1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// Copyright (c) 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/reduce/structured_loop_to_selection_reduction_opportunity.h"
#include "source/opt/aggressive_dead_code_elim_pass.h"
#include "source/opt/ir_context.h"
#include "source/reduce/reduction_util.h"
namespace spvtools {
namespace reduce {
namespace {
const uint32_t kMergeNodeIndex = 0;
} // namespace
bool StructuredLoopToSelectionReductionOpportunity::PreconditionHolds() {
// Is the loop header reachable?
return loop_construct_header_->GetLabel()->context()->IsReachable(
*loop_construct_header_);
}
void StructuredLoopToSelectionReductionOpportunity::Apply() {
// Force computation of dominator analysis, CFG and structured CFG analysis
// before we start to mess with edges in the function.
context_->GetDominatorAnalysis(loop_construct_header_->GetParent());
context_->cfg();
context_->GetStructuredCFGAnalysis();
// (1) Redirect edges that point to the loop's continue target to their
// closest merge block.
RedirectToClosestMergeBlock(loop_construct_header_->ContinueBlockId());
// (2) Redirect edges that point to the loop's merge block to their closest
// merge block (which might be that of an enclosing selection, for instance).
RedirectToClosestMergeBlock(loop_construct_header_->MergeBlockId());
// (3) Turn the loop construct header into a selection.
ChangeLoopToSelection();
// We have made control flow changes that do not preserve the analyses that
// were performed.
context_->InvalidateAnalysesExceptFor(
opt::IRContext::Analysis::kAnalysisNone);
// (4) By changing CFG edges we may have created scenarios where ids are used
// without being dominated; we fix instances of this.
FixNonDominatedIdUses();
// Invalidate the analyses we just used.
context_->InvalidateAnalysesExceptFor(
opt::IRContext::Analysis::kAnalysisNone);
}
void StructuredLoopToSelectionReductionOpportunity::RedirectToClosestMergeBlock(
uint32_t original_target_id) {
// Consider every predecessor of the node with respect to which edges should
// be redirected.
std::set<uint32_t> already_seen;
for (auto pred : context_->cfg()->preds(original_target_id)) {
if (already_seen.find(pred) != already_seen.end()) {
// We have already handled this predecessor (this scenario can arise if
// there are multiple edges from a block b to original_target_id).
continue;
}
already_seen.insert(pred);
if (!context_->IsReachable(*context_->cfg()->block(pred))) {
// We do not care about unreachable predecessors (and dominance
// information, and thus the notion of structured control flow, makes
// little sense for unreachable blocks).
continue;
}
// Find the merge block of the structured control construct that most
// tightly encloses the predecessor.
uint32_t new_merge_target;
// The structured CFG analysis deliberately does not regard a header as
// belonging to the structure that it heads. We want it to, so handle this
// case specially.
if (context_->cfg()->block(pred)->MergeBlockIdIfAny()) {
new_merge_target = context_->cfg()->block(pred)->MergeBlockIdIfAny();
} else {
new_merge_target = context_->GetStructuredCFGAnalysis()->MergeBlock(pred);
}
assert(new_merge_target != pred);
if (!new_merge_target) {
// If the loop being transformed is outermost, and the predecessor is
// part of that loop's continue construct, there will be no such
// enclosing control construct. In this case, the continue construct
// will become unreachable anyway, so it is fine not to redirect the
// edge.
continue;
}
if (new_merge_target != original_target_id) {
// Redirect the edge if it doesn't already point to the desired block.
RedirectEdge(pred, original_target_id, new_merge_target);
}
}
}
void StructuredLoopToSelectionReductionOpportunity::RedirectEdge(
uint32_t source_id, uint32_t original_target_id, uint32_t new_target_id) {
// Redirect edge source_id->original_target_id to edge
// source_id->new_target_id, where the blocks involved are all different.
assert(source_id != original_target_id);
assert(source_id != new_target_id);
assert(original_target_id != new_target_id);
// original_target_id must either be the merge target or continue construct
// for the loop being operated on.
assert(original_target_id == loop_construct_header_->MergeBlockId() ||
original_target_id == loop_construct_header_->ContinueBlockId());
auto terminator = context_->cfg()->block(source_id)->terminator();
// Figure out which operands of the terminator need to be considered for
// redirection.
std::vector<uint32_t> operand_indices;
if (terminator->opcode() == spv::Op::OpBranch) {
operand_indices = {0};
} else if (terminator->opcode() == spv::Op::OpBranchConditional) {
operand_indices = {1, 2};
} else {
assert(terminator->opcode() == spv::Op::OpSwitch);
for (uint32_t label_index = 1; label_index < terminator->NumOperands();
label_index += 2) {
operand_indices.push_back(label_index);
}
}
// Redirect the relevant operands, asserting that at least one redirection is
// made.
bool redirected = false;
for (auto operand_index : operand_indices) {
if (terminator->GetSingleWordOperand(operand_index) == original_target_id) {
terminator->SetOperand(operand_index, {new_target_id});
redirected = true;
}
}
(void)(redirected);
assert(redirected);
// The old and new targets may have phi instructions; these will need to
// respect the change in edges.
AdaptPhiInstructionsForRemovedEdge(
source_id, context_->cfg()->block(original_target_id));
AdaptPhiInstructionsForAddedEdge(source_id,
context_->cfg()->block(new_target_id));
}
void StructuredLoopToSelectionReductionOpportunity::
AdaptPhiInstructionsForAddedEdge(uint32_t from_id,
opt::BasicBlock* to_block) {
to_block->ForEachPhiInst([this, &from_id](opt::Instruction* phi_inst) {
// Add to the phi operand an (undef, from_id) pair to reflect the added
// edge.
auto undef_id = FindOrCreateGlobalUndef(context_, phi_inst->type_id());
phi_inst->AddOperand(opt::Operand(SPV_OPERAND_TYPE_ID, {undef_id}));
phi_inst->AddOperand(opt::Operand(SPV_OPERAND_TYPE_ID, {from_id}));
});
}
void StructuredLoopToSelectionReductionOpportunity::ChangeLoopToSelection() {
// Change the merge instruction from OpLoopMerge to OpSelectionMerge, with
// the same merge block.
auto loop_merge_inst = loop_construct_header_->GetLoopMergeInst();
auto const loop_merge_block_id =
loop_merge_inst->GetSingleWordOperand(kMergeNodeIndex);
loop_merge_inst->SetOpcode(spv::Op::OpSelectionMerge);
loop_merge_inst->ReplaceOperands(
{{loop_merge_inst->GetOperand(kMergeNodeIndex).type,
{loop_merge_block_id}},
{SPV_OPERAND_TYPE_SELECTION_CONTROL,
{uint32_t(spv::SelectionControlMask::MaskNone)}}});
// The loop header either finishes with OpBranch or OpBranchConditional.
// The latter is fine for a selection. In the former case we need to turn
// it into OpBranchConditional. We use "true" as the condition, and make
// the "else" branch be the merge block.
auto terminator = loop_construct_header_->terminator();
if (terminator->opcode() == spv::Op::OpBranch) {
opt::analysis::Bool temp;
const opt::analysis::Bool* bool_type =
context_->get_type_mgr()->GetRegisteredType(&temp)->AsBool();
auto const_mgr = context_->get_constant_mgr();
auto true_const = const_mgr->GetConstant(bool_type, {1});
auto true_const_result_id =
const_mgr->GetDefiningInstruction(true_const)->result_id();
auto original_branch_id = terminator->GetSingleWordOperand(0);
terminator->SetOpcode(spv::Op::OpBranchConditional);
terminator->ReplaceOperands({{SPV_OPERAND_TYPE_ID, {true_const_result_id}},
{SPV_OPERAND_TYPE_ID, {original_branch_id}},
{SPV_OPERAND_TYPE_ID, {loop_merge_block_id}}});
if (original_branch_id != loop_merge_block_id) {
AdaptPhiInstructionsForAddedEdge(
loop_construct_header_->id(),
context_->cfg()->block(loop_merge_block_id));
}
}
}
void StructuredLoopToSelectionReductionOpportunity::FixNonDominatedIdUses() {
// Consider each instruction in the function.
for (auto& block : *loop_construct_header_->GetParent()) {
for (auto& def : block) {
if (def.opcode() == spv::Op::OpVariable) {
// Variables are defined at the start of the function, and can be
// accessed by all blocks, even by unreachable blocks that have no
// dominators, so we do not need to worry about them.
continue;
}
context_->get_def_use_mgr()->ForEachUse(&def, [this, &block, &def](
opt::Instruction* use,
uint32_t index) {
// Ignore uses outside of blocks, such as in OpDecorate.
if (context_->get_instr_block(use) == nullptr) {
return;
}
// If a use is not appropriately dominated by its definition,
// replace the use with an OpUndef, unless the definition is an
// access chain, in which case replace it with some (possibly fresh)
// variable (as we cannot load from / store to OpUndef).
if (!DefinitionSufficientlyDominatesUse(&def, use, index, block)) {
if (def.opcode() == spv::Op::OpAccessChain) {
auto pointer_type =
context_->get_type_mgr()->GetType(def.type_id())->AsPointer();
switch (pointer_type->storage_class()) {
case spv::StorageClass::Function:
use->SetOperand(
index, {FindOrCreateFunctionVariable(
context_, loop_construct_header_->GetParent(),
context_->get_type_mgr()->GetId(pointer_type))});
break;
default:
// TODO(2183) Need to think carefully about whether it makes
// sense to add new variables for all storage classes; it's
// fine for Private but might not be OK for input/output
// storage classes for example.
use->SetOperand(
index, {FindOrCreateGlobalVariable(
context_,
context_->get_type_mgr()->GetId(pointer_type))});
break;
break;
}
} else {
use->SetOperand(index,
{FindOrCreateGlobalUndef(context_, def.type_id())});
}
}
});
}
}
}
bool StructuredLoopToSelectionReductionOpportunity::
DefinitionSufficientlyDominatesUse(opt::Instruction* def,
opt::Instruction* use,
uint32_t use_index,
opt::BasicBlock& def_block) {
if (use->opcode() == spv::Op::OpPhi) {
// A use in a phi doesn't need to be dominated by its definition, but the
// associated parent block does need to be dominated by the definition.
return context_->GetDominatorAnalysis(loop_construct_header_->GetParent())
->Dominates(def_block.id(), use->GetSingleWordOperand(use_index + 1));
}
// In non-phi cases, a use needs to be dominated by its definition.
return context_->GetDominatorAnalysis(loop_construct_header_->GetParent())
->Dominates(def, use);
}
} // namespace reduce
} // namespace spvtools
|