File: validate_memory.cpp

package info (click to toggle)
spirv-tools 2025.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,244 kB
  • sloc: cpp: 462,457; javascript: 5,893; python: 3,326; ansic: 487; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (3106 lines) | stat: -rw-r--r-- 130,707 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
// Copyright (c) 2018 Google LLC.
// Modifications Copyright (C) 2020-2024 Advanced Micro Devices, Inc. All
// rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <string>
#include <vector>

#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validate_scopes.h"
#include "source/val/validation_state.h"

namespace spvtools {
namespace val {
namespace {

bool AreLayoutCompatibleStructs(ValidationState_t&, const Instruction*,
                                const Instruction*);
bool HaveLayoutCompatibleMembers(ValidationState_t&, const Instruction*,
                                 const Instruction*);
bool HaveSameLayoutDecorations(ValidationState_t&, const Instruction*,
                               const Instruction*);
bool HasConflictingMemberOffsets(const std::set<Decoration>&,
                                 const std::set<Decoration>&);

bool IsAllowedTypeOrArrayOfSame(ValidationState_t& _, const Instruction* type,
                                std::initializer_list<spv::Op> allowed) {
  if (std::find(allowed.begin(), allowed.end(), type->opcode()) !=
      allowed.end()) {
    return true;
  }
  if (type->opcode() == spv::Op::OpTypeArray ||
      type->opcode() == spv::Op::OpTypeRuntimeArray) {
    auto elem_type = _.FindDef(type->word(2));
    return std::find(allowed.begin(), allowed.end(), elem_type->opcode()) !=
           allowed.end();
  }
  return false;
}

// Returns true if the two instructions represent structs that, as far as the
// validator can tell, have the exact same data layout.
bool AreLayoutCompatibleStructs(ValidationState_t& _, const Instruction* type1,
                                const Instruction* type2) {
  if (type1->opcode() != spv::Op::OpTypeStruct) {
    return false;
  }
  if (type2->opcode() != spv::Op::OpTypeStruct) {
    return false;
  }

  if (!HaveLayoutCompatibleMembers(_, type1, type2)) return false;

  return HaveSameLayoutDecorations(_, type1, type2);
}

// Returns true if the operands to the OpTypeStruct instruction defining the
// types are the same or are layout compatible types. |type1| and |type2| must
// be OpTypeStruct instructions.
bool HaveLayoutCompatibleMembers(ValidationState_t& _, const Instruction* type1,
                                 const Instruction* type2) {
  assert(type1->opcode() == spv::Op::OpTypeStruct &&
         "type1 must be an OpTypeStruct instruction.");
  assert(type2->opcode() == spv::Op::OpTypeStruct &&
         "type2 must be an OpTypeStruct instruction.");
  const auto& type1_operands = type1->operands();
  const auto& type2_operands = type2->operands();
  if (type1_operands.size() != type2_operands.size()) {
    return false;
  }

  for (size_t operand = 2; operand < type1_operands.size(); ++operand) {
    if (type1->word(operand) != type2->word(operand)) {
      auto def1 = _.FindDef(type1->word(operand));
      auto def2 = _.FindDef(type2->word(operand));
      if (!AreLayoutCompatibleStructs(_, def1, def2)) {
        return false;
      }
    }
  }
  return true;
}

// Returns true if all decorations that affect the data layout of the struct
// (like Offset), are the same for the two types. |type1| and |type2| must be
// OpTypeStruct instructions.
bool HaveSameLayoutDecorations(ValidationState_t& _, const Instruction* type1,
                               const Instruction* type2) {
  assert(type1->opcode() == spv::Op::OpTypeStruct &&
         "type1 must be an OpTypeStruct instruction.");
  assert(type2->opcode() == spv::Op::OpTypeStruct &&
         "type2 must be an OpTypeStruct instruction.");
  const std::set<Decoration>& type1_decorations = _.id_decorations(type1->id());
  const std::set<Decoration>& type2_decorations = _.id_decorations(type2->id());

  // TODO: Will have to add other check for arrays an matricies if we want to
  // handle them.
  if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) {
    return false;
  }

  return true;
}

bool HasConflictingMemberOffsets(
    const std::set<Decoration>& type1_decorations,
    const std::set<Decoration>& type2_decorations) {
  {
    // We are interested in conflicting decoration.  If a decoration is in one
    // list but not the other, then we will assume the code is correct.  We are
    // looking for things we know to be wrong.
    //
    // We do not have to traverse type2_decoration because, after traversing
    // type1_decorations, anything new will not be found in
    // type1_decoration.  Therefore, it cannot lead to a conflict.
    for (const Decoration& decoration : type1_decorations) {
      switch (decoration.dec_type()) {
        case spv::Decoration::Offset: {
          // Since these affect the layout of the struct, they must be present
          // in both structs.
          auto compare = [&decoration](const Decoration& rhs) {
            if (rhs.dec_type() != spv::Decoration::Offset) return false;
            return decoration.struct_member_index() ==
                   rhs.struct_member_index();
          };
          auto i = std::find_if(type2_decorations.begin(),
                                type2_decorations.end(), compare);
          if (i != type2_decorations.end() &&
              decoration.params().front() != i->params().front()) {
            return true;
          }
        } break;
        default:
          // This decoration does not affect the layout of the structure, so
          // just moving on.
          break;
      }
    }
  }
  return false;
}

// If |skip_builtin| is true, returns true if |storage| contains bool within
// it and no storage that contains the bool is builtin.
// If |skip_builtin| is false, returns true if |storage| contains bool within
// it.
bool ContainsInvalidBool(ValidationState_t& _, const Instruction* storage,
                         bool skip_builtin) {
  if (skip_builtin) {
    for (const Decoration& decoration : _.id_decorations(storage->id())) {
      if (decoration.dec_type() == spv::Decoration::BuiltIn) return false;
    }
  }

  const size_t elem_type_index = 1;
  uint32_t elem_type_id;
  Instruction* elem_type;

  switch (storage->opcode()) {
    case spv::Op::OpTypeBool:
      return true;
    case spv::Op::OpTypeVector:
    case spv::Op::OpTypeMatrix:
    case spv::Op::OpTypeArray:
    case spv::Op::OpTypeRuntimeArray:
      elem_type_id = storage->GetOperandAs<uint32_t>(elem_type_index);
      elem_type = _.FindDef(elem_type_id);
      return ContainsInvalidBool(_, elem_type, skip_builtin);
    case spv::Op::OpTypeStruct:
      for (size_t member_type_index = 1;
           member_type_index < storage->operands().size();
           ++member_type_index) {
        auto member_type_id =
            storage->GetOperandAs<uint32_t>(member_type_index);
        auto member_type = _.FindDef(member_type_id);
        if (ContainsInvalidBool(_, member_type, skip_builtin)) return true;
      }
    default:
      break;
  }
  return false;
}

std::pair<Instruction*, Instruction*> GetPointerTypes(ValidationState_t& _,
                                                      const Instruction* inst) {
  Instruction* dst_pointer_type = nullptr;
  Instruction* src_pointer_type = nullptr;
  switch (inst->opcode()) {
    case spv::Op::OpCooperativeMatrixLoadNV:
    case spv::Op::OpCooperativeMatrixLoadTensorNV:
    case spv::Op::OpCooperativeMatrixLoadKHR:
    case spv::Op::OpCooperativeVectorLoadNV:
    case spv::Op::OpLoad: {
      auto load_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(2));
      dst_pointer_type = _.FindDef(load_pointer->type_id());
      break;
    }
    case spv::Op::OpCooperativeMatrixStoreNV:
    case spv::Op::OpCooperativeMatrixStoreTensorNV:
    case spv::Op::OpCooperativeMatrixStoreKHR:
    case spv::Op::OpCooperativeVectorStoreNV:
    case spv::Op::OpStore: {
      auto store_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(0));
      dst_pointer_type = _.FindDef(store_pointer->type_id());
      break;
    }
    // Spec: "Matching Storage Class is not required"
    case spv::Op::OpCopyMemory:
    case spv::Op::OpCopyMemorySized: {
      auto dst_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(0));
      dst_pointer_type = _.FindDef(dst_pointer->type_id());
      auto src_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(1));
      src_pointer_type = _.FindDef(src_pointer->type_id());
      break;
    }
    default:
      break;
  }

  return std::make_pair(dst_pointer_type, src_pointer_type);
}

// Returns the number of instruction words taken up by a memory access
// argument and its implied operands.
int MemoryAccessNumWords(uint32_t mask) {
  int result = 1;  // Count the mask
  if (mask & uint32_t(spv::MemoryAccessMask::Aligned)) ++result;
  if (mask & uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR)) ++result;
  if (mask & uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR)) ++result;
  return result;
}

// Returns the scope ID operand for MakeAvailable memory access with mask
// at the given operand index.
// This function is only called for OpLoad, OpStore, OpCopyMemory and
// OpCopyMemorySized, OpCooperativeMatrixLoadNV,
// OpCooperativeMatrixStoreNV, OpCooperativeVectorLoadNV,
// OpCooperativeVectorStoreNV.
uint32_t GetMakeAvailableScope(const Instruction* inst, uint32_t mask,
                               uint32_t mask_index) {
  assert(mask & uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR));
  uint32_t this_bit = uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR);
  uint32_t index =
      mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1)));
  return inst->GetOperandAs<uint32_t>(index);
}

// This function is only called for OpLoad, OpStore, OpCopyMemory,
// OpCopyMemorySized, OpCooperativeMatrixLoadNV,
// OpCooperativeMatrixStoreNV, OpCooperativeVectorLoadNV,
// OpCooperativeVectorStoreNV.
uint32_t GetMakeVisibleScope(const Instruction* inst, uint32_t mask,
                             uint32_t mask_index) {
  assert(mask & uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR));
  uint32_t this_bit = uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR);
  uint32_t index =
      mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1)));
  return inst->GetOperandAs<uint32_t>(index);
}

bool DoesStructContainRTA(const ValidationState_t& _, const Instruction* inst) {
  for (size_t member_index = 1; member_index < inst->operands().size();
       ++member_index) {
    const auto member_id = inst->GetOperandAs<uint32_t>(member_index);
    const auto member_type = _.FindDef(member_id);
    if (member_type->opcode() == spv::Op::OpTypeRuntimeArray) return true;
  }
  return false;
}

spv_result_t CheckMemoryAccess(ValidationState_t& _, const Instruction* inst,
                               uint32_t index) {
  Instruction* dst_pointer_type = nullptr;
  Instruction* src_pointer_type = nullptr;  // only used for OpCopyMemory
  std::tie(dst_pointer_type, src_pointer_type) = GetPointerTypes(_, inst);

  const spv::StorageClass dst_sc =
      dst_pointer_type ? dst_pointer_type->GetOperandAs<spv::StorageClass>(1)
                       : spv::StorageClass::Max;
  const spv::StorageClass src_sc =
      src_pointer_type ? src_pointer_type->GetOperandAs<spv::StorageClass>(1)
                       : spv::StorageClass::Max;

  if (inst->operands().size() <= index) {
    // Cases where lack of some operand is invalid
    if (src_sc == spv::StorageClass::PhysicalStorageBuffer ||
        dst_sc == spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(4708)
             << "Memory accesses with PhysicalStorageBuffer must use Aligned.";
    }
    return SPV_SUCCESS;
  }

  const uint32_t mask = inst->GetOperandAs<uint32_t>(index);
  if (mask & uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR)) {
    if (inst->opcode() == spv::Op::OpLoad ||
        inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV ||
        inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV ||
        inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR ||
        inst->opcode() == spv::Op::OpCooperativeVectorLoadNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "MakePointerAvailableKHR cannot be used with OpLoad.";
    }

    if (!(mask & uint32_t(spv::MemoryAccessMask::NonPrivatePointerKHR))) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "NonPrivatePointerKHR must be specified if "
                "MakePointerAvailableKHR is specified.";
    }

    // Check the associated scope for MakeAvailableKHR.
    const auto available_scope = GetMakeAvailableScope(inst, mask, index);
    if (auto error = ValidateMemoryScope(_, inst, available_scope))
      return error;
  }

  if (mask & uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR)) {
    if (inst->opcode() == spv::Op::OpStore ||
        inst->opcode() == spv::Op::OpCooperativeMatrixStoreNV ||
        inst->opcode() == spv::Op::OpCooperativeMatrixStoreKHR ||
        inst->opcode() == spv::Op::OpCooperativeMatrixStoreTensorNV ||
        inst->opcode() == spv::Op::OpCooperativeVectorStoreNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "MakePointerVisibleKHR cannot be used with OpStore.";
    }

    if (!(mask & uint32_t(spv::MemoryAccessMask::NonPrivatePointerKHR))) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "NonPrivatePointerKHR must be specified if "
             << "MakePointerVisibleKHR is specified.";
    }

    // Check the associated scope for MakeVisibleKHR.
    const auto visible_scope = GetMakeVisibleScope(inst, mask, index);
    if (auto error = ValidateMemoryScope(_, inst, visible_scope)) return error;
  }

  if (mask & uint32_t(spv::MemoryAccessMask::NonPrivatePointerKHR)) {
    if (dst_sc != spv::StorageClass::Uniform &&
        dst_sc != spv::StorageClass::Workgroup &&
        dst_sc != spv::StorageClass::CrossWorkgroup &&
        dst_sc != spv::StorageClass::Generic &&
        dst_sc != spv::StorageClass::Image &&
        dst_sc != spv::StorageClass::StorageBuffer &&
        dst_sc != spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "NonPrivatePointerKHR requires a pointer in Uniform, "
             << "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer "
             << "storage classes.";
    }
    if (src_sc != spv::StorageClass::Max &&
        src_sc != spv::StorageClass::Uniform &&
        src_sc != spv::StorageClass::Workgroup &&
        src_sc != spv::StorageClass::CrossWorkgroup &&
        src_sc != spv::StorageClass::Generic &&
        src_sc != spv::StorageClass::Image &&
        src_sc != spv::StorageClass::StorageBuffer &&
        src_sc != spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "NonPrivatePointerKHR requires a pointer in Uniform, "
             << "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer "
             << "storage classes.";
    }
  }

  if (!(mask & uint32_t(spv::MemoryAccessMask::Aligned))) {
    if (src_sc == spv::StorageClass::PhysicalStorageBuffer ||
        dst_sc == spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(4708)
             << "Memory accesses with PhysicalStorageBuffer must use Aligned.";
    }
  } else {
    // even if there are other masks, the Aligned operand will be next
    const uint32_t aligned_value = inst->GetOperandAs<uint32_t>(index + 1);
    const bool is_power_of_two =
        aligned_value && !(aligned_value & (aligned_value - 1));
    if (!is_power_of_two) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Memory accesses Aligned operand value " << aligned_value
             << " is not a power of two.";
    }

    uint32_t largest_scalar = 0;
    if (dst_sc == spv::StorageClass::PhysicalStorageBuffer) {
      if (dst_pointer_type->opcode() != spv::Op::OpTypeUntypedPointerKHR) {
        largest_scalar =
            _.GetLargestScalarType(dst_pointer_type->GetOperandAs<uint32_t>(2));
      } else if (inst->type_id() != 0) {
        largest_scalar = _.GetLargestScalarType(inst->type_id());
      } else {
        // TODO need to handle cases like OpStore and OpCopyMemorySized which
        // don't have a result type
      }
    }
    // TODO - Handle Untyped in OpCopyMemory
    if (src_sc == spv::StorageClass::PhysicalStorageBuffer &&
        src_pointer_type->opcode() != spv::Op::OpTypeUntypedPointerKHR) {
      largest_scalar = std::max(
          largest_scalar,
          _.GetLargestScalarType(src_pointer_type->GetOperandAs<uint32_t>(2)));
    }
    if (aligned_value < largest_scalar) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(6314) << "Memory accesses Aligned operand value "
             << aligned_value << " is too small, the largest scalar type is "
             << largest_scalar << " bytes.";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateVariable(ValidationState_t& _, const Instruction* inst) {
  const bool untyped_pointer = inst->opcode() == spv::Op::OpUntypedVariableKHR;

  auto result_type = _.FindDef(inst->type_id());
  if (untyped_pointer) {
    if (!result_type ||
        result_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Result type must be an untyped pointer";
  } else {
    if (!result_type || result_type->opcode() != spv::Op::OpTypePointer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpVariable Result Type <id> " << _.getIdName(inst->type_id())
             << " is not a pointer type.";
    }
  }

  const auto storage_class_index = 2u;
  auto storage_class =
      inst->GetOperandAs<spv::StorageClass>(storage_class_index);
  uint32_t value_id = 0;
  if (untyped_pointer) {
    const auto has_data_type = 3u < inst->operands().size();
    if (has_data_type) {
      value_id = inst->GetOperandAs<uint32_t>(3u);
      auto data_type = _.FindDef(value_id);
      if (!data_type || !spvOpcodeGeneratesType(data_type->opcode())) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Data type must be a type instruction";
      }
    } else {
      if (storage_class == spv::StorageClass::Function ||
          storage_class == spv::StorageClass::Private ||
          storage_class == spv::StorageClass::Workgroup) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Data type must be specified for Function, Private, and "
                  "Workgroup storage classes";
      }
      if (spvIsVulkanEnv(_.context()->target_env)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(11167)
               << "Vulkan requires that data type be specified";
      }
    }
  }

  // For OpVariable the data type comes from pointee type of the result type,
  // while for OpUntypedVariableKHR the data type comes from the operand.
  if (!untyped_pointer) {
    value_id = result_type->GetOperandAs<uint32_t>(2);
  }
  auto value_type = value_id == 0 ? nullptr : _.FindDef(value_id);

  const auto initializer_index = untyped_pointer ? 4u : 3u;
  if (initializer_index < inst->operands().size()) {
    const auto initializer_id = inst->GetOperandAs<uint32_t>(initializer_index);
    const auto initializer = _.FindDef(initializer_id);
    const auto is_module_scope_var =
        initializer &&
        (initializer->opcode() == spv::Op::OpVariable ||
         initializer->opcode() == spv::Op::OpUntypedVariableKHR) &&
        (initializer->GetOperandAs<spv::StorageClass>(storage_class_index) !=
         spv::StorageClass::Function);
    const auto is_constant =
        initializer && spvOpcodeIsConstant(initializer->opcode());
    if (!initializer || !(is_constant || is_module_scope_var)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Variable Initializer <id> " << _.getIdName(initializer_id)
             << " is not a constant or module-scope variable.";
    }
    if (initializer->type_id() != value_id) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Initializer type must match the data type";
    }
  }

  if (storage_class != spv::StorageClass::Workgroup &&
      storage_class != spv::StorageClass::CrossWorkgroup &&
      storage_class != spv::StorageClass::Private &&
      storage_class != spv::StorageClass::Function &&
      storage_class != spv::StorageClass::UniformConstant &&
      storage_class != spv::StorageClass::RayPayloadKHR &&
      storage_class != spv::StorageClass::IncomingRayPayloadKHR &&
      storage_class != spv::StorageClass::HitAttributeKHR &&
      storage_class != spv::StorageClass::CallableDataKHR &&
      storage_class != spv::StorageClass::IncomingCallableDataKHR &&
      storage_class != spv::StorageClass::TaskPayloadWorkgroupEXT &&
      storage_class != spv::StorageClass::HitObjectAttributeNV &&
      storage_class != spv::StorageClass::NodePayloadAMDX) {
    bool storage_input_or_output = storage_class == spv::StorageClass::Input ||
                                   storage_class == spv::StorageClass::Output;
    bool builtin = false;
    if (storage_input_or_output) {
      for (const Decoration& decoration : _.id_decorations(inst->id())) {
        if (decoration.dec_type() == spv::Decoration::BuiltIn) {
          builtin = true;
          break;
        }
      }
    }
    if (!builtin && value_type &&
        ContainsInvalidBool(_, value_type, storage_input_or_output)) {
      if (storage_input_or_output) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(7290)
               << "If OpTypeBool is stored in conjunction with OpVariable "
                  "using Input or Output Storage Classes it requires a BuiltIn "
                  "decoration";

      } else {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "If OpTypeBool is stored in conjunction with OpVariable, it "
                  "can only be used with non-externally visible shader Storage "
                  "Classes: Workgroup, CrossWorkgroup, Private, Function, "
                  "Input, Output, RayPayloadKHR, IncomingRayPayloadKHR, "
                  "HitAttributeKHR, CallableDataKHR, "
                  "IncomingCallableDataKHR, NodePayloadAMDX, or "
                  "UniformConstant";
      }
    }
  }

  if (!_.IsValidStorageClass(storage_class)) {
    return _.diag(SPV_ERROR_INVALID_BINARY, inst)
           << _.VkErrorID(4643)
           << "Invalid storage class for target environment";
  }

  if (storage_class == spv::StorageClass::Generic) {
    return _.diag(SPV_ERROR_INVALID_BINARY, inst)
           << "Variable storage class cannot be Generic";
  }

  if (inst->function() && storage_class != spv::StorageClass::Function) {
    return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
           << "Variables must have a function[7] storage class inside"
              " of a function";
  }

  if (!inst->function() && storage_class == spv::StorageClass::Function) {
    return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
           << "Variables can not have a function[7] storage class "
              "outside of a function";
  }

  // SPIR-V 3.32.8: Check that pointer type and variable type have the same
  // storage class.
  const auto result_storage_class_index = 1;
  const auto result_storage_class =
      result_type->GetOperandAs<spv::StorageClass>(result_storage_class_index);
  if (storage_class != result_storage_class) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Storage class must match result type storage class";
  }

  // Variable pointer related restrictions.
  const auto pointee = untyped_pointer
                           ? value_id == 0 ? nullptr : _.FindDef(value_id)
                           : _.FindDef(result_type->word(3));
  if (_.addressing_model() == spv::AddressingModel::Logical &&
      !_.options()->relax_logical_pointer) {
    // VariablePointersStorageBuffer is implied by VariablePointers.
    if (pointee && pointee->opcode() == spv::Op::OpTypePointer) {
      if (!_.HasCapability(spv::Capability::VariablePointersStorageBuffer)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "In Logical addressing, variables may not allocate a pointer "
               << "type";
      } else if (storage_class != spv::StorageClass::Function &&
                 storage_class != spv::StorageClass::Private) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "In Logical addressing with variable pointers, variables "
               << "that allocate pointers must be in Function or Private "
               << "storage classes";
      }
    }
  }

  if (spvIsVulkanEnv(_.context()->target_env)) {
    // Vulkan Push Constant Interface section: Check type of PushConstant
    // variables.
    if (storage_class == spv::StorageClass::PushConstant) {
      if (pointee && pointee->opcode() != spv::Op::OpTypeStruct) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(6808) << "PushConstant OpVariable <id> "
               << _.getIdName(inst->id()) << " has illegal type.\n"
               << "From Vulkan spec, Push Constant Interface section:\n"
               << "Such variables must be typed as OpTypeStruct";
      }
    }

    // Vulkan Descriptor Set Interface: Check type of UniformConstant and
    // Uniform variables.
    if (storage_class == spv::StorageClass::UniformConstant) {
      if (pointee && !IsAllowedTypeOrArrayOfSame(
                         _, pointee,
                         {spv::Op::OpTypeImage, spv::Op::OpTypeSampler,
                          spv::Op::OpTypeSampledImage, spv::Op::OpTypeTensorARM,
                          spv::Op::OpTypeAccelerationStructureKHR})) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(4655) << "UniformConstant OpVariable <id> "
               << _.getIdName(inst->id()) << " has illegal type.\n"
               << "Variables identified with the UniformConstant storage class "
               << "are used only as handles to refer to opaque resources. Such "
               << "variables must be typed as OpTypeImage, OpTypeSampler, "
               << "OpTypeSampledImage, OpTypeAccelerationStructureKHR, "
               << "or an array of one of these types.";
      }
    }

    if (storage_class == spv::StorageClass::Uniform) {
      if (pointee &&
          !IsAllowedTypeOrArrayOfSame(_, pointee, {spv::Op::OpTypeStruct})) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(6807) << "Uniform OpVariable <id> "
               << _.getIdName(inst->id()) << " has illegal type.\n"
               << "From Vulkan spec:\n"
               << "Variables identified with the Uniform storage class are "
               << "used to access transparent buffer backed resources. Such "
               << "variables must be typed as OpTypeStruct, or an array of "
               << "this type";
      }
    }

    if (storage_class == spv::StorageClass::StorageBuffer) {
      if (pointee &&
          !IsAllowedTypeOrArrayOfSame(_, pointee, {spv::Op::OpTypeStruct})) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(6807) << "StorageBuffer OpVariable <id> "
               << _.getIdName(inst->id()) << " has illegal type.\n"
               << "From Vulkan spec:\n"
               << "Variables identified with the StorageBuffer storage class "
                  "are used to access transparent buffer backed resources. "
                  "Such variables must be typed as OpTypeStruct, or an array "
                  "of this type";
      }
    }

    // Check for invalid use of Invariant
    if (storage_class != spv::StorageClass::Input &&
        storage_class != spv::StorageClass::Output) {
      if (_.HasDecoration(inst->id(), spv::Decoration::Invariant)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(4677)
               << "Variable decorated with Invariant must only be identified "
                  "with the Input or Output storage class in Vulkan "
                  "environment.";
      }
      // Need to check if only the members in a struct are decorated
      if (value_type && value_type->opcode() == spv::Op::OpTypeStruct) {
        if (_.HasDecoration(value_id, spv::Decoration::Invariant)) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << _.VkErrorID(4677)
                 << "Variable struct member decorated with Invariant must only "
                    "be identified with the Input or Output storage class in "
                    "Vulkan environment.";
        }
      }
    }
  }

  // Vulkan Appendix A: Check that if contains initializer, then
  // storage class is Output, Private, or Function.
  if (inst->operands().size() > initializer_index &&
      storage_class != spv::StorageClass::Output &&
      storage_class != spv::StorageClass::Private &&
      storage_class != spv::StorageClass::Function) {
    if (spvIsVulkanEnv(_.context()->target_env)) {
      if (storage_class == spv::StorageClass::Workgroup) {
        auto init_id = inst->GetOperandAs<uint32_t>(initializer_index);
        auto init = _.FindDef(init_id);
        if (init->opcode() != spv::Op::OpConstantNull) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << _.VkErrorID(4734) << "OpVariable, <id> "
                 << _.getIdName(inst->id())
                 << ", initializers are limited to OpConstantNull in "
                    "Workgroup "
                    "storage class";
        }
      } else if (storage_class != spv::StorageClass::Output &&
                 storage_class != spv::StorageClass::Private &&
                 storage_class != spv::StorageClass::Function) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(4651) << "OpVariable, <id> "
               << _.getIdName(inst->id())
               << ", has a disallowed initializer & storage class "
               << "combination.\n"
               << "From " << spvLogStringForEnv(_.context()->target_env)
               << " spec:\n"
               << "Variable declarations that include initializers must have "
               << "one of the following storage classes: Output, Private, "
               << "Function or Workgroup";
      }
    }
  }

  if (initializer_index < inst->operands().size()) {
    if (storage_class == spv::StorageClass::TaskPayloadWorkgroupEXT) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpVariable, <id> " << _.getIdName(inst->id())
             << ", initializer are not allowed for TaskPayloadWorkgroupEXT";
    }
    if (storage_class == spv::StorageClass::Input) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpVariable, <id> " << _.getIdName(inst->id())
             << ", initializer are not allowed for Input";
    }
    if (storage_class == spv::StorageClass::HitObjectAttributeNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpVariable, <id> " << _.getIdName(inst->id())
             << ", initializer are not allowed for HitObjectAttributeNV";
    }
  }

  if (storage_class == spv::StorageClass::PhysicalStorageBuffer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "PhysicalStorageBuffer must not be used with OpVariable.";
  }

  // Vulkan specific validation rules for OpTypeRuntimeArray
  if (spvIsVulkanEnv(_.context()->target_env)) {
    // OpTypeRuntimeArray should only ever be in a container like OpTypeStruct,
    // so should never appear as a bare variable.
    // Unless the module has the RuntimeDescriptorArrayEXT capability.
    if (value_type && value_type->opcode() == spv::Op::OpTypeRuntimeArray) {
      if (!_.HasCapability(spv::Capability::RuntimeDescriptorArrayEXT)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(4680) << "OpVariable, <id> "
               << _.getIdName(inst->id())
               << ", is attempting to create memory for an illegal type, "
               << "OpTypeRuntimeArray.\nFor Vulkan OpTypeRuntimeArray can only "
               << "appear as the final member of an OpTypeStruct, thus cannot "
               << "be instantiated via OpVariable";
      } else {
        // A bare variable OpTypeRuntimeArray is allowed in this context, but
        // still need to check the storage class.
        if (storage_class != spv::StorageClass::StorageBuffer &&
            storage_class != spv::StorageClass::Uniform &&
            storage_class != spv::StorageClass::UniformConstant) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << _.VkErrorID(4680)
                 << "For Vulkan with RuntimeDescriptorArrayEXT, a variable "
                 << "containing OpTypeRuntimeArray must have storage class of "
                 << "StorageBuffer, Uniform, or UniformConstant.";
        }
      }
    }

    // If an OpStruct has an OpTypeRuntimeArray somewhere within it, then it
    // must either have the storage class StorageBuffer and be decorated
    // with Block, or it must be in the Uniform storage class and be decorated
    // as BufferBlock.
    if (value_type && value_type->opcode() == spv::Op::OpTypeStruct) {
      if (DoesStructContainRTA(_, value_type)) {
        if (storage_class == spv::StorageClass::StorageBuffer ||
            storage_class == spv::StorageClass::PhysicalStorageBuffer) {
          if (!_.HasDecoration(value_id, spv::Decoration::Block)) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << _.VkErrorID(4680)
                   << "For Vulkan, an OpTypeStruct variable containing an "
                   << "OpTypeRuntimeArray must be decorated with Block if it "
                   << "has storage class StorageBuffer or "
                      "PhysicalStorageBuffer.";
          }
        } else if (storage_class == spv::StorageClass::Uniform) {
          if (!_.HasDecoration(value_id, spv::Decoration::BufferBlock)) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << _.VkErrorID(4680)
                   << "For Vulkan, an OpTypeStruct variable containing an "
                   << "OpTypeRuntimeArray must be decorated with BufferBlock "
                   << "if it has storage class Uniform.";
          }
        } else {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << _.VkErrorID(4680)
                 << "For Vulkan, OpTypeStruct variables containing "
                 << "OpTypeRuntimeArray must have storage class of "
                 << "StorageBuffer, PhysicalStorageBuffer, or Uniform.";
        }
      }
    }
  }

  // Cooperative matrix types can only be allocated in Function or Private
  if ((storage_class != spv::StorageClass::Function &&
       storage_class != spv::StorageClass::Private) &&
      pointee &&
      _.ContainsType(pointee->id(), [](const Instruction* type_inst) {
        auto opcode = type_inst->opcode();
        return opcode == spv::Op::OpTypeCooperativeMatrixNV ||
               opcode == spv::Op::OpTypeCooperativeMatrixKHR;
      })) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Cooperative matrix types (or types containing them) can only be "
              "allocated "
           << "in Function or Private storage classes or as function "
              "parameters";
  }

  if ((storage_class != spv::StorageClass::Function &&
       storage_class != spv::StorageClass::Private) &&
      pointee &&
      _.ContainsType(pointee->id(), [](const Instruction* type_inst) {
        auto opcode = type_inst->opcode();
        return opcode == spv::Op::OpTypeCooperativeVectorNV;
      })) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Cooperative vector types (or types containing them) can only be "
              "allocated "
           << "in Function or Private storage classes or as function "
              "parameters";
  }

  if (_.HasCapability(spv::Capability::Shader)) {
    // Don't allow variables containing 16-bit elements without the appropriate
    // capabilities.
    if ((!_.HasCapability(spv::Capability::Int16) &&
         _.ContainsSizedIntOrFloatType(value_id, spv::Op::OpTypeInt, 16)) ||
        (!_.HasCapability(spv::Capability::Float16) &&
         _.ContainsSizedIntOrFloatType(value_id, spv::Op::OpTypeFloat, 16))) {
      auto underlying_type = value_type;
      while (underlying_type &&
             underlying_type->opcode() == spv::Op::OpTypePointer) {
        storage_class = underlying_type->GetOperandAs<spv::StorageClass>(1u);
        underlying_type =
            _.FindDef(underlying_type->GetOperandAs<uint32_t>(2u));
      }
      bool storage_class_ok = true;
      std::string sc_name = _.grammar().lookupOperandName(
          SPV_OPERAND_TYPE_STORAGE_CLASS, uint32_t(storage_class));
      switch (storage_class) {
        case spv::StorageClass::StorageBuffer:
        case spv::StorageClass::PhysicalStorageBuffer:
          if (!_.HasCapability(spv::Capability::StorageBuffer16BitAccess)) {
            storage_class_ok = false;
          }
          break;
        case spv::StorageClass::Uniform:
          if (underlying_type &&
              !_.HasCapability(
                  spv::Capability::UniformAndStorageBuffer16BitAccess)) {
            if (underlying_type->opcode() == spv::Op::OpTypeArray ||
                underlying_type->opcode() == spv::Op::OpTypeRuntimeArray) {
              underlying_type =
                  _.FindDef(underlying_type->GetOperandAs<uint32_t>(1u));
            }
            if (!_.HasCapability(spv::Capability::StorageBuffer16BitAccess) ||
                !_.HasDecoration(underlying_type->id(),
                                 spv::Decoration::BufferBlock)) {
              storage_class_ok = false;
            }
          }
          break;
        case spv::StorageClass::PushConstant:
          if (!_.HasCapability(spv::Capability::StoragePushConstant16)) {
            storage_class_ok = false;
          }
          break;
        case spv::StorageClass::Input:
        case spv::StorageClass::Output:
          if (!_.HasCapability(spv::Capability::StorageInputOutput16)) {
            storage_class_ok = false;
          }
          break;
        case spv::StorageClass::Workgroup:
          if (!_.HasCapability(
                  spv::Capability::
                      WorkgroupMemoryExplicitLayout16BitAccessKHR)) {
            storage_class_ok = false;
          }
          break;
        default:
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "Cannot allocate a variable containing a 16-bit type in "
                 << sc_name << " storage class";
      }
      if (!storage_class_ok) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Allocating a variable containing a 16-bit element in "
               << sc_name << " storage class requires an additional capability";
      }
    }
    // Don't allow variables containing 8-bit elements without the appropriate
    // capabilities.
    if (!_.HasCapability(spv::Capability::Int8) &&
        _.ContainsSizedIntOrFloatType(value_id, spv::Op::OpTypeInt, 8)) {
      auto underlying_type = value_type;
      while (underlying_type &&
             underlying_type->opcode() == spv::Op::OpTypePointer) {
        storage_class = underlying_type->GetOperandAs<spv::StorageClass>(1u);
        underlying_type =
            _.FindDef(underlying_type->GetOperandAs<uint32_t>(2u));
      }
      bool storage_class_ok = true;
      std::string sc_name = _.grammar().lookupOperandName(
          SPV_OPERAND_TYPE_STORAGE_CLASS, uint32_t(storage_class));
      switch (storage_class) {
        case spv::StorageClass::StorageBuffer:
        case spv::StorageClass::PhysicalStorageBuffer:
          if (!_.HasCapability(spv::Capability::StorageBuffer8BitAccess)) {
            storage_class_ok = false;
          }
          break;
        case spv::StorageClass::Uniform:
          if (underlying_type &&
              !_.HasCapability(
                  spv::Capability::UniformAndStorageBuffer8BitAccess)) {
            if (underlying_type->opcode() == spv::Op::OpTypeArray ||
                underlying_type->opcode() == spv::Op::OpTypeRuntimeArray) {
              underlying_type =
                  _.FindDef(underlying_type->GetOperandAs<uint32_t>(1u));
            }
            if (!_.HasCapability(spv::Capability::StorageBuffer8BitAccess) ||
                !_.HasDecoration(underlying_type->id(),
                                 spv::Decoration::BufferBlock)) {
              storage_class_ok = false;
            }
          }
          break;
        case spv::StorageClass::PushConstant:
          if (!_.HasCapability(spv::Capability::StoragePushConstant8)) {
            storage_class_ok = false;
          }
          break;
        case spv::StorageClass::Workgroup:
          if (!_.HasCapability(
                  spv::Capability::
                      WorkgroupMemoryExplicitLayout8BitAccessKHR)) {
            storage_class_ok = false;
          }
          break;
        default:
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "Cannot allocate a variable containing a 8-bit type in "
                 << sc_name << " storage class";
      }
      if (!storage_class_ok) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Allocating a variable containing a 8-bit element in "
               << sc_name << " storage class requires an additional capability";
      }
    }
  }

  if (_.HasCapability(spv::Capability::TileShadingQCOM) &&
      storage_class == spv::StorageClass::TileAttachmentQCOM) {
    if (result_type->opcode() == spv::Op::OpTypePointer) {
      const auto pointee_type =
          _.FindDef(result_type->GetOperandAs<uint32_t>(2));
      if (pointee_type && pointee_type->opcode() == spv::Op::OpTypeImage) {
        spv::Dim dim = static_cast<spv::Dim>(pointee_type->word(3));
        if (dim != spv::Dim::Dim2D) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Any OpTypeImage variable in the TileAttachmentQCOM "
                    "Storage Class must "
                    "have 2D as its dimension";
        }
        unsigned sampled = pointee_type->word(7);
        if (sampled != 1 && sampled != 2) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Any OpyTpeImage variable in the TileAttachmentQCOM "
                    "Storage Class must "
                    "have 1 or 2 as Image 'Sampled' parameter";
        }
        for (const auto& pair_o : inst->uses()) {
          const auto* use_inst_o = pair_o.first;
          if (use_inst_o->opcode() == spv::Op::OpLoad) {
            for (const auto& pair_i : use_inst_o->uses()) {
              const auto* use_inst_i = pair_i.first;
              switch (use_inst_i->opcode()) {
                case spv::Op::OpImageQueryFormat:
                case spv::Op::OpImageQueryOrder:
                case spv::Op::OpImageQuerySizeLod:
                case spv::Op::OpImageQuerySize:
                case spv::Op::OpImageQueryLod:
                case spv::Op::OpImageQueryLevels:
                case spv::Op::OpImageQuerySamples:
                  return _.diag(SPV_ERROR_INVALID_DATA, inst)
                         << "Any variable in the TileAttachmentQCOM Storage "
                            "Class must "
                            "not be consumed by an OpImageQuery* instruction";
                default:
                  break;
              }
            }
          }
        }
      }
    }

    if (!(_.HasDecoration(inst->id(), spv::Decoration::DescriptorSet) &&
          _.HasDecoration(inst->id(), spv::Decoration::Binding))) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Any variable in the TileAttachmentQCOM Storage Class must "
                "be decorated with DescriptorSet and Binding";
    }
    if (_.HasDecoration(inst->id(), spv::Decoration::Component)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Any variable in the TileAttachmentQCOM Storage Class must "
                "not be decorated with Component decoration";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateLoad(ValidationState_t& _, const Instruction* inst) {
  const auto result_type = _.FindDef(inst->type_id());
  if (!result_type) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpLoad Result Type <id> " << _.getIdName(inst->type_id())
           << " is not defined.";
  }

  const auto pointer_index = 2;
  const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
  const auto pointer = _.FindDef(pointer_id);
  if (!pointer ||
      ((_.addressing_model() == spv::AddressingModel::Logical) &&
       ((!_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
        (_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpLoad Pointer <id> " << _.getIdName(pointer_id)
           << " is not a logical pointer.";
  }

  const auto pointer_type = _.FindDef(pointer->type_id());
  if (!pointer_type ||
      (pointer_type->opcode() != spv::Op::OpTypePointer &&
       pointer_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpLoad type for pointer <id> " << _.getIdName(pointer_id)
           << " is not a pointer type.";
  }

  if (pointer_type->opcode() == spv::Op::OpTypePointer) {
    const auto pointee_type =
        _.FindDef(pointer_type->GetOperandAs<uint32_t>(2));
    if (!pointee_type || result_type->id() != pointee_type->id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpLoad Result Type <id> " << _.getIdName(inst->type_id())
             << " does not match Pointer <id> " << _.getIdName(pointer->id())
             << "s type.";
    }
  }

  if (!_.options()->before_hlsl_legalization &&
      _.ContainsRuntimeArray(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Cannot load a runtime-sized array";
  }

  if (auto error = CheckMemoryAccess(_, inst, 3)) return error;

  if (_.HasCapability(spv::Capability::Shader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id()) &&
      result_type->opcode() != spv::Op::OpTypePointer) {
    if (result_type->opcode() != spv::Op::OpTypeInt &&
        result_type->opcode() != spv::Op::OpTypeFloat &&
        result_type->opcode() != spv::Op::OpTypeVector &&
        result_type->opcode() != spv::Op::OpTypeMatrix) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "8- or 16-bit loads must be a scalar, vector or matrix type";
    }
  }

  _.RegisterQCOMImageProcessingTextureConsumer(pointer_id, inst, nullptr);

  return SPV_SUCCESS;
}

spv_result_t ValidateStore(ValidationState_t& _, const Instruction* inst) {
  const auto pointer_index = 0;
  const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
  const auto pointer = _.FindDef(pointer_id);
  if (!pointer ||
      (_.addressing_model() == spv::AddressingModel::Logical &&
       ((!_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
        (_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpStore Pointer <id> " << _.getIdName(pointer_id)
           << " is not a logical pointer.";
  }
  const auto pointer_type = _.FindDef(pointer->type_id());
  if (!pointer_type ||
      (pointer_type->opcode() != spv::Op::OpTypePointer &&
       pointer_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpStore type for pointer <id> " << _.getIdName(pointer_id)
           << " is not a pointer type.";
  }

  Instruction* type = nullptr;
  if (pointer_type->opcode() == spv::Op::OpTypePointer) {
    const auto type_id = pointer_type->GetOperandAs<uint32_t>(2);
    type = _.FindDef(type_id);
    if (!type || spv::Op::OpTypeVoid == type->opcode()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpStore Pointer <id> " << _.getIdName(pointer_id)
             << "s type is void.";
    }
  }

  // validate storage class
  {
    uint32_t data_type;
    spv::StorageClass storage_class;
    if (!_.GetPointerTypeInfo(pointer_type->id(), &data_type, &storage_class)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpStore Pointer <id> " << _.getIdName(pointer_id)
             << " is not pointer type";
    }

    if (storage_class == spv::StorageClass::UniformConstant ||
        storage_class == spv::StorageClass::Input ||
        storage_class == spv::StorageClass::PushConstant) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpStore Pointer <id> " << _.getIdName(pointer_id)
             << " storage class is read-only";
    } else if (storage_class == spv::StorageClass::ShaderRecordBufferKHR) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "ShaderRecordBufferKHR Storage Class variables are read only";
    } else if (storage_class == spv::StorageClass::HitAttributeKHR) {
      std::string errorVUID = _.VkErrorID(4703);
      _.function(inst->function()->id())
          ->RegisterExecutionModelLimitation(
              [errorVUID](spv::ExecutionModel model, std::string* message) {
                if (model == spv::ExecutionModel::AnyHitKHR ||
                    model == spv::ExecutionModel::ClosestHitKHR) {
                  if (message) {
                    *message =
                        errorVUID +
                        "HitAttributeKHR Storage Class variables are read only "
                        "with AnyHitKHR and ClosestHitKHR";
                  }
                  return false;
                }
                return true;
              });
    }

    if (spvIsVulkanEnv(_.context()->target_env) &&
        storage_class == spv::StorageClass::Uniform) {
      auto base_ptr = _.TracePointer(pointer);
      if (base_ptr->opcode() == spv::Op::OpVariable) {
        // If it's not a variable a different check should catch the problem.
        auto base_type = _.FindDef(base_ptr->GetOperandAs<uint32_t>(0));
        // Get the pointed-to type.
        base_type = _.FindDef(base_type->GetOperandAs<uint32_t>(2u));
        if (base_type->opcode() == spv::Op::OpTypeArray ||
            base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
          base_type = _.FindDef(base_type->GetOperandAs<uint32_t>(1u));
        }
        if (_.HasDecoration(base_type->id(), spv::Decoration::Block)) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << _.VkErrorID(6925)
                 << "In the Vulkan environment, cannot store to Uniform Blocks";
        }
      }
    }
  }

  const auto object_index = 1;
  const auto object_id = inst->GetOperandAs<uint32_t>(object_index);
  const auto object = _.FindDef(object_id);
  if (!object || !object->type_id()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpStore Object <id> " << _.getIdName(object_id)
           << " is not an object.";
  }
  const auto object_type = _.FindDef(object->type_id());
  if (!object_type || spv::Op::OpTypeVoid == object_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpStore Object <id> " << _.getIdName(object_id)
           << "s type is void.";
  }

  if (type && (type->id() != object_type->id())) {
    if (!_.options()->relax_struct_store ||
        type->opcode() != spv::Op::OpTypeStruct ||
        object_type->opcode() != spv::Op::OpTypeStruct) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpStore Pointer <id> " << _.getIdName(pointer_id)
             << "s type does not match Object <id> "
             << _.getIdName(object->id()) << "s type.";
    }

    // TODO: Check for layout compatible matricies and arrays as well.
    if (!AreLayoutCompatibleStructs(_, type, object_type)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpStore Pointer <id> " << _.getIdName(pointer_id)
             << "s layout does not match Object <id> "
             << _.getIdName(object->id()) << "s layout.";
    }
  }

  if (auto error = CheckMemoryAccess(_, inst, 2)) return error;

  if (_.HasCapability(spv::Capability::Shader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id()) &&
      object_type->opcode() != spv::Op::OpTypePointer) {
    if (object_type->opcode() != spv::Op::OpTypeInt &&
        object_type->opcode() != spv::Op::OpTypeFloat &&
        object_type->opcode() != spv::Op::OpTypeVector &&
        object_type->opcode() != spv::Op::OpTypeMatrix) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "8- or 16-bit stores must be a scalar, vector or matrix type";
    }
  }

  if (spvIsVulkanEnv(_.context()->target_env) &&
      !_.options()->before_hlsl_legalization) {
    const auto isForbiddenType = [](const Instruction* type_inst) {
      auto opcode = type_inst->opcode();
      return opcode == spv::Op::OpTypeImage ||
             opcode == spv::Op::OpTypeSampler ||
             opcode == spv::Op::OpTypeSampledImage ||
             opcode == spv::Op::OpTypeAccelerationStructureKHR;
    };
    if (_.ContainsType(object_type->id(), isForbiddenType)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(6924)
             << "Cannot store to OpTypeImage, OpTypeSampler, "
                "OpTypeSampledImage, or OpTypeAccelerationStructureKHR objects";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCopyMemoryMemoryAccess(ValidationState_t& _,
                                            const Instruction* inst) {
  assert(inst->opcode() == spv::Op::OpCopyMemory ||
         inst->opcode() == spv::Op::OpCopyMemorySized);
  const uint32_t first_access_index =
      inst->opcode() == spv::Op::OpCopyMemory ? 2 : 3;
  if (inst->operands().size() > first_access_index) {
    if (auto error = CheckMemoryAccess(_, inst, first_access_index))
      return error;

    const auto first_access = inst->GetOperandAs<uint32_t>(first_access_index);
    const uint32_t second_access_index =
        first_access_index + MemoryAccessNumWords(first_access);
    if (inst->operands().size() > second_access_index) {
      if (_.features().copy_memory_permits_two_memory_accesses) {
        if (auto error = CheckMemoryAccess(_, inst, second_access_index))
          return error;

        // In the two-access form in SPIR-V 1.4 and later:
        //  - the first is the target (write) access and it can't have
        //  make-visible.
        //  - the second is the source (read) access and it can't have
        //  make-available.
        if (first_access &
            uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR)) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Target memory access must not include "
                    "MakePointerVisibleKHR";
        }
        const auto second_access =
            inst->GetOperandAs<uint32_t>(second_access_index);
        if (second_access &
            uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR)) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Source memory access must not include "
                    "MakePointerAvailableKHR";
        }
      } else {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << spvOpcodeString(static_cast<spv::Op>(inst->opcode()))
               << " with two memory access operands requires SPIR-V 1.4 or "
                  "later";
      }
    }
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateCopyMemory(ValidationState_t& _, const Instruction* inst) {
  const auto target_index = 0;
  const auto target_id = inst->GetOperandAs<uint32_t>(target_index);
  const auto target = _.FindDef(target_id);
  if (!target) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Target operand <id> " << _.getIdName(target_id)
           << " is not defined.";
  }

  const auto source_index = 1;
  const auto source_id = inst->GetOperandAs<uint32_t>(source_index);
  const auto source = _.FindDef(source_id);
  if (!source) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Source operand <id> " << _.getIdName(source_id)
           << " is not defined.";
  }

  const auto target_pointer_type = _.FindDef(target->type_id());
  if (!target_pointer_type ||
      (target_pointer_type->opcode() != spv::Op::OpTypePointer &&
       target_pointer_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Target operand <id> " << _.getIdName(target_id)
           << " is not a pointer.";
  }

  const auto source_pointer_type = _.FindDef(source->type_id());
  if (!source_pointer_type ||
      (source_pointer_type->opcode() != spv::Op::OpTypePointer &&
       source_pointer_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Source operand <id> " << _.getIdName(source_id)
           << " is not a pointer.";
  }

  if (inst->opcode() == spv::Op::OpCopyMemory) {
    const bool target_typed =
        target_pointer_type->opcode() == spv::Op::OpTypePointer;
    const bool source_typed =
        source_pointer_type->opcode() == spv::Op::OpTypePointer;
    Instruction* target_type = nullptr;
    Instruction* source_type = nullptr;
    if (target_typed) {
      target_type = _.FindDef(target_pointer_type->GetOperandAs<uint32_t>(2));

      if (!target_type || target_type->opcode() == spv::Op::OpTypeVoid) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Target operand <id> " << _.getIdName(target_id)
               << " cannot be a void pointer.";
      }
    }

    if (source_typed) {
      source_type = _.FindDef(source_pointer_type->GetOperandAs<uint32_t>(2));
      if (!source_type || source_type->opcode() == spv::Op::OpTypeVoid) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Source operand <id> " << _.getIdName(source_id)
               << " cannot be a void pointer.";
      }
    }

    if (target_type && source_type && target_type->id() != source_type->id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Target <id> " << _.getIdName(source_id)
             << "s type does not match Source <id> "
             << _.getIdName(source_type->id()) << "s type.";
    }

    if (!target_type && !source_type) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "One of Source or Target must be a typed pointer";
    }

    if (auto error = CheckMemoryAccess(_, inst, 2)) return error;
  } else {
    const auto size_id = inst->GetOperandAs<uint32_t>(2);
    const auto size = _.FindDef(size_id);
    if (!size) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Size operand <id> " << _.getIdName(size_id)
             << " is not defined.";
    }

    const auto size_type = _.FindDef(size->type_id());
    if (!_.IsIntScalarType(size_type->id())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Size operand <id> " << _.getIdName(size_id)
             << " must be a scalar integer type.";
    }
    bool is_zero = true;
    switch (size->opcode()) {
      case spv::Op::OpConstantNull:
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Size operand <id> " << _.getIdName(size_id)
               << " cannot be a constant zero.";
      case spv::Op::OpConstant:
        if (size_type->word(3) == 1 &&
            size->word(size->words().size() - 1) & 0x80000000) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "Size operand <id> " << _.getIdName(size_id)
                 << " cannot have the sign bit set to 1.";
        }
        for (size_t i = 3; is_zero && i < size->words().size(); ++i) {
          is_zero &= (size->word(i) == 0);
        }
        if (is_zero) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "Size operand <id> " << _.getIdName(size_id)
                 << " cannot be a constant zero.";
        }
        break;
      default:
        // Cannot infer any other opcodes.
        break;
    }

    if (_.HasCapability(spv::Capability::Shader)) {
      bool is_int = false;
      bool is_const = false;
      uint32_t value = 0;
      std::tie(is_int, is_const, value) = _.EvalInt32IfConst(size_id);
      if (is_const) {
        if (value % 4 != 0) {
          const auto source_sc =
              source_pointer_type->GetOperandAs<spv::StorageClass>(1);
          const auto target_sc =
              target_pointer_type->GetOperandAs<spv::StorageClass>(1);
          const bool int8 = _.HasCapability(spv::Capability::Int8);
          const bool ubo_int8 = _.HasCapability(
              spv::Capability::UniformAndStorageBuffer8BitAccess);
          const bool ssbo_int8 =
              _.HasCapability(spv::Capability::StorageBuffer8BitAccess) ||
              ubo_int8;
          const bool pc_int8 =
              _.HasCapability(spv::Capability::StoragePushConstant8);
          const bool wg_int8 = _.HasCapability(
              spv::Capability::WorkgroupMemoryExplicitLayout8BitAccessKHR);
          const bool int16 = _.HasCapability(spv::Capability::Int16) || int8;
          const bool ubo_int16 =
              _.HasCapability(
                  spv::Capability::UniformAndStorageBuffer16BitAccess) ||
              ubo_int8;
          const bool ssbo_int16 =
              _.HasCapability(spv::Capability::StorageBuffer16BitAccess) ||
              ubo_int16 || ssbo_int8;
          const bool pc_int16 =
              _.HasCapability(spv::Capability::StoragePushConstant16) ||
              pc_int8;
          const bool io_int16 =
              _.HasCapability(spv::Capability::StorageInputOutput16);
          const bool wg_int16 = _.HasCapability(
              spv::Capability::WorkgroupMemoryExplicitLayout16BitAccessKHR);

          bool source_int16_match = false;
          bool target_int16_match = false;
          bool source_int8_match = false;
          bool target_int8_match = false;
          switch (source_sc) {
            case spv::StorageClass::StorageBuffer:
              source_int16_match = ssbo_int16;
              source_int8_match = ssbo_int8;
              break;
            case spv::StorageClass::Uniform:
              source_int16_match = ubo_int16;
              source_int8_match = ubo_int8;
              break;
            case spv::StorageClass::PushConstant:
              source_int16_match = pc_int16;
              source_int8_match = pc_int8;
              break;
            case spv::StorageClass::Input:
            case spv::StorageClass::Output:
              source_int16_match = io_int16;
              break;
            case spv::StorageClass::Workgroup:
              source_int16_match = wg_int16;
              source_int8_match = wg_int8;
              break;
            default:
              break;
          }
          switch (target_sc) {
            case spv::StorageClass::StorageBuffer:
              target_int16_match = ssbo_int16;
              target_int8_match = ssbo_int8;
              break;
            case spv::StorageClass::Uniform:
              target_int16_match = ubo_int16;
              target_int8_match = ubo_int8;
              break;
            case spv::StorageClass::PushConstant:
              target_int16_match = pc_int16;
              target_int8_match = pc_int8;
              break;
            // Input is read-only so it cannot be the target pointer.
            case spv::StorageClass::Output:
              target_int16_match = io_int16;
              break;
            case spv::StorageClass::Workgroup:
              target_int16_match = wg_int16;
              target_int8_match = wg_int8;
              break;
            default:
              break;
          }
          if (!int8 && !int16 && !(source_int16_match && target_int16_match)) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << "Size must be a multiple of 4";
          }
          if (value % 2 != 0) {
            if (!int8 && !(source_int8_match && target_int8_match)) {
              return _.diag(SPV_ERROR_INVALID_ID, inst)
                     << "Size must be a multiple of 2";
            }
          }
        }
      }
    }

    if (auto error = CheckMemoryAccess(_, inst, 3)) return error;
  }
  if (auto error = ValidateCopyMemoryMemoryAccess(_, inst)) return error;

  // Get past the pointers to avoid checking a pointer copy.
  if (target_pointer_type->opcode() == spv::Op::OpTypePointer) {
    auto sub_type = _.FindDef(target_pointer_type->GetOperandAs<uint32_t>(2));
    while (sub_type->opcode() == spv::Op::OpTypePointer) {
      sub_type = _.FindDef(sub_type->GetOperandAs<uint32_t>(2));
    }
    if (_.HasCapability(spv::Capability::Shader) &&
        _.ContainsLimitedUseIntOrFloatType(sub_type->id())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Cannot copy memory of objects containing 8- or 16-bit types";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateAccessChain(ValidationState_t& _,
                                 const Instruction* inst) {
  std::string instr_name =
      "Op" + std::string(spvOpcodeString(static_cast<spv::Op>(inst->opcode())));

  const bool untyped_pointer = spvOpcodeGeneratesUntypedPointer(inst->opcode());

  // The result type must be OpTypePointer for regular access chains and an
  // OpTypeUntypedPointerKHR for untyped access chains.
  auto result_type = _.FindDef(inst->type_id());
  if (untyped_pointer) {
    if (!result_type ||
        spv::Op::OpTypeUntypedPointerKHR != result_type->opcode()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "The Result Type of " << instr_name << " <id> "
             << _.getIdName(inst->id())
             << " must be OpTypeUntypedPointerKHR. Found Op"
             << spvOpcodeString(static_cast<spv::Op>(result_type->opcode()))
             << ".";
    }
  } else {
    if (!result_type || spv::Op::OpTypePointer != result_type->opcode()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "The Result Type of " << instr_name << " <id> "
             << _.getIdName(inst->id()) << " must be OpTypePointer. Found Op"
             << spvOpcodeString(static_cast<spv::Op>(result_type->opcode()))
             << ".";
    }
  }

  if (untyped_pointer) {
    // Base type must be a non-pointer type.
    const auto base_type = _.FindDef(inst->GetOperandAs<uint32_t>(2));
    if (!base_type || !spvOpcodeGeneratesType(base_type->opcode()) ||
        base_type->opcode() == spv::Op::OpTypePointer ||
        base_type->opcode() == spv::Op::OpTypeUntypedPointerKHR) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Base type must be a non-pointer type";
    }

    const auto ContainsBlock = [&_](const Instruction* type_inst) {
      if (type_inst->opcode() == spv::Op::OpTypeStruct) {
        if (_.HasDecoration(type_inst->id(), spv::Decoration::Block) ||
            _.HasDecoration(type_inst->id(), spv::Decoration::BufferBlock)) {
          return true;
        }
      }
      return false;
    };

    // Block (and BufferBlock) arrays cannot be reinterpreted via untyped access
    // chains.
    const bool base_type_block_array =
        base_type->opcode() == spv::Op::OpTypeArray &&
        _.ContainsType(base_type->id(), ContainsBlock,
                       /* traverse_all_types = */ false);

    const auto base_index = untyped_pointer ? 3 : 2;
    const auto base_id = inst->GetOperandAs<uint32_t>(base_index);
    auto base = _.FindDef(base_id);
    // Strictly speaking this misses trivial access chains and function
    // parameter chasing, but that would be a significant complication in the
    // traversal.
    while (base->opcode() == spv::Op::OpCopyObject) {
      base = _.FindDef(base->GetOperandAs<uint32_t>(2));
    }
    const Instruction* base_data_type = nullptr;
    if (base->opcode() == spv::Op::OpVariable) {
      const auto ptr_type = _.FindDef(base->type_id());
      base_data_type = _.FindDef(ptr_type->GetOperandAs<uint32_t>(2));
    } else if (base->opcode() == spv::Op::OpUntypedVariableKHR) {
      if (base->operands().size() > 3) {
        base_data_type = _.FindDef(base->GetOperandAs<uint32_t>(3));
      }
    }

    if (base_data_type) {
      const bool base_block_array =
          base_data_type->opcode() == spv::Op::OpTypeArray &&
          _.ContainsType(base_data_type->id(), ContainsBlock,
                         /* traverse_all_types = */ false);

      if (base_type_block_array != base_block_array) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Both Base Type and Base must be Block or BufferBlock arrays "
                  "or neither can be";
      } else if (base_type_block_array && base_block_array &&
                 base_type->id() != base_data_type->id()) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "If Base or Base Type is a Block or BufferBlock array, the "
                  "other must also be the same array";
      }
    }
  }

  // Base must be a pointer, pointing to the base of a composite object.
  const auto base_index = untyped_pointer ? 3 : 2;
  const auto base_id = inst->GetOperandAs<uint32_t>(base_index);
  const auto base = _.FindDef(base_id);
  const auto base_type = _.FindDef(base->type_id());
  if (!base_type || !(spv::Op::OpTypePointer == base_type->opcode() ||
                      (untyped_pointer && spv::Op::OpTypeUntypedPointerKHR ==
                                              base_type->opcode()))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Base <id> " << _.getIdName(base_id) << " in " << instr_name
           << " instruction must be a pointer.";
  }

  // The result pointer storage class and base pointer storage class must match.
  // Word 2 of OpTypePointer is the Storage Class.
  auto result_type_storage_class = result_type->word(2);
  auto base_type_storage_class = base_type->word(2);
  if (result_type_storage_class != base_type_storage_class) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The result pointer storage class and base "
              "pointer storage class in "
           << instr_name << " do not match.";
  }

  // The type pointed to by OpTypePointer (word 3) must be a composite type.
  auto type_pointee = untyped_pointer
                          ? _.FindDef(inst->GetOperandAs<uint32_t>(2))
                          : _.FindDef(base_type->word(3));

  // Check Universal Limit (SPIR-V Spec. Section 2.17).
  // The number of indexes passed to OpAccessChain may not exceed 255
  // The instruction includes 4 words + N words (for N indexes)
  size_t num_indexes = inst->words().size() - 4;
  if (inst->opcode() == spv::Op::OpPtrAccessChain ||
      inst->opcode() == spv::Op::OpInBoundsPtrAccessChain ||
      inst->opcode() == spv::Op::OpUntypedPtrAccessChainKHR ||
      inst->opcode() == spv::Op::OpUntypedInBoundsPtrAccessChainKHR) {
    // In pointer access chains, the element operand is required, but not
    // counted as an index.
    --num_indexes;
  }
  const size_t num_indexes_limit =
      _.options()->universal_limits_.max_access_chain_indexes;
  if (num_indexes > num_indexes_limit) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The number of indexes in " << instr_name << " may not exceed "
           << num_indexes_limit << ". Found " << num_indexes << " indexes.";
  }
  // Indexes walk the type hierarchy to the desired depth, potentially down to
  // scalar granularity. The first index in Indexes will select the top-level
  // member/element/component/element of the base composite. All composite
  // constituents use zero-based numbering, as described by their OpType...
  // instruction. The second index will apply similarly to that result, and so
  // on. Once any non-composite type is reached, there must be no remaining
  // (unused) indexes.
  auto starting_index = untyped_pointer ? 5 : 4;
  if (inst->opcode() == spv::Op::OpPtrAccessChain ||
      inst->opcode() == spv::Op::OpInBoundsPtrAccessChain ||
      inst->opcode() == spv::Op::OpUntypedPtrAccessChainKHR ||
      inst->opcode() == spv::Op::OpUntypedInBoundsPtrAccessChainKHR) {
    ++starting_index;
  }
  for (size_t i = starting_index; i < inst->words().size(); ++i) {
    const uint32_t cur_word = inst->words()[i];
    // Earlier ID checks ensure that cur_word definition exists.
    auto cur_word_instr = _.FindDef(cur_word);
    // The index must be a scalar integer type (See OpAccessChain in the Spec.)
    auto index_type = _.FindDef(cur_word_instr->type_id());
    if (!index_type || spv::Op::OpTypeInt != index_type->opcode()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Indexes passed to " << instr_name
             << " must be of type integer.";
    }
    switch (type_pointee->opcode()) {
      case spv::Op::OpTypeMatrix:
      case spv::Op::OpTypeVector:
      case spv::Op::OpTypeCooperativeVectorNV:
      case spv::Op::OpTypeCooperativeMatrixNV:
      case spv::Op::OpTypeCooperativeMatrixKHR:
      case spv::Op::OpTypeArray:
      case spv::Op::OpTypeRuntimeArray:
      case spv::Op::OpTypeNodePayloadArrayAMDX: {
        // In OpTypeMatrix, OpTypeVector, spv::Op::OpTypeCooperativeMatrixNV,
        // OpTypeCooperativeVectorNV, OpTypeArray, and OpTypeRuntimeArray, word
        // 2 is the Element Type.
        type_pointee = _.FindDef(type_pointee->word(2));
        break;
      }
      case spv::Op::OpTypeStruct: {
        // In case of structures, there is an additional constraint on the
        // index: the index must be an OpConstant.
        int64_t cur_index;
        if (!_.EvalConstantValInt64(cur_word, &cur_index)) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "The <id> passed to " << instr_name << " to index "
                 << _.getIdName(cur_word)
                 << " into a "
                    "structure must be an OpConstant.";
        }

        // The index points to the struct member we want, therefore, the index
        // should be less than the number of struct members.
        const int64_t num_struct_members =
            static_cast<int64_t>(type_pointee->words().size() - 2);
        if (cur_index >= num_struct_members || cur_index < 0) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "Index " << _.getIdName(cur_word)
                 << " is out of bounds: " << instr_name << " cannot find index "
                 << cur_index << " into the structure <id> "
                 << _.getIdName(type_pointee->id()) << ". This structure has "
                 << num_struct_members << " members. Largest valid index is "
                 << num_struct_members - 1 << ".";
        }
        // Struct members IDs start at word 2 of OpTypeStruct.
        const size_t word_index = static_cast<size_t>(cur_index) + 2;
        auto structMemberId = type_pointee->word(word_index);
        type_pointee = _.FindDef(structMemberId);
        break;
      }
      default: {
        // Give an error. reached non-composite type while indexes still remain.
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << instr_name
               << " reached non-composite type while indexes "
                  "still remain to be traversed.";
      }
    }
  }

  if (!untyped_pointer) {
    // Result type is a pointer. Find out what it's pointing to.
    // This will be used to make sure the indexing results in the same type.
    // OpTypePointer word 3 is the type being pointed to.
    const auto result_type_pointee = _.FindDef(result_type->word(3));
    // At this point, we have fully walked down from the base using the indeces.
    // The type being pointed to should be the same as the result type.
    if (type_pointee->id() != result_type_pointee->id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << instr_name << " result type (Op"
             << spvOpcodeString(
                    static_cast<spv::Op>(result_type_pointee->opcode()))
             << ") does not match the type that results from indexing into the "
                "base "
                "<id> (Op"
             << spvOpcodeString(static_cast<spv::Op>(type_pointee->opcode()))
             << ").";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateRawAccessChain(ValidationState_t& _,
                                    const Instruction* inst) {
  std::string instr_name = "Op" + std::string(spvOpcodeString(inst->opcode()));

  // The result type must be OpTypePointer.
  const auto result_type = _.FindDef(inst->type_id());
  if (spv::Op::OpTypePointer != result_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The Result Type of " << instr_name << " <id> "
           << _.getIdName(inst->id()) << " must be OpTypePointer. Found Op"
           << spvOpcodeString(result_type->opcode()) << '.';
  }

  // The pointed storage class must be valid.
  const auto storage_class = result_type->GetOperandAs<spv::StorageClass>(1);
  if (storage_class != spv::StorageClass::StorageBuffer &&
      storage_class != spv::StorageClass::PhysicalStorageBuffer &&
      storage_class != spv::StorageClass::Uniform) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The Result Type of " << instr_name << " <id> "
           << _.getIdName(inst->id())
           << " must point to a storage class of "
              "StorageBuffer, PhysicalStorageBuffer, or Uniform.";
  }

  // The pointed type must not be one in the list below.
  const auto result_type_pointee =
      _.FindDef(result_type->GetOperandAs<uint32_t>(2));
  if (result_type_pointee->opcode() == spv::Op::OpTypeArray ||
      result_type_pointee->opcode() == spv::Op::OpTypeMatrix ||
      result_type_pointee->opcode() == spv::Op::OpTypeStruct) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The Result Type of " << instr_name << " <id> "
           << _.getIdName(inst->id())
           << " must not point to "
              "OpTypeArray, OpTypeMatrix, or OpTypeStruct.";
  }

  // Validate Stride is a OpConstant.
  const auto stride = _.FindDef(inst->GetOperandAs<uint32_t>(3));
  if (stride->opcode() != spv::Op::OpConstant) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The Stride of " << instr_name << " <id> "
           << _.getIdName(inst->id()) << " must be OpConstant. Found Op"
           << spvOpcodeString(stride->opcode()) << '.';
  }
  // Stride type must be OpTypeInt
  const auto stride_type = _.FindDef(stride->type_id());
  if (stride_type->opcode() != spv::Op::OpTypeInt) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The type of Stride of " << instr_name << " <id> "
           << _.getIdName(inst->id()) << " must be OpTypeInt. Found Op"
           << spvOpcodeString(stride_type->opcode()) << '.';
  }

  // Index and Offset type must be OpTypeInt with a width of 32
  const auto ValidateType = [&](const char* name,
                                int operandIndex) -> spv_result_t {
    const auto value = _.FindDef(inst->GetOperandAs<uint32_t>(operandIndex));
    const auto value_type = _.FindDef(value->type_id());
    if (value_type->opcode() != spv::Op::OpTypeInt) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "The type of " << name << " of " << instr_name << " <id> "
             << _.getIdName(inst->id()) << " must be OpTypeInt. Found Op"
             << spvOpcodeString(value_type->opcode()) << '.';
    }
    const auto width = value_type->GetOperandAs<uint32_t>(1);
    if (width != 32) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "The integer width of " << name << " of " << instr_name
             << " <id> " << _.getIdName(inst->id()) << " must be 32. Found "
             << width << '.';
    }
    return SPV_SUCCESS;
  };
  spv_result_t result;
  result = ValidateType("Index", 4);
  if (result != SPV_SUCCESS) {
    return result;
  }
  result = ValidateType("Offset", 5);
  if (result != SPV_SUCCESS) {
    return result;
  }

  uint32_t access_operands = 0;
  if (inst->operands().size() >= 7) {
    access_operands = inst->GetOperandAs<uint32_t>(6);
  }
  if (access_operands &
      uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerElementNV)) {
    uint64_t stride_value = 0;
    if (_.EvalConstantValUint64(stride->id(), &stride_value) &&
        stride_value == 0) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Stride must not be zero when per-element robustness is used.";
    }
  }
  if (access_operands &
          uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerComponentNV) ||
      access_operands &
          uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerElementNV)) {
    if (storage_class == spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Storage class cannot be PhysicalStorageBuffer when "
                "raw access chain robustness is used.";
    }
  }
  if (access_operands &
          uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerComponentNV) &&
      access_operands &
          uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerElementNV)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Per-component robustness and per-element robustness are "
              "mutually exclusive.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidatePtrAccessChain(ValidationState_t& _,
                                    const Instruction* inst) {
  if (_.addressing_model() == spv::AddressingModel::Logical &&
      inst->opcode() == spv::Op::OpPtrAccessChain) {
    if (!_.features().variable_pointers) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Generating variable pointers requires capability "
             << "VariablePointers or VariablePointersStorageBuffer";
    }
  }

  // Need to call first, will make sure Base is a valid ID
  if (auto error = ValidateAccessChain(_, inst)) return error;

  const bool untyped_pointer = spvOpcodeGeneratesUntypedPointer(inst->opcode());

  const auto base_idx = untyped_pointer ? 3 : 2;
  const auto base = _.FindDef(inst->GetOperandAs<uint32_t>(base_idx));
  const auto base_type = _.FindDef(base->type_id());
  const auto base_type_storage_class =
      base_type->GetOperandAs<spv::StorageClass>(1);

  const auto element_idx = untyped_pointer ? 4 : 3;
  const auto element = _.FindDef(inst->GetOperandAs<uint32_t>(element_idx));
  const auto element_type = _.FindDef(element->type_id());
  if (!element_type || element_type->opcode() != spv::Op::OpTypeInt) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Element must be an integer";
  }
  uint64_t element_val = 0;
  if (_.EvalConstantValUint64(element->id(), &element_val)) {
    if (element_val != 0) {
      const auto interp_type =
          untyped_pointer ? _.FindDef(inst->GetOperandAs<uint32_t>(2))
                          : _.FindDef(base_type->GetOperandAs<uint32_t>(2));
      if (interp_type->opcode() == spv::Op::OpTypeStruct &&
          (_.HasDecoration(interp_type->id(), spv::Decoration::Block) ||
           _.HasDecoration(interp_type->id(), spv::Decoration::BufferBlock))) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Element must be 0 if the interpretation type is a Block- or "
                  "BufferBlock-decorated structure";
      }
    }
  }

  if (_.HasCapability(spv::Capability::Shader) &&
      (base_type_storage_class == spv::StorageClass::Uniform ||
       base_type_storage_class == spv::StorageClass::StorageBuffer ||
       base_type_storage_class == spv::StorageClass::PhysicalStorageBuffer ||
       base_type_storage_class == spv::StorageClass::PushConstant ||
       (_.HasCapability(spv::Capability::WorkgroupMemoryExplicitLayoutKHR) &&
        base_type_storage_class == spv::StorageClass::Workgroup)) &&
      !_.HasDecoration(base_type->id(), spv::Decoration::ArrayStride)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "OpPtrAccessChain must have a Base whose type is decorated "
              "with ArrayStride";
  }

  if (spvIsVulkanEnv(_.context()->target_env)) {
    const auto untyped_cap =
        untyped_pointer && _.HasCapability(spv::Capability::UntypedPointersKHR);
    if (base_type_storage_class == spv::StorageClass::Workgroup) {
      if (!_.HasCapability(spv::Capability::VariablePointers) && !untyped_cap) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << _.VkErrorID(7651)
               << "OpPtrAccessChain Base operand pointing to Workgroup "
                  "storage class must use VariablePointers capability";
      }
    } else if (base_type_storage_class == spv::StorageClass::StorageBuffer) {
      if (!_.features().variable_pointers && !untyped_cap) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << _.VkErrorID(7652)
               << "OpPtrAccessChain Base operand pointing to StorageBuffer "
                  "storage class must use VariablePointers or "
                  "VariablePointersStorageBuffer capability";
      }
    } else if (base_type_storage_class !=
                   spv::StorageClass::PhysicalStorageBuffer &&
               !untyped_cap) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << _.VkErrorID(7650)
             << "OpPtrAccessChain Base operand must point to Workgroup, "
                "StorageBuffer, or PhysicalStorageBuffer storage class";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateArrayLength(ValidationState_t& state,
                                 const Instruction* inst) {
  std::string instr_name =
      "Op" + std::string(spvOpcodeString(static_cast<spv::Op>(inst->opcode())));

  // Result type must be a 32-bit unsigned int.
  auto result_type = state.FindDef(inst->type_id());
  if (result_type->opcode() != spv::Op::OpTypeInt ||
      result_type->GetOperandAs<uint32_t>(1) != 32 ||
      result_type->GetOperandAs<uint32_t>(2) != 0) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Result Type of " << instr_name << " <id> "
           << state.getIdName(inst->id())
           << " must be OpTypeInt with width 32 and signedness 0.";
  }

  const bool untyped = inst->opcode() == spv::Op::OpUntypedArrayLengthKHR;
  auto pointer_ty_id = state.GetOperandTypeId(inst, (untyped ? 3 : 2));
  auto pointer_ty = state.FindDef(pointer_ty_id);
  if (untyped) {
    if (pointer_ty->opcode() != spv::Op::OpTypeUntypedPointerKHR) {
      return state.diag(SPV_ERROR_INVALID_ID, inst)
             << "Pointer must be an untyped pointer";
    }
  } else if (pointer_ty->opcode() != spv::Op::OpTypePointer) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Structure's type in " << instr_name << " <id> "
           << state.getIdName(inst->id())
           << " must be a pointer to an OpTypeStruct.";
  }

  Instruction* structure_type = nullptr;
  if (untyped) {
    structure_type = state.FindDef(inst->GetOperandAs<uint32_t>(2));
  } else {
    structure_type = state.FindDef(pointer_ty->GetOperandAs<uint32_t>(2));
  }

  if (structure_type->opcode() != spv::Op::OpTypeStruct) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Structure's type in " << instr_name << " <id> "
           << state.getIdName(inst->id())
           << " must be a pointer to an OpTypeStruct.";
  }

  auto num_of_members = structure_type->operands().size() - 1;
  auto last_member =
      state.FindDef(structure_type->GetOperandAs<uint32_t>(num_of_members));
  if (last_member->opcode() != spv::Op::OpTypeRuntimeArray) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Structure's last member in " << instr_name << " <id> "
           << state.getIdName(inst->id()) << " must be an OpTypeRuntimeArray.";
  }

  // The array member must the index of the last element (the run time
  // array).
  const auto index = untyped ? 4 : 3;
  if (inst->GetOperandAs<uint32_t>(index) != num_of_members - 1) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The array member in " << instr_name << " <id> "
           << state.getIdName(inst->id())
           << " must be the last member of the struct.";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeMatrixLengthNV(ValidationState_t& state,
                                               const Instruction* inst) {
  std::string instr_name =
      "Op" + std::string(spvOpcodeString(static_cast<spv::Op>(inst->opcode())));

  // Result type must be a 32-bit unsigned int.
  auto result_type = state.FindDef(inst->type_id());
  if (result_type->opcode() != spv::Op::OpTypeInt ||
      result_type->GetOperandAs<uint32_t>(1) != 32 ||
      result_type->GetOperandAs<uint32_t>(2) != 0) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Result Type of " << instr_name << " <id> "
           << state.getIdName(inst->id())
           << " must be OpTypeInt with width 32 and signedness 0.";
  }

  bool isKhr = inst->opcode() == spv::Op::OpCooperativeMatrixLengthKHR;
  auto type_id = inst->GetOperandAs<uint32_t>(2);
  auto type = state.FindDef(type_id);
  if (isKhr && type->opcode() != spv::Op::OpTypeCooperativeMatrixKHR) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The type in " << instr_name << " <id> "
           << state.getIdName(type_id)
           << " must be OpTypeCooperativeMatrixKHR.";
  } else if (!isKhr && type->opcode() != spv::Op::OpTypeCooperativeMatrixNV) {
    return state.diag(SPV_ERROR_INVALID_ID, inst)
           << "The type in " << instr_name << " <id> "
           << state.getIdName(type_id) << " must be OpTypeCooperativeMatrixNV.";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeMatrixLoadStoreNV(ValidationState_t& _,
                                                  const Instruction* inst) {
  uint32_t type_id;
  const char* opname;
  if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) {
    type_id = inst->type_id();
    opname = "spv::Op::OpCooperativeMatrixLoadNV";
  } else {
    // get Object operand's type
    type_id = _.FindDef(inst->GetOperandAs<uint32_t>(1))->type_id();
    opname = "spv::Op::OpCooperativeMatrixStoreNV";
  }

  auto matrix_type = _.FindDef(type_id);

  if (matrix_type->opcode() != spv::Op::OpTypeCooperativeMatrixNV) {
    if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeMatrixLoadNV Result Type <id> "
             << _.getIdName(type_id) << " is not a cooperative matrix type.";
    } else {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeMatrixStoreNV Object type <id> "
             << _.getIdName(type_id) << " is not a cooperative matrix type.";
    }
  }

  const auto pointer_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 2u : 0u;
  const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
  const auto pointer = _.FindDef(pointer_id);
  if (!pointer ||
      ((_.addressing_model() == spv::AddressingModel::Logical) &&
       ((!_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
        (_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer_id)
           << " is not a logical pointer.";
  }

  const auto pointer_type_id = pointer->type_id();
  const auto pointer_type = _.FindDef(pointer_type_id);
  if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " type for pointer <id> " << _.getIdName(pointer_id)
           << " is not a pointer type.";
  }

  const auto storage_class_index = 1u;
  const auto storage_class =
      pointer_type->GetOperandAs<spv::StorageClass>(storage_class_index);

  if (storage_class != spv::StorageClass::Workgroup &&
      storage_class != spv::StorageClass::StorageBuffer &&
      storage_class != spv::StorageClass::PhysicalStorageBuffer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " storage class for pointer type <id> "
           << _.getIdName(pointer_type_id)
           << " is not Workgroup or StorageBuffer.";
  }

  const auto pointee_id = pointer_type->GetOperandAs<uint32_t>(2);
  const auto pointee_type = _.FindDef(pointee_id);
  if (!pointee_type || !(_.IsIntScalarOrVectorType(pointee_id) ||
                         _.IsFloatScalarOrVectorType(pointee_id))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer->id())
           << "s Type must be a scalar or vector type.";
  }

  const auto stride_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 3u : 2u;
  const auto stride_id = inst->GetOperandAs<uint32_t>(stride_index);
  const auto stride = _.FindDef(stride_id);
  if (!stride || !_.IsIntScalarType(stride->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Stride operand <id> " << _.getIdName(stride_id)
           << " must be a scalar integer type.";
  }

  const auto colmajor_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 4u : 3u;
  const auto colmajor_id = inst->GetOperandAs<uint32_t>(colmajor_index);
  const auto colmajor = _.FindDef(colmajor_id);
  if (!colmajor || !_.IsBoolScalarType(colmajor->type_id()) ||
      !(spvOpcodeIsConstant(colmajor->opcode()) ||
        spvOpcodeIsSpecConstant(colmajor->opcode()))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Column Major operand <id> " << _.getIdName(colmajor_id)
           << " must be a boolean constant instruction.";
  }

  const auto memory_access_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 5u : 4u;
  if (inst->operands().size() > memory_access_index) {
    if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
      return error;
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeMatrixLoadStoreKHR(ValidationState_t& _,
                                                   const Instruction* inst) {
  uint32_t type_id;
  const char* opname;
  if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) {
    type_id = inst->type_id();
    opname = "spv::Op::OpCooperativeMatrixLoadKHR";
  } else {
    // get Object operand's type
    type_id = _.FindDef(inst->GetOperandAs<uint32_t>(1))->type_id();
    opname = "spv::Op::OpCooperativeMatrixStoreKHR";
  }

  auto matrix_type = _.FindDef(type_id);

  if (matrix_type->opcode() != spv::Op::OpTypeCooperativeMatrixKHR) {
    if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeMatrixLoadKHR Result Type <id> "
             << _.getIdName(type_id) << " is not a cooperative matrix type.";
    } else {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeMatrixStoreKHR Object type <id> "
             << _.getIdName(type_id) << " is not a cooperative matrix type.";
    }
  }

  const auto pointer_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 2u : 0u;
  const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
  const auto pointer = _.FindDef(pointer_id);
  if (!pointer ||
      ((_.addressing_model() == spv::AddressingModel::Logical) &&
       ((!_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
        (_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer_id)
           << " is not a logical pointer.";
  }

  const auto pointer_type_id = pointer->type_id();
  const auto pointer_type = _.FindDef(pointer_type_id);
  if (!pointer_type ||
      !(pointer_type->opcode() == spv::Op::OpTypePointer ||
        pointer_type->opcode() == spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " type for pointer <id> " << _.getIdName(pointer_id)
           << " is not a pointer type.";
  }

  const bool untyped =
      pointer_type->opcode() == spv::Op::OpTypeUntypedPointerKHR;
  const auto storage_class_index = 1u;
  const auto storage_class =
      pointer_type->GetOperandAs<spv::StorageClass>(storage_class_index);

  if (spvIsVulkanEnv(_.context()->target_env)) {
    if (storage_class != spv::StorageClass::Workgroup &&
        storage_class != spv::StorageClass::StorageBuffer &&
        storage_class != spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(8973) << opname
             << " storage class for pointer type <id> "
             << _.getIdName(pointer_type_id)
             << " is not Workgroup, StorageBuffer, or PhysicalStorageBuffer.";
    }
  }

  if (!untyped) {
    const auto pointee_id = pointer_type->GetOperandAs<uint32_t>(2);
    const auto pointee_type = _.FindDef(pointee_id);
    if (!pointee_type || !(_.IsIntScalarOrVectorType(pointee_id) ||
                           _.IsFloatScalarOrVectorType(pointee_id))) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opname << " Pointer <id> " << _.getIdName(pointer->id())
             << "s Type must be a scalar or vector type.";
    }
  }

  const auto layout_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 3u : 2u;
  const auto layout_id = inst->GetOperandAs<uint32_t>(layout_index);
  const auto layout_inst = _.FindDef(layout_id);
  if (!layout_inst || !_.IsIntScalarType(layout_inst->type_id()) ||
      !spvOpcodeIsConstant(layout_inst->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "MemoryLayout operand <id> " << _.getIdName(layout_id)
           << " must be a 32-bit integer constant instruction.";
  }

  bool stride_required = false;
  uint64_t layout;
  if (_.EvalConstantValUint64(layout_id, &layout)) {
    stride_required =
        (layout == (uint64_t)spv::CooperativeMatrixLayout::RowMajorKHR) ||
        (layout == (uint64_t)spv::CooperativeMatrixLayout::ColumnMajorKHR);
  }

  const auto stride_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 4u : 3u;
  if (inst->operands().size() > stride_index) {
    const auto stride_id = inst->GetOperandAs<uint32_t>(stride_index);
    const auto stride = _.FindDef(stride_id);
    if (!stride || !_.IsIntScalarType(stride->type_id())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Stride operand <id> " << _.getIdName(stride_id)
             << " must be a scalar integer type.";
    }
  } else if (stride_required) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "MemoryLayout " << layout << " requires a Stride.";
  }

  const auto memory_access_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 5u : 4u;
  if (inst->operands().size() > memory_access_index) {
    if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
      return error;
  }

  return SPV_SUCCESS;
}

// Returns the number of instruction words taken up by a tensor addressing
// operands argument and its implied operands.
int TensorAddressingOperandsNumWords(spv::TensorAddressingOperandsMask mask) {
  int result = 1;  // Count the mask
  if ((mask & spv::TensorAddressingOperandsMask::TensorView) !=
      spv::TensorAddressingOperandsMask::MaskNone)
    ++result;
  if ((mask & spv::TensorAddressingOperandsMask::DecodeFunc) !=
      spv::TensorAddressingOperandsMask::MaskNone)
    ++result;
  return result;
}

spv_result_t ValidateCooperativeMatrixLoadStoreTensorNV(
    ValidationState_t& _, const Instruction* inst) {
  uint32_t type_id;
  const char* opname;
  if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV) {
    type_id = inst->type_id();
    opname = "spv::Op::OpCooperativeMatrixLoadTensorNV";
  } else {
    // get Object operand's type
    type_id = _.FindDef(inst->GetOperandAs<uint32_t>(1))->type_id();
    opname = "spv::Op::OpCooperativeMatrixStoreTensorNV";
  }

  auto matrix_type = _.FindDef(type_id);

  if (matrix_type->opcode() != spv::Op::OpTypeCooperativeMatrixKHR) {
    if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeMatrixLoadTensorNV Result Type <id> "
             << _.getIdName(type_id) << " is not a cooperative matrix type.";
    } else {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeMatrixStoreTensorNV Object type <id> "
             << _.getIdName(type_id) << " is not a cooperative matrix type.";
    }
  }

  const auto pointer_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV) ? 2u : 0u;
  const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
  const auto pointer = _.FindDef(pointer_id);
  if (!pointer ||
      ((_.addressing_model() == spv::AddressingModel::Logical) &&
       ((!_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
        (_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer_id)
           << " is not a logical pointer.";
  }

  const auto pointer_type_id = pointer->type_id();
  const auto pointer_type = _.FindDef(pointer_type_id);
  if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " type for pointer <id> " << _.getIdName(pointer_id)
           << " is not a pointer type.";
  }

  const auto storage_class_index = 1u;
  const auto storage_class =
      pointer_type->GetOperandAs<spv::StorageClass>(storage_class_index);

  if (storage_class != spv::StorageClass::Workgroup &&
      storage_class != spv::StorageClass::StorageBuffer &&
      storage_class != spv::StorageClass::PhysicalStorageBuffer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << _.VkErrorID(8973) << opname
           << " storage class for pointer type <id> "
           << _.getIdName(pointer_type_id)
           << " is not Workgroup, StorageBuffer, or PhysicalStorageBuffer.";
  }

  if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV) {
    const auto object_index = 3;
    const auto object_id = inst->GetOperandAs<uint32_t>(object_index);
    const auto object = _.FindDef(object_id);
    if (!object || object->type_id() != type_id) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opname << " Object <id> " << _.getIdName(object_id)
             << " type does not match Result Type.";
    }
  }

  const auto tensor_layout_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV) ? 4u : 2u;
  const auto tensor_layout_id =
      inst->GetOperandAs<uint32_t>(tensor_layout_index);
  const auto tensor_layout = _.FindDef(tensor_layout_id);
  if (!tensor_layout || _.FindDef(tensor_layout->type_id())->opcode() !=
                            spv::Op::OpTypeTensorLayoutNV) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " TensorLayout <id> " << _.getIdName(tensor_layout_id)
           << " does not have a tensor layout type.";
  }

  const auto memory_access_index =
      (inst->opcode() == spv::Op::OpCooperativeMatrixLoadTensorNV) ? 5u : 3u;
  if (inst->operands().size() > memory_access_index) {
    if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
      return error;
  }

  const auto memory_access_mask =
      inst->GetOperandAs<uint32_t>(memory_access_index);
  const auto tensor_operands_index =
      memory_access_index + MemoryAccessNumWords(memory_access_mask);
  const auto tensor_operands =
      inst->GetOperandAs<spv::TensorAddressingOperandsMask>(
          tensor_operands_index);

  if (inst->operands().size() <
      tensor_operands_index +
          TensorAddressingOperandsNumWords(tensor_operands)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " not enough tensor addressing operands.";
  }

  uint32_t tensor_operand_index = tensor_operands_index + 1;
  if ((tensor_operands & spv::TensorAddressingOperandsMask::TensorView) !=
      spv::TensorAddressingOperandsMask::MaskNone) {
    const auto tensor_view_id =
        inst->GetOperandAs<uint32_t>(tensor_operand_index);
    const auto tensor_view = _.FindDef(tensor_view_id);
    if (!tensor_view || _.FindDef(tensor_view->type_id())->opcode() !=
                            spv::Op::OpTypeTensorViewNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opname << " TensorView <id> " << _.getIdName(tensor_view_id)
             << " does not have a tensor view type.";
    }

    tensor_operand_index++;
  }

  if ((tensor_operands & spv::TensorAddressingOperandsMask::DecodeFunc) !=
      spv::TensorAddressingOperandsMask::MaskNone) {
    if (inst->opcode() == spv::Op::OpCooperativeMatrixStoreTensorNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpCooperativeMatrixStoreTensorNV does not support DecodeFunc.";
    }
    const auto decode_func_id =
        inst->GetOperandAs<uint32_t>(tensor_operand_index);
    const auto decode_func = _.FindDef(decode_func_id);

    if (!decode_func || decode_func->opcode() != spv::Op::OpFunction) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opname << " DecodeFunc <id> " << _.getIdName(decode_func_id)
             << " is not a function.";
    }

    const auto component_type_index = 1;
    const auto component_type_id =
        matrix_type->GetOperandAs<uint32_t>(component_type_index);

    const auto function_type =
        _.FindDef(decode_func->GetOperandAs<uint32_t>(3));
    if (function_type->GetOperandAs<uint32_t>(1) != component_type_id) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opname << " DecodeFunc <id> " << _.getIdName(decode_func_id)
             << " return type must match matrix component type.";
    }

    const auto decode_ptr_type_id = function_type->GetOperandAs<uint32_t>(2);
    const auto decode_ptr_type = _.FindDef(decode_ptr_type_id);
    auto decode_storage_class =
        decode_ptr_type->GetOperandAs<spv::StorageClass>(storage_class_index);

    if (decode_storage_class != spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opname << " DecodeFunc <id> " << _.getIdName(decode_func_id)
             << " first parameter must be pointer to PhysicalStorageBuffer.";
    }

    const auto tensor_layout_type = _.FindDef(tensor_layout->type_id());

    for (uint32_t param = 3; param < 5; ++param) {
      const auto param_type_id = function_type->GetOperandAs<uint32_t>(param);
      const auto param_type = _.FindDef(param_type_id);
      if (param_type->opcode() != spv::Op::OpTypeArray) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opname << " DecodeFunc <id> " << _.getIdName(decode_func_id)
               << " second/third parameter must be array of 32-bit integer "
                  "with "
               << " dimension equal to the tensor dimension.";
      }
      const auto length_index = 2u;
      uint64_t array_length;
      if (_.EvalConstantValUint64(
              param_type->GetOperandAs<uint32_t>(length_index),
              &array_length)) {
        const auto tensor_layout_dim_id =
            tensor_layout_type->GetOperandAs<uint32_t>(1);
        uint64_t dim_value;
        if (_.EvalConstantValUint64(tensor_layout_dim_id, &dim_value)) {
          if (array_length != dim_value) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << opname << " DecodeFunc <id> "
                   << _.getIdName(decode_func_id)
                   << " second/third parameter must be array of 32-bit integer "
                      "with "
                   << " dimension equal to the tensor dimension.";
          }
        }
      }
    }

    tensor_operand_index++;
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateInt32Operand(ValidationState_t& _, const Instruction* inst,
                                  uint32_t operand_index,
                                  const char* opcode_name,
                                  const char* operand_name) {
  const auto type_id =
      _.FindDef(inst->GetOperandAs<uint32_t>(operand_index))->type_id();
  if (!_.IsIntScalarType(type_id) || _.GetBitWidth(type_id) != 32) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " " << operand_name << " type <id> "
           << _.getIdName(type_id) << " is not a 32 bit integer.";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeVectorPointer(ValidationState_t& _,
                                              const Instruction* inst,
                                              const char* opname,
                                              uint32_t pointer_index) {
  const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
  const auto pointer = _.FindDef(pointer_id);
  if (!pointer ||
      ((_.addressing_model() == spv::AddressingModel::Logical) &&
       ((!_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
        (_.features().variable_pointers &&
         !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer_id)
           << " is not a logical pointer.";
  }

  const auto pointer_type_id = pointer->type_id();
  const auto pointer_type = _.FindDef(pointer_type_id);
  if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " type for pointer <id> " << _.getIdName(pointer_id)
           << " is not a pointer type.";
  }

  const auto storage_class_index = 1u;
  const auto storage_class =
      pointer_type->GetOperandAs<spv::StorageClass>(storage_class_index);

  if (storage_class != spv::StorageClass::Workgroup &&
      storage_class != spv::StorageClass::StorageBuffer &&
      storage_class != spv::StorageClass::PhysicalStorageBuffer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " storage class for pointer type <id> "
           << _.getIdName(pointer_type_id)
           << " is not Workgroup or StorageBuffer.";
  }

  const auto pointee_id = pointer_type->GetOperandAs<uint32_t>(2);
  const auto pointee_type = _.FindDef(pointee_id);
  if (!pointee_type ||
      (pointee_type->opcode() != spv::Op::OpTypeArray &&
       pointee_type->opcode() != spv::Op::OpTypeRuntimeArray)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer->id())
           << "s Type must be an array type.";
  }

  const auto array_elem_type_id = pointee_type->GetOperandAs<uint32_t>(1);
  auto array_elem_type = _.FindDef(array_elem_type_id);
  if (!array_elem_type || !(_.IsIntScalarOrVectorType(array_elem_type_id) ||
                            _.IsFloatScalarOrVectorType(array_elem_type_id))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opname << " Pointer <id> " << _.getIdName(pointer->id())
           << "s Type must be an array of scalar or vector type.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeVectorLoadStoreNV(ValidationState_t& _,
                                                  const Instruction* inst) {
  uint32_t type_id;
  const char* opname;
  if (inst->opcode() == spv::Op::OpCooperativeVectorLoadNV) {
    type_id = inst->type_id();
    opname = "spv::Op::OpCooperativeVectorLoadNV";
  } else {
    // get Object operand's type
    type_id = _.FindDef(inst->GetOperandAs<uint32_t>(2))->type_id();
    opname = "spv::Op::OpCooperativeVectorStoreNV";
  }

  auto vector_type = _.FindDef(type_id);

  if (vector_type->opcode() != spv::Op::OpTypeCooperativeVectorNV) {
    if (inst->opcode() == spv::Op::OpCooperativeVectorLoadNV) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeVectorLoadNV Result Type <id> "
             << _.getIdName(type_id) << " is not a cooperative vector type.";
    } else {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "spv::Op::OpCooperativeVectorStoreNV Object type <id> "
             << _.getIdName(type_id) << " is not a cooperative vector type.";
    }
  }

  const auto pointer_index =
      (inst->opcode() == spv::Op::OpCooperativeVectorLoadNV) ? 2u : 0u;

  if (auto error =
          ValidateCooperativeVectorPointer(_, inst, opname, pointer_index)) {
    return error;
  }

  const auto memory_access_index =
      (inst->opcode() == spv::Op::OpCooperativeVectorLoadNV) ? 4u : 3u;
  if (inst->operands().size() > memory_access_index) {
    if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
      return error;
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeVectorOuterProductNV(ValidationState_t& _,
                                                     const Instruction* inst) {
  const auto pointer_index = 0u;
  const auto opcode_name =
      "spv::Op::OpCooperativeVectorOuterProductAccumulateNV";

  if (auto error = ValidateCooperativeVectorPointer(_, inst, opcode_name,
                                                    pointer_index)) {
    return error;
  }

  auto type_id = _.FindDef(inst->GetOperandAs<uint32_t>(2))->type_id();
  auto a_type = _.FindDef(type_id);

  if (a_type->opcode() != spv::Op::OpTypeCooperativeVectorNV) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " A type <id> " << _.getIdName(type_id)
           << " is not a cooperative vector type.";
  }

  type_id = _.FindDef(inst->GetOperandAs<uint32_t>(3))->type_id();
  auto b_type = _.FindDef(type_id);

  if (b_type->opcode() != spv::Op::OpTypeCooperativeVectorNV) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " B type <id> " << _.getIdName(type_id)
           << " is not a cooperative vector type.";
  }

  const auto a_component_type_id = a_type->GetOperandAs<uint32_t>(1);
  const auto b_component_type_id = b_type->GetOperandAs<uint32_t>(1);

  if (a_component_type_id != b_component_type_id) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " A and B component types "
           << _.getIdName(a_component_type_id) << " and "
           << _.getIdName(b_component_type_id) << " do not match.";
  }

  if (auto error = ValidateInt32Operand(_, inst, 1, opcode_name, "Offset")) {
    return error;
  }

  if (auto error =
          ValidateInt32Operand(_, inst, 4, opcode_name, "MemoryLayout")) {
    return error;
  }

  if (auto error = ValidateInt32Operand(_, inst, 5, opcode_name,
                                        "MatrixInterpretation")) {
    return error;
  }

  if (inst->operands().size() > 6) {
    if (auto error =
            ValidateInt32Operand(_, inst, 6, opcode_name, "MatrixStride")) {
      return error;
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCooperativeVectorReduceSumNV(ValidationState_t& _,
                                                  const Instruction* inst) {
  const auto opcode_name = "spv::Op::OpCooperativeVectorReduceSumAccumulateNV";
  const auto pointer_index = 0u;

  if (auto error = ValidateCooperativeVectorPointer(_, inst, opcode_name,
                                                    pointer_index)) {
    return error;
  }

  auto type_id = _.FindDef(inst->GetOperandAs<uint32_t>(2))->type_id();
  auto v_type = _.FindDef(type_id);

  if (v_type->opcode() != spv::Op::OpTypeCooperativeVectorNV) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " V type <id> " << _.getIdName(type_id)
           << " is not a cooperative vector type.";
  }

  if (auto error = ValidateInt32Operand(_, inst, 1, opcode_name, "Offset")) {
    return error;
  }

  return SPV_SUCCESS;
}

bool InterpretationIsPacked(spv::ComponentType interp) {
  switch (interp) {
    case spv::ComponentType::SignedInt8PackedNV:
    case spv::ComponentType::UnsignedInt8PackedNV:
      return true;
    default:
      return false;
  }
}

using std::get;

spv_result_t ValidateCooperativeVectorMatrixMulNV(ValidationState_t& _,
                                                  const Instruction* inst) {
  const bool has_bias =
      inst->opcode() == spv::Op::OpCooperativeVectorMatrixMulAddNV;
  const auto opcode_name = has_bias
                               ? "spv::Op::OpCooperativeVectorMatrixMulAddNV"
                               : "spv::Op::OpCooperativeVectorMatrixMulNV";

  const auto bias_offset = has_bias ? 3 : 0;

  const auto result_type_index = 0u;
  const auto input_index = 2u;
  const auto input_interpretation_index = 3u;
  const auto matrix_index = 4u;
  const auto matrix_interpretation_index = 6u;
  const auto bias_index = 7u;
  const auto bias_interpretation_index = 9u;
  const auto m_index = 7u + bias_offset;
  const auto k_index = 8u + bias_offset;
  const auto memory_layout_index = 9u + bias_offset;
  const auto transpose_index = 10u + bias_offset;

  const auto result_type_id = inst->GetOperandAs<uint32_t>(result_type_index);
  const auto input_id = inst->GetOperandAs<uint32_t>(input_index);
  const auto input_interpretation_id =
      inst->GetOperandAs<uint32_t>(input_interpretation_index);
  const auto matrix_interpretation_id =
      inst->GetOperandAs<uint32_t>(matrix_interpretation_index);
  const auto bias_interpretation_id =
      inst->GetOperandAs<uint32_t>(bias_interpretation_index);
  const auto m_id = inst->GetOperandAs<uint32_t>(m_index);
  const auto k_id = inst->GetOperandAs<uint32_t>(k_index);
  const auto memory_layout_id =
      inst->GetOperandAs<uint32_t>(memory_layout_index);
  const auto transpose_id = inst->GetOperandAs<uint32_t>(transpose_index);

  if (auto error = ValidateCooperativeVectorPointer(_, inst, opcode_name,
                                                    matrix_index)) {
    return error;
  }

  if (inst->opcode() == spv::Op::OpCooperativeVectorMatrixMulAddNV) {
    if (auto error = ValidateCooperativeVectorPointer(_, inst, opcode_name,
                                                      bias_index)) {
      return error;
    }
  }

  const auto result_type = _.FindDef(result_type_id);

  if (result_type->opcode() != spv::Op::OpTypeCooperativeVectorNV) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " result type <id> " << _.getIdName(result_type_id)
           << " is not a cooperative vector type.";
  }

  const auto result_component_type_id = result_type->GetOperandAs<uint32_t>(1u);
  if (!(_.IsIntScalarType(result_component_type_id) &&
        _.GetBitWidth(result_component_type_id) == 32) &&
      !(_.IsFloatScalarType(result_component_type_id) &&
        (_.GetBitWidth(result_component_type_id) == 32 ||
         _.GetBitWidth(result_component_type_id) == 16))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " result component type <id> "
           << _.getIdName(result_component_type_id)
           << " is not a 32 bit int or 16/32 bit float.";
  }

  const auto m_eval = _.EvalInt32IfConst(m_id);
  const auto rc_eval =
      _.EvalInt32IfConst(result_type->GetOperandAs<uint32_t>(2u));
  if (get<1>(m_eval) && get<1>(rc_eval) && get<2>(m_eval) != get<2>(rc_eval)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " result type number of components "
           << get<2>(rc_eval) << " does not match M " << get<2>(m_eval);
  }

  const auto k_eval = _.EvalInt32IfConst(k_id);

  const auto input = _.FindDef(input_id);
  const auto input_type = _.FindDef(input->type_id());
  const auto input_num_components_id = input_type->GetOperandAs<uint32_t>(2u);

  auto input_interp_eval = _.EvalInt32IfConst(input_interpretation_id);
  if (get<1>(input_interp_eval) &&
      !InterpretationIsPacked(spv::ComponentType{get<2>(input_interp_eval)})) {
    const auto inc_eval = _.EvalInt32IfConst(input_num_components_id);
    if (get<1>(inc_eval) && get<1>(k_eval) &&
        get<2>(inc_eval) != get<2>(k_eval)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opcode_name << " input number of components "
             << get<2>(inc_eval) << " does not match K " << get<2>(k_eval);
    }
  }

  if (!_.IsBoolScalarType(_.FindDef(transpose_id)->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " Transpose <id> " << _.getIdName(transpose_id)
           << " is not a scalar boolean.";
  }

  const auto check_constant = [&](uint32_t id,
                                  const char* operand_name) -> spv_result_t {
    if (!spvOpcodeIsConstant(_.GetIdOpcode(id))) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << opcode_name << " " << operand_name << " <id> "
             << _.getIdName(id) << " is not a constant instruction.";
    }
    return SPV_SUCCESS;
  };

  if (auto error =
          check_constant(input_interpretation_id, "InputInterpretation")) {
    return error;
  }
  if (auto error =
          check_constant(matrix_interpretation_id, "MatrixInterpretation")) {
    return error;
  }
  if (has_bias) {
    if (auto error =
            check_constant(bias_interpretation_id, "BiasInterpretation")) {
      return error;
    }
  }
  if (auto error = check_constant(m_id, "M")) {
    return error;
  }
  if (auto error = check_constant(k_id, "K")) {
    return error;
  }
  if (auto error = check_constant(memory_layout_id, "MemoryLayout")) {
    return error;
  }
  if (auto error = check_constant(transpose_id, "Transpose")) {
    return error;
  }

  if (auto error = ValidateInt32Operand(_, inst, input_interpretation_index,
                                        opcode_name, "InputInterpretation")) {
    return error;
  }
  if (auto error = ValidateInt32Operand(_, inst, matrix_interpretation_index,
                                        opcode_name, "MatrixInterpretation")) {
    return error;
  }
  if (has_bias) {
    if (auto error = ValidateInt32Operand(_, inst, bias_interpretation_index,
                                          opcode_name, "BiasInterpretation")) {
      return error;
    }
  }
  if (auto error = ValidateInt32Operand(_, inst, m_index, opcode_name, "M")) {
    return error;
  }
  if (auto error = ValidateInt32Operand(_, inst, k_index, opcode_name, "K")) {
    return error;
  }
  if (auto error = ValidateInt32Operand(_, inst, memory_layout_index,
                                        opcode_name, "MemoryLayout")) {
    return error;
  }

  return SPV_SUCCESS;
}

spv_result_t ValidatePtrComparison(ValidationState_t& _,
                                   const Instruction* inst) {
  if (_.addressing_model() == spv::AddressingModel::Logical &&
      !_.features().variable_pointers) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Instruction cannot for logical addressing model be used without "
              "a variable pointers capability";
  }

  const auto result_type = _.FindDef(inst->type_id());
  if (inst->opcode() == spv::Op::OpPtrDiff) {
    if (!result_type || result_type->opcode() != spv::Op::OpTypeInt) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Result Type must be an integer scalar";
    }
  } else {
    if (!result_type || result_type->opcode() != spv::Op::OpTypeBool) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Result Type must be OpTypeBool";
    }
  }

  const auto op1 = _.FindDef(inst->GetOperandAs<uint32_t>(2u));
  const auto op2 = _.FindDef(inst->GetOperandAs<uint32_t>(3u));
  const auto op1_type = _.FindDef(op1->type_id());
  const auto op2_type = _.FindDef(op2->type_id());
  if (!op1_type || (op1_type->opcode() != spv::Op::OpTypePointer &&
                    op1_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Operand type must be a pointer";
  }

  if (!op2_type || (op2_type->opcode() != spv::Op::OpTypePointer &&
                    op2_type->opcode() != spv::Op::OpTypeUntypedPointerKHR)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Operand type must be a pointer";
  }

  if (inst->opcode() == spv::Op::OpPtrDiff) {
    if (op1->type_id() != op2->type_id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "The types of Operand 1 and Operand 2 must match";
    }
  } else {
    const auto either_untyped =
        op1_type->opcode() == spv::Op::OpTypeUntypedPointerKHR ||
        op2_type->opcode() == spv::Op::OpTypeUntypedPointerKHR;
    if (either_untyped) {
      const auto sc1 = op1_type->GetOperandAs<spv::StorageClass>(1);
      const auto sc2 = op2_type->GetOperandAs<spv::StorageClass>(1);
      if (sc1 != sc2) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Pointer storage classes must match";
      }
    } else if (op1->type_id() != op2->type_id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "The types of Operand 1 and Operand 2 must match";
    }
  }

  spv::StorageClass sc = op1_type->GetOperandAs<spv::StorageClass>(1u);
  if (_.addressing_model() == spv::AddressingModel::Logical) {
    if (sc != spv::StorageClass::Workgroup &&
        sc != spv::StorageClass::StorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Invalid pointer storage class";
    }

    if (sc == spv::StorageClass::Workgroup &&
        !_.HasCapability(spv::Capability::VariablePointers)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Workgroup storage class pointer requires VariablePointers "
                "capability to be specified";
    }
  } else if (sc == spv::StorageClass::PhysicalStorageBuffer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Cannot use a pointer in the PhysicalStorageBuffer storage class";
  }

  return SPV_SUCCESS;
}

}  // namespace

spv_result_t MemoryPass(ValidationState_t& _, const Instruction* inst) {
  switch (inst->opcode()) {
    case spv::Op::OpVariable:
    case spv::Op::OpUntypedVariableKHR:
      if (auto error = ValidateVariable(_, inst)) return error;
      break;
    case spv::Op::OpLoad:
      if (auto error = ValidateLoad(_, inst)) return error;
      break;
    case spv::Op::OpStore:
      if (auto error = ValidateStore(_, inst)) return error;
      break;
    case spv::Op::OpCopyMemory:
    case spv::Op::OpCopyMemorySized:
      if (auto error = ValidateCopyMemory(_, inst)) return error;
      break;
    case spv::Op::OpPtrAccessChain:
    case spv::Op::OpUntypedPtrAccessChainKHR:
    case spv::Op::OpUntypedInBoundsPtrAccessChainKHR:
      if (auto error = ValidatePtrAccessChain(_, inst)) return error;
      break;
    case spv::Op::OpAccessChain:
    case spv::Op::OpInBoundsAccessChain:
    case spv::Op::OpInBoundsPtrAccessChain:
    case spv::Op::OpUntypedAccessChainKHR:
    case spv::Op::OpUntypedInBoundsAccessChainKHR:
      if (auto error = ValidateAccessChain(_, inst)) return error;
      break;
    case spv::Op::OpRawAccessChainNV:
      if (auto error = ValidateRawAccessChain(_, inst)) return error;
      break;
    case spv::Op::OpArrayLength:
    case spv::Op::OpUntypedArrayLengthKHR:
      if (auto error = ValidateArrayLength(_, inst)) return error;
      break;
    case spv::Op::OpCooperativeMatrixLoadNV:
    case spv::Op::OpCooperativeMatrixStoreNV:
      if (auto error = ValidateCooperativeMatrixLoadStoreNV(_, inst))
        return error;
      break;
    case spv::Op::OpCooperativeMatrixLengthKHR:
    case spv::Op::OpCooperativeMatrixLengthNV:
      if (auto error = ValidateCooperativeMatrixLengthNV(_, inst)) return error;
      break;
    case spv::Op::OpCooperativeMatrixLoadKHR:
    case spv::Op::OpCooperativeMatrixStoreKHR:
      if (auto error = ValidateCooperativeMatrixLoadStoreKHR(_, inst))
        return error;
      break;
    case spv::Op::OpCooperativeMatrixLoadTensorNV:
    case spv::Op::OpCooperativeMatrixStoreTensorNV:
      if (auto error = ValidateCooperativeMatrixLoadStoreTensorNV(_, inst))
        return error;
      break;
    case spv::Op::OpCooperativeVectorLoadNV:
    case spv::Op::OpCooperativeVectorStoreNV:
      if (auto error = ValidateCooperativeVectorLoadStoreNV(_, inst))
        return error;
      break;
    case spv::Op::OpCooperativeVectorOuterProductAccumulateNV:
      if (auto error = ValidateCooperativeVectorOuterProductNV(_, inst))
        return error;
      break;
    case spv::Op::OpCooperativeVectorReduceSumAccumulateNV:
      if (auto error = ValidateCooperativeVectorReduceSumNV(_, inst))
        return error;
      break;
    case spv::Op::OpCooperativeVectorMatrixMulNV:
    case spv::Op::OpCooperativeVectorMatrixMulAddNV:
      if (auto error = ValidateCooperativeVectorMatrixMulNV(_, inst))
        return error;
      break;
    case spv::Op::OpPtrEqual:
    case spv::Op::OpPtrNotEqual:
    case spv::Op::OpPtrDiff:
      if (auto error = ValidatePtrComparison(_, inst)) return error;
      break;
    case spv::Op::OpImageTexelPointer:
    case spv::Op::OpGenericPtrMemSemantics:
    default:
      break;
  }

  return SPV_SUCCESS;
}
}  // namespace val
}  // namespace spvtools