t word = inst.words[operand.offset];
switch (operand.type) {
case SPV_OPERAND_TYPE_RESULT_ID:
assert(false && "<result-id> is not supposed to be handled here");
SetBlue(stream);
stream << "%" << name_mapper_(word);
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
SetYellow(stream);
stream << "%" << name_mapper_(word);
break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
spv_ext_inst_desc ext_inst;
SetRed(stream);
if (grammar_.lookupExtInst(inst.ext_inst_type, word, &ext_inst) ==
SPV_SUCCESS) {
stream << ext_inst->name;
} else {
if (!spvExtInstIsNonSemantic(inst.ext_inst_type)) {
assert(false && "should have caught this earlier");
} else {
// for non-semantic instruction sets we can just print the number
stream << word;
}
}
} break;
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(spv::Op(word), &opcode_desc))
assert(false && "should have caught this earlier");
SetRed(stream);
stream << opcode_desc->name;
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_LITERAL_FLOAT: {
SetRed(stream);
EmitNumericLiteral(&stream, inst, operand);
ResetColor(stream);
} break;
case SPV_OPERAND_TYPE_LITERAL_STRING: {
stream << "\"";
SetGreen(stream);
std::string str = spvDecodeLiteralStringOperand(inst, operand_index);
for (char const& c : str) {
if (c == '"' || c == '\\') stream << '\\';
stream << c;
}
ResetColor(stream);
stream << '"';
} break;
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_RAY_FLAGS:
case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION:
case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE:
case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE:
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_DEBUG_OPERATION:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY:
case SPV_OPERAND_TYPE_FPDENORM_MODE:
case SPV_OPERAND_TYPE_FPOPERATION_MODE:
case SPV_OPERAND_TYPE_QUANTIZATION_MODES:
case SPV_OPERAND_TYPE_FPENCODING:
case SPV_OPERAND_TYPE_OVERFLOW_MODES: {
spv_operand_desc entry;
if (grammar_.lookupOperand(operand.type, word, &entry))
assert(false && "should have caught this earlier");
stream << entry->name;
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS:
case SPV_OPERAND_TYPE_RAW_ACCESS_CHAIN_OPERANDS:
EmitMaskOperand(stream, operand.type, word);
break;
default:
if (spvOperandIsConcreteMask(operand.type)) {
EmitMaskOperand(stream, operand.type, word);
} else if (spvOperandIsConcrete(operand.type)) {
spv_operand_desc entry;
if (grammar_.lookupOperand(operand.type, word, &entry))
assert(false && "should have caught this earlier");
stream << entry->name;
} else {
assert(false && "unhandled or invalid case");
}
break;
}
ResetColor(stream);
}
void InstructionDisassembler::EmitMaskOperand(std::ostream& stream,
const spv_operand_type_t type,
const uint32_t word) const {
// Scan the mask from least significant bit to most significant bit. For each
// set bit, emit the name of that bit. Separate multiple names with '|'.
uint32_t remaining_word = word;
uint32_t mask;
int num_emitted = 0;
for (mask = 1; remaining_word; mask <<= 1) {
if (remaining_word & mask) {
remaining_word ^= mask;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry))
assert(false && "should have caught this earlier");
if (num_emitted) stream << "|";
stream << entry->name;
num_emitted++;
}
}
if (!num_emitted) {
// An operand value of 0 was provided, so represent it by the name
// of the 0 value. In many cases, that's "None".
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry))
stream << entry->name;
}
}
void InstructionDisassembler::ResetColor(std::ostream& stream) const {
if (color_) stream << spvtools::clr::reset{print_};
}
void InstructionDisassembler::SetGrey(std::ostream& stream) const {
if (color_) stream << spvtools::clr::grey{print_};
}
void InstructionDisassembler::SetBlue(std::ostream& stream) const {
if (color_) stream << spvtools::clr::blue{print_};
}
void InstructionDisassembler::SetYellow(std::ostream& stream) const {
if (color_) stream << spvtools::clr::yellow{print_};
}
void InstructionDisassembler::SetRed(std::ostream& stream) const {
if (color_) stream << spvtools::clr::red{print_};
}
void InstructionDisassembler::SetGreen(std::ostream& stream) const {
if (color_) stream << spvtools::clr::green{print_};
}
void InstructionDisassembler::ResetColor() { ResetColor(stream_); }
void InstructionDisassembler::SetGrey() { SetGrey(stream_); }
void InstructionDisassembler::SetBlue() { SetBlue(stream_); }
void InstructionDisassembler::SetYellow() { SetYellow(stream_); }
void InstructionDisassembler::SetRed() { SetRed(stream_); }
void InstructionDisassembler::SetGreen() { SetGreen(stream_); }
} // namespace disassemble
std::string spvInstructionBinaryToText(const spv_target_env env,
const uint32_t* instCode,
const size_t instWordCount,
const uint32_t* code,
const size_t wordCount,
const uint32_t options) {
spv_context context = spvContextCreate(env);
const AssemblyGrammar grammar(context);
if (!grammar.isValid()) {
spvContextDestroy(context);
return "";
}
// Generate friendly names for Ids if requested.
std::unique_ptr<FriendlyNameMapper> friendly_mapper;
NameMapper name_mapper = GetTrivialNameMapper();
if (options & SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) {
friendly_mapper = MakeUnique<FriendlyNameMapper>(context, code, wordCount);
name_mapper = friendly_mapper->GetNameMapper();
}
// Now disassemble!
Disassembler disassembler(grammar, options, name_mapper);
WrappedDisassembler wrapped(&disassembler, instCode, instWordCount);
spvBinaryParse(context, &wrapped, code, wordCount, DisassembleTargetHeader,
DisassembleTargetInstruction, nullptr);
spv_text text = nullptr;
std::string output;
if (disassembler.SaveTextResult(&text) == SPV_SUCCESS) {
output.assign(text->str, text->str + text->length);
// Drop trailing newline characters.
while (!output.empty() && output.back() == '\n') output.pop_back();
}
spvTextDestroy(text);
spvContextDestroy(context);
return output;
}
} // namespace spvtools
spv_result_t spvBinaryToText(const spv_const_context context,
const uint32_t* code, const size_t wordCount,
const uint32_t options, spv_text* pText,
spv_diagnostic* pDiagnostic) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
const spvtools::AssemblyGrammar grammar(&hijack_context);
if (!grammar.isValid()) return SPV_ERROR_INVALID_TABLE;
// Generate friendly names for Ids if requested.
std::unique_ptr<spvtools::FriendlyNameMapper> friendly_mapper;
spvtools::NameMapper name_mapper = spvtools::GetTrivialNameMapper();
if (options & SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) {
friendly_mapper = spvtools::MakeUnique<spvtools::FriendlyNameMapper>(
&hijack_context, code, wordCount);
name_mapper = friendly_mapper->GetNameMapper();
}
// Now disassemble!
spvtools::Disassembler disassembler(grammar, options, name_mapper);
if (auto error =
spvBinaryParse(&hijack_context, &disassembler, code, wordCount,
spvtools::DisassembleHeader,
spvtools::DisassembleInstruction, pDiagnostic)) {
return error;
}
return disassembler.SaveTextResult(pText);
}
|