1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_construct_composites.h"
#include <memory>
#include "source/fuzz/available_instructions.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_composite_construct.h"
namespace spvtools {
namespace fuzz {
FuzzerPassConstructComposites::FuzzerPassConstructComposites(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassConstructComposites::Apply() {
// Gather up the ids of all composite types, but skip block-/buffer
// block-decorated struct types.
std::vector<uint32_t> composite_type_ids;
for (auto& inst : GetIRContext()->types_values()) {
if (fuzzerutil::IsCompositeType(
GetIRContext()->get_type_mgr()->GetType(inst.result_id())) &&
!fuzzerutil::HasBlockOrBufferBlockDecoration(GetIRContext(),
inst.result_id())) {
composite_type_ids.push_back(inst.result_id());
}
}
if (composite_type_ids.empty()) {
// There are no composite types, so this fuzzer pass cannot do anything.
return;
}
AvailableInstructions available_composite_constituents(
GetIRContext(),
[this](opt::IRContext* ir_context, opt::Instruction* inst) -> bool {
if (!inst->result_id() || !inst->type_id()) {
return false;
}
// If the id is irrelevant, we can use it since it will not
// participate in DataSynonym fact. Otherwise, we should be able
// to produce a synonym out of the id.
return GetTransformationContext()->GetFactManager()->IdIsIrrelevant(
inst->result_id()) ||
fuzzerutil::CanMakeSynonymOf(ir_context,
*GetTransformationContext(), *inst);
});
ForEachInstructionWithInstructionDescriptor(
[this, &available_composite_constituents, &composite_type_ids](
opt::Function* /*unused*/, opt::BasicBlock* /*unused*/,
opt::BasicBlock::iterator inst_it,
const protobufs::InstructionDescriptor& instruction_descriptor)
-> void {
// Randomly decide whether to try inserting a composite construction
// here.
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfConstructingComposite())) {
return;
}
// Check whether it is legitimate to insert a composite construction
// before the instruction.
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(
spv::Op::OpCompositeConstruct, inst_it)) {
return;
}
// For each instruction that is available at this program point (i.e. an
// instruction that is global or whose definition strictly dominates the
// program point) and suitable for making a synonym of, associate it
// with the id of its result type.
TypeIdToInstructions type_id_to_available_instructions;
auto available_instructions =
available_composite_constituents.GetAvailableBeforeInstruction(
&*inst_it);
for (uint32_t available_instruction_index = 0;
available_instruction_index < available_instructions.size();
available_instruction_index++) {
opt::Instruction* inst =
available_instructions[available_instruction_index];
type_id_to_available_instructions[inst->type_id()].push_back(
inst->result_id());
}
// At this point, |composite_type_ids| captures all the composite types
// we could try to create, while |type_id_to_available_instructions|
// captures all the available result ids we might use, organized by
// type.
// Now we choose a composite type to construct, building it from
// available constituent components and using zero constants if suitable
// components are not available.
std::vector<uint32_t> constructor_arguments;
uint32_t chosen_composite_type =
composite_type_ids[GetFuzzerContext()->RandomIndex(
composite_type_ids)];
// Construct a composite of this type, using an appropriate helper
// method depending on the kind of composite type.
auto composite_type_inst =
GetIRContext()->get_def_use_mgr()->GetDef(chosen_composite_type);
switch (composite_type_inst->opcode()) {
case spv::Op::OpTypeArray:
constructor_arguments = FindComponentsToConstructArray(
*composite_type_inst, type_id_to_available_instructions);
break;
case spv::Op::OpTypeMatrix:
constructor_arguments = FindComponentsToConstructMatrix(
*composite_type_inst, type_id_to_available_instructions);
break;
case spv::Op::OpTypeStruct:
constructor_arguments = FindComponentsToConstructStruct(
*composite_type_inst, type_id_to_available_instructions);
break;
case spv::Op::OpTypeVector:
constructor_arguments = FindComponentsToConstructVector(
*composite_type_inst, type_id_to_available_instructions);
break;
default:
assert(false &&
"The space of possible composite types should be covered "
"by the above cases.");
break;
}
assert(!constructor_arguments.empty());
// Make and apply a transformation.
ApplyTransformation(TransformationCompositeConstruct(
chosen_composite_type, constructor_arguments,
instruction_descriptor, GetFuzzerContext()->GetFreshId()));
});
}
std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructArray(
const opt::Instruction& array_type_instruction,
const TypeIdToInstructions& type_id_to_available_instructions) {
assert(array_type_instruction.opcode() == spv::Op::OpTypeArray &&
"Precondition: instruction must be an array type.");
// Get the element type for the array.
auto element_type_id = array_type_instruction.GetSingleWordInOperand(0);
// Get all instructions at our disposal that compute something of this element
// type.
auto available_instructions =
type_id_to_available_instructions.find(element_type_id);
uint32_t array_length =
GetIRContext()
->get_def_use_mgr()
->GetDef(array_type_instruction.GetSingleWordInOperand(1))
->GetSingleWordInOperand(0);
std::vector<uint32_t> result;
for (uint32_t index = 0; index < array_length; index++) {
if (available_instructions == type_id_to_available_instructions.cend()) {
// No suitable instructions are available, so use a zero constant
result.push_back(FindOrCreateZeroConstant(element_type_id, true));
} else {
result.push_back(
available_instructions->second[GetFuzzerContext()->RandomIndex(
available_instructions->second)]);
}
}
return result;
}
std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructMatrix(
const opt::Instruction& matrix_type_instruction,
const TypeIdToInstructions& type_id_to_available_instructions) {
assert(matrix_type_instruction.opcode() == spv::Op::OpTypeMatrix &&
"Precondition: instruction must be a matrix type.");
// Get the element type for the matrix.
auto element_type_id = matrix_type_instruction.GetSingleWordInOperand(0);
// Get all instructions at our disposal that compute something of this element
// type.
auto available_instructions =
type_id_to_available_instructions.find(element_type_id);
std::vector<uint32_t> result;
for (uint32_t index = 0;
index < matrix_type_instruction.GetSingleWordInOperand(1); index++) {
if (available_instructions == type_id_to_available_instructions.cend()) {
// No suitable components are available, so use a zero constant.
result.push_back(FindOrCreateZeroConstant(element_type_id, true));
} else {
result.push_back(
available_instructions->second[GetFuzzerContext()->RandomIndex(
available_instructions->second)]);
}
}
return result;
}
std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructStruct(
const opt::Instruction& struct_type_instruction,
const TypeIdToInstructions& type_id_to_available_instructions) {
assert(struct_type_instruction.opcode() == spv::Op::OpTypeStruct &&
"Precondition: instruction must be a struct type.");
std::vector<uint32_t> result;
// Consider the type of each field of the struct.
for (uint32_t in_operand_index = 0;
in_operand_index < struct_type_instruction.NumInOperands();
in_operand_index++) {
auto element_type_id =
struct_type_instruction.GetSingleWordInOperand(in_operand_index);
// Find the instructions at our disposal that compute something of the field
// type.
auto available_instructions =
type_id_to_available_instructions.find(element_type_id);
if (available_instructions == type_id_to_available_instructions.cend()) {
// No suitable component is available for this element type, so use a zero
// constant.
result.push_back(FindOrCreateZeroConstant(element_type_id, true));
} else {
result.push_back(
available_instructions->second[GetFuzzerContext()->RandomIndex(
available_instructions->second)]);
}
}
return result;
}
std::vector<uint32_t>
FuzzerPassConstructComposites::FindComponentsToConstructVector(
const opt::Instruction& vector_type_instruction,
const TypeIdToInstructions& type_id_to_available_instructions) {
assert(vector_type_instruction.opcode() == spv::Op::OpTypeVector &&
"Precondition: instruction must be a vector type.");
// Get details of the type underlying the vector, and the width of the vector,
// for convenience.
auto element_type_id = vector_type_instruction.GetSingleWordInOperand(0);
auto element_type = GetIRContext()->get_type_mgr()->GetType(element_type_id);
auto element_count = vector_type_instruction.GetSingleWordInOperand(1);
// Collect a mapping, from type id to width, for scalar/vector types that are
// smaller in width than |vector_type|, but that have the same underlying
// type. For example, if |vector_type| is vec4, the mapping will be:
// { float -> 1, vec2 -> 2, vec3 -> 3 }
// The mapping will have missing entries if some of these types do not exist.
std::map<uint32_t, uint32_t> smaller_vector_type_id_to_width;
// Add the underlying type. This id must exist, in order for |vector_type| to
// exist.
smaller_vector_type_id_to_width[element_type_id] = 1;
// Now add every vector type with width at least 2, and less than the width of
// |vector_type|.
for (uint32_t width = 2; width < element_count; width++) {
opt::analysis::Vector smaller_vector_type(element_type, width);
auto smaller_vector_type_id =
GetIRContext()->get_type_mgr()->GetId(&smaller_vector_type);
// We might find that there is no declared type of this smaller width.
// For example, a module can declare vec4 without having declared vec2 or
// vec3.
if (smaller_vector_type_id) {
smaller_vector_type_id_to_width[smaller_vector_type_id] = width;
}
}
// Now we know the types that are available to us, we set about populating a
// vector of the right length. We do this by deciding, with no order in mind,
// which instructions we will use to populate the vector, and subsequently
// randomly choosing an order. This is to avoid biasing construction of
// vectors with smaller vectors to the left and scalars to the right. That is
// a concern because, e.g. in the case of populating a vec4, if we populate
// the constructor instructions left-to-right, we can always choose a vec3 to
// construct the first three elements, but can only choose a vec3 to construct
// the last three elements if we chose a float to construct the first element
// (otherwise there will not be space left for a vec3).
uint32_t vector_slots_used = 0;
// The instructions result ids we will use to construct the vector, in no
// particular order at this stage.
std::vector<uint32_t> result;
while (vector_slots_used < element_count) {
std::vector<uint32_t> instructions_to_choose_from;
for (auto& entry : smaller_vector_type_id_to_width) {
if (entry.second >
std::min(element_count - 1, element_count - vector_slots_used)) {
continue;
}
auto available_instructions =
type_id_to_available_instructions.find(entry.first);
if (available_instructions == type_id_to_available_instructions.cend()) {
continue;
}
instructions_to_choose_from.insert(instructions_to_choose_from.end(),
available_instructions->second.begin(),
available_instructions->second.end());
}
// If there are no instructions to choose from then use a zero constant,
// otherwise select one of the instructions at random.
uint32_t id_of_instruction_to_use =
instructions_to_choose_from.empty()
? FindOrCreateZeroConstant(element_type_id, true)
: instructions_to_choose_from[GetFuzzerContext()->RandomIndex(
instructions_to_choose_from)];
opt::Instruction* instruction_to_use =
GetIRContext()->get_def_use_mgr()->GetDef(id_of_instruction_to_use);
result.push_back(instruction_to_use->result_id());
auto chosen_type =
GetIRContext()->get_type_mgr()->GetType(instruction_to_use->type_id());
if (chosen_type->AsVector()) {
assert(chosen_type->AsVector()->element_type() == element_type);
assert(chosen_type->AsVector()->element_count() < element_count);
assert(chosen_type->AsVector()->element_count() <=
element_count - vector_slots_used);
vector_slots_used += chosen_type->AsVector()->element_count();
} else {
assert(chosen_type == element_type);
vector_slots_used += 1;
}
}
assert(vector_slots_used == element_count);
GetFuzzerContext()->Shuffle(&result);
return result;
}
} // namespace fuzz
} // namespace spvtools
|