1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
|
// Copyright 2025 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fnvar.h"
#include <initializer_list>
#include <memory>
#include <sstream>
#include "source/opt/instruction.h"
namespace spvtools {
using opt::Function;
using opt::Instruction;
using opt::analysis::Type;
namespace {
// Helper functions
// Parses a CSV source string for the purpose of this extension.
//
// Required columns must be known in advance and supplied as the required_cols
// argument -- this is used for error checking. Values are assumed to be
// separated by CSV_SEP. The input source string is assumed to be the output of
// io::ReadTextFile and no other validation, apart from the CSV parsing, is
// performed.
//
// Returns true on success, false on error (with error message stored in
// err_msg).
bool ParseCsv(const std::string& source,
const std::vector<std::string>& required_cols,
std::stringstream& err_msg,
std::vector<std::vector<std::string>>& result) {
std::stringstream fn_variants_csv_stream(source);
std::string line;
std::vector<std::string> columns;
constexpr char CSV_SEP = ',';
bool first_line = true;
while (std::getline(fn_variants_csv_stream, line, '\n')) {
if (line.empty()) {
continue;
}
std::vector<std::string> vals;
std::string val;
std::stringstream line_stream(line);
auto* vec = first_line ? &columns : &vals;
while (std::getline(line_stream, val, CSV_SEP)) {
vec->push_back(val);
}
if (!line_stream && val.empty()) {
vec->push_back("");
}
if (!first_line) {
if (vals.size() != columns.size()) {
err_msg << "Number of values does not match the number of columns. "
"Offending line:\n"
<< line;
return false;
}
result.push_back(vals);
}
first_line = false;
}
// check if required columns match actual columns (ordering matters)
if (columns.size() != required_cols.size()) {
err_msg << "Invalid number of CSV columns: " << columns.size()
<< ", expected " << required_cols.size() << ".";
return false;
}
for (size_t i = 0; i < columns.size(); ++i) {
if (columns[i] != required_cols[i]) {
err_msg << "Invalid name of column " << i + 1 << ". Expected '"
<< required_cols[i] << "', got '" << columns[i] << "'.";
return false;
}
}
return true;
}
// Annotate ID with ConditionalINTEL decoration
void DecorateConditional(IRContext* context, uint32_t id_to_decorate,
uint32_t spec_const_id) {
auto decor_instr =
std::make_unique<Instruction>(context, spv::Op::OpDecorate);
decor_instr->AddOperand({SPV_OPERAND_TYPE_ID, {id_to_decorate}});
decor_instr->AddOperand({SPV_OPERAND_TYPE_DECORATION,
{uint32_t(spv::Decoration::ConditionalINTEL)}});
decor_instr->AddOperand({SPV_OPERAND_TYPE_ID, {spec_const_id}});
context->module()->AddAnnotationInst(std::move(decor_instr));
}
// Finds entry point corresponding to a function
//
// Returns null if not found, otherwise returns pointer to the EP Instruction.
Instruction* FindEntryPoint(const Instruction& fn_inst) {
auto* mod = fn_inst.context()->module();
for (auto& entry_point : mod->entry_points()) {
const int ep_i =
entry_point.opcode() == spv::Op::OpConditionalEntryPointINTEL ? 2 : 1;
if (entry_point.GetOperand(ep_i).AsId() == fn_inst.result_id()) {
return &entry_point;
}
}
return nullptr;
}
// If the function has an entry point, converts it to a conditional one
void ConvertEPToConditional(Module* module, const Function& fn,
uint32_t spec_const_id) {
for (const auto& ep_inst : module->entry_points()) {
if (ep_inst.opcode() == spv::Op::OpEntryPoint) {
auto* entry_point = FindEntryPoint(fn.DefInst());
if (entry_point != nullptr) {
std::vector<opt::Operand> old_operands;
for (auto operand : *entry_point) {
old_operands.push_back(operand);
}
entry_point->ToNop();
entry_point->SetOpcode(spv::Op::OpConditionalEntryPointINTEL);
entry_point->AddOperand({SPV_OPERAND_TYPE_ID, {spec_const_id}});
for (auto old_operand : old_operands) {
entry_point->AddOperand(old_operand);
}
}
}
}
}
// Finds ID of a bool type (returns 0 if not found)
uint32_t FindIdOfBoolType(const Module* const mod) {
return mod->context()->get_type_mgr()->GetBoolTypeId();
}
// Combines IDs using OpSpecConstantOp with the operation defined by cmp_op.
//
// Returns the ID of the final result. If there are no IDs, returns 0. If there
// is one ID, does not generate any instructions and returns the ID.
uint32_t CombineIds(IRContext* const context, const std::vector<uint32_t>& ids,
spv::Op cmp_op) {
if (ids.empty()) {
return 0;
} else if (ids.size() == 1) {
return ids[0];
} else {
uint32_t bool_id = FindIdOfBoolType(context->module());
assert(bool_id != 0);
uint32_t prev_spec_const_id = ids[0];
for (size_t i = 1; i < ids.size(); ++i) {
const uint32_t id = ids[i];
const uint32_t spec_const_op_id = context->TakeNextId();
auto inst = std::make_unique<Instruction>(
context, spv::Op::OpSpecConstantOp, bool_id, spec_const_op_id,
std::initializer_list<opt::Operand>{
{SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER, {(uint32_t)(cmp_op)}},
{SPV_OPERAND_TYPE_ID, {prev_spec_const_id}},
{SPV_OPERAND_TYPE_ID, {id}}});
context->module()->AddType(std::move(inst));
prev_spec_const_id = spec_const_op_id;
}
return prev_spec_const_id;
}
}
// Returns whether instruction can be shared between variant modules and
// combined using spec constants (such as conditional capabilities).
bool CanBeFnVarCombined(const Instruction* inst) {
const spv::Op opcode = inst->opcode();
if ((opcode != spv::Op::OpExtInstImport) &&
(opcode != spv::Op::OpCapability) && (opcode != spv::Op::OpExtension) &&
!spvOpcodeGeneratesType(opcode)) {
return false;
}
if ((opcode == spv::Op::OpCapability) &&
((inst->GetSingleWordOperand(0) ==
static_cast<uint32_t>(spv::Capability::FunctionVariantsINTEL)) ||
(inst->GetSingleWordOperand(0) ==
static_cast<uint32_t>(spv::Capability::SpecConditionalINTEL)))) {
// Always enabled
return false;
}
if ((opcode == spv::Op::OpExtension) &&
(inst->GetOperand(0).AsString() == FNVAR_EXT_NAME)) {
// Always enabled
return false;
}
return true;
}
// Calculates hash of an instruction.
//
// Applicable only to instructions that can be combined (ie. with
// CanBeFnVarCombined being true) and from those, hash can be only computed for
// selected instructions. Computing hash from other instruction is unsupported.
size_t HashInst(const Instruction* inst) {
if (CanBeFnVarCombined(inst)) {
if (spvOpcodeGeneratesType(inst->opcode())) {
const Type* t =
inst->context()->get_type_mgr()->GetType(inst->result_id());
assert(t != nullptr);
return t->HashValue();
}
if (inst->opcode() == spv::Op::OpExtension) {
const auto name = inst->GetOperand(0).AsString();
return std::hash<std::string>()(name);
}
if (inst->opcode() == spv::Op::OpCapability) {
const auto cap = inst->GetSingleWordOperand(0);
return std::hash<uint32_t>()(cap);
}
if (inst->opcode() == spv::Op::OpExtInstImport) {
const auto name = inst->GetOperand(1).AsString();
return std::hash<std::string>()(name);
}
}
assert(false && "Unsupported instruction hash");
return std::hash<const Instruction*>()(inst);
}
std::string GetFnName(const Instruction& fn_inst) {
// Check entry point
const auto* ep_inst = FindEntryPoint(fn_inst);
if (ep_inst != nullptr) {
const int name_i =
ep_inst->opcode() == spv::Op::OpConditionalEntryPointINTEL ? 3 : 2;
return ep_inst->GetOperand(name_i).AsString();
}
// Check name of export linkage attribute decoration
const auto* decor_mgr = fn_inst.context()->get_decoration_mgr();
for (const auto* inst :
decor_mgr->GetDecorationsFor(fn_inst.result_id(), true)) {
const auto decoration = inst->GetOperand(1);
if ((decoration.type == SPV_OPERAND_TYPE_DECORATION) &&
(decoration.words.size() == 1) &&
(decoration.words[0] ==
static_cast<uint32_t>(spv::Decoration::LinkageAttributes))) {
const auto linkage = inst->GetOperand(3);
if ((linkage.type == SPV_OPERAND_TYPE_LINKAGE_TYPE) &&
(linkage.words.size() == 1) &&
(linkage.words[0] ==
static_cast<uint32_t>(spv::LinkageType::Export))) {
// decorates fn with LinkageAttribute and Export linkage type -> get the
// name
return inst->GetOperand(2).AsString();
}
}
}
return "";
}
uint32_t FindSpecConstByName(const Module* mod, std::string name) {
for (const auto* const_inst : mod->context()->GetConstants()) {
if (opt::IsSpecConstantInst(const_inst->opcode())) {
const auto id = const_inst->result_id();
for (const auto& name_inst : mod->debugs2()) {
if ((name_inst.opcode() == spv::Op::OpName) &&
(name_inst.GetOperand(0).AsId() == id) &&
(name_inst.GetOperand(1).AsString() == name)) {
return id;
}
}
}
}
return 0;
}
uint32_t CombineVariantDefs(const std::vector<VariantDef>& variant_defs,
const std::vector<size_t> var_ids,
IRContext* context,
std::map<std::vector<size_t>, uint32_t>& cache) {
assert(var_ids.size() <= variant_defs.size());
uint32_t spec_const_comb_id = 0;
if (var_ids.size() != variant_defs.size()) {
// if not used by all variants
if (cache.find(var_ids) == cache.end()) {
// cache variant combinations
std::vector<uint32_t> spec_const_ids;
for (const auto& var_id : var_ids) {
const auto var_name = variant_defs[var_id].GetName();
const auto var_spec_id =
FindSpecConstByName(context->module(), var_name);
spec_const_ids.push_back(var_spec_id);
}
spec_const_comb_id =
CombineIds(context, spec_const_ids, spv::Op::OpLogicalOr);
assert(spec_const_comb_id != 0);
cache.insert({var_ids, spec_const_comb_id});
} else {
spec_const_comb_id = cache[var_ids];
}
}
return spec_const_comb_id;
}
bool strToInt(std::string s, uint32_t* x) {
for (const char& c : s) {
if (c < '0' || c > '9') {
return false;
}
}
if (!(std::stringstream(s) >> *x)) {
return false;
}
return true;
}
} // anonymous namespace
bool VariantDefs::ProcessFnVar(const LinkerOptions& options,
const std::vector<Module*>& modules) {
assert(variant_defs_.empty());
assert(modules.size() == options.GetInFiles().size());
for (size_t i = 0; i < modules.size(); ++i) {
const auto* feat_mgr = modules[i]->context()->get_feature_mgr();
if ((feat_mgr->HasCapability(spv::Capability::FunctionVariantsINTEL)) ||
(feat_mgr->HasCapability(spv::Capability::SpecConditionalINTEL)) ||
(feat_mgr->HasExtension(kSPV_INTEL_function_variants))) {
// In principle, it can be done but it's complicated due to having to
// combine the existing conditionals with the new ones. For example,
// conditional capabilities would need to become "doubly-conditional".
err_ << "Creating multitarget modules from multitarget modules is not "
"supported. Offending file: "
<< options.GetInFiles()[i];
return false;
}
}
std::vector<std::vector<std::string>> target_rows;
std::vector<std::vector<std::string>> architecture_rows;
if (!options.GetFnVarTargetsCsv().empty()) {
const std::vector<std::string> tgt_cols = {"module", "target", "features"};
if (!ParseCsv(options.GetFnVarTargetsCsv(), tgt_cols, err_, target_rows)) {
return false;
}
}
if (!options.GetFnVarArchitecturesCsv().empty()) {
const std::vector<std::string> arch_cols = {"module", "category", "family",
"op", "architecture"};
if (!ParseCsv(options.GetFnVarArchitecturesCsv(), arch_cols, err_,
architecture_rows)) {
return false;
}
}
// check that all modules defined in the CSV exist
for (const auto& tgt_vals : target_rows) {
bool found = false;
for (const auto& in_file : options.GetInFiles()) {
if (tgt_vals[0] == in_file) {
found = true;
}
}
if (!found) {
err_ << "Module '" << tgt_vals[0]
<< "' found in targets CSV not passed to the CLI.";
return false;
}
}
for (const auto& arch_vals : architecture_rows) {
bool found = false;
for (const auto& in_file : options.GetInFiles()) {
if (arch_vals[0] == in_file) {
found = true;
}
}
if (!found) {
err_ << "Module '" << arch_vals[0]
<< "' found in architectures CSV not passed to the CLI.";
return false;
}
}
// create per-module variant defs
for (size_t i = 0; i < modules.size(); ++i) {
// first module passed to the CLI is considered the base module
bool is_base = i == 0;
const auto name = options.GetInFiles()[i];
auto variant_def = VariantDef(is_base, name, modules[i]);
for (const auto& arch_row : architecture_rows) {
const auto row_name = arch_row[0];
if (row_name == name) {
uint32_t category, family, op, architecture;
if (!strToInt(arch_row[1], &category)) {
err_ << "Error converting " << arch_row[1]
<< " to architecture category.";
return false;
}
if (!strToInt(arch_row[2], &family)) {
err_ << "Error converting " << arch_row[2]
<< " to architecture family.";
return false;
}
if (!strToInt(arch_row[3], &op)) {
err_ << "Error converting " << arch_row[3] << " to architecture op.";
return false;
}
if (!strToInt(arch_row[4], &architecture)) {
err_ << "Error converting " << arch_row[4] << " to architecture.";
return false;
}
variant_def.AddArchDef(category, family, op, architecture);
}
}
for (const auto& tgt_row : target_rows) {
const auto row_name = tgt_row[0];
if (row_name == name) {
uint32_t target;
std::vector<uint32_t> features;
if (!strToInt(tgt_row[1], &target)) {
err_ << "Error converting " << tgt_row[1] << " to target.";
return false;
}
// get features as FEAT_SEP-delimited integers
std::stringstream feat_stream(tgt_row[2]);
std::string feat;
while (std::getline(feat_stream, feat, FEAT_SEP)) {
uint32_t ufeat;
// if (!(std::stringstream(feat) >> ufeat)) {
if (!strToInt(feat, &ufeat)) {
err_ << "Error converting " << feat << " in " << tgt_row[2]
<< " to target feature.";
return false;
}
features.push_back(ufeat);
}
variant_def.AddTgtDef(target, features);
}
}
if (options.GetHasFnVarCapabilities()) {
variant_def.InferCapabilities();
}
variant_defs_.push_back(variant_def);
}
return true;
}
bool VariantDefs::ProcessVariantDefs() {
EnsureBoolType();
CollectVarInsts();
if (!GenerateFnVarConstants()) {
return false;
}
CollectBaseFnCalls();
return true;
}
void VariantDefs::GenerateHeader(IRContext* linked_context) {
linked_context->AddCapability(spv::Capability::SpecConditionalINTEL);
linked_context->AddCapability(spv::Capability::FunctionVariantsINTEL);
linked_context->AddExtension(std::string(FNVAR_EXT_NAME));
// Specifies used registry version
auto inst =
std::make_unique<Instruction>(linked_context, spv::Op::OpModuleProcessed);
std::stringstream line;
line << "SPV_INTEL_function_variants registry version "
<< FNVAR_REGISTRY_VERSION;
inst->AddOperand(
{SPV_OPERAND_TYPE_LITERAL_STRING, utils::MakeVector(line.str())});
linked_context->AddDebug3Inst(std::move(inst));
}
void VariantDefs::CombineVariantInstructions(IRContext* linked_context) {
CombineBaseFnCalls(linked_context);
CombineInstructions(linked_context);
}
void VariantDefs::EnsureBoolType() {
for (auto& variant_def : variant_defs_) {
Module* module = variant_def.GetModule();
IRContext* context = module->context();
uint32_t bool_id = FindIdOfBoolType(module);
if (bool_id == 0) {
bool_id = context->TakeNextId();
auto variant_bool = std::make_unique<Instruction>(
context, spv::Op::OpTypeBool, 0, bool_id,
std::initializer_list<opt::Operand>{});
module->AddType(std::move(variant_bool));
}
}
}
void VariantDefs::CollectVarInsts() {
for (size_t i = 0; i < variant_defs_.size(); ++i) {
const auto variant_def = variant_defs_[i];
const auto* var_mod = variant_def.GetModule();
var_mod->ForEachInst([this, &i](const Instruction* inst) {
if (CanBeFnVarCombined(inst)) {
const size_t inst_hash = HashInst(inst);
if (fnvar_usage_.find(inst_hash) == fnvar_usage_.end()) {
fnvar_usage_.insert({inst_hash, {i}});
} else {
assert(fnvar_usage_[inst_hash].size() < variant_defs_.size());
fnvar_usage_[inst_hash].push_back(i);
}
}
});
}
}
bool VariantDefs::GenerateFnVarConstants() {
assert(variant_defs_.size() > 0);
assert(variant_defs_[0].IsBase());
if (variant_defs_.size() == 1) {
return true;
}
for (auto& variant_def : variant_defs_) {
Module* module = variant_def.GetModule();
IRContext* context = module->context();
uint32_t bool_id = FindIdOfBoolType(module);
if (bool_id == 0) {
// add a bool type if not present already
bool_id = context->TakeNextId();
auto variant_bool = std::make_unique<Instruction>(
context, spv::Op::OpTypeBool, 0, bool_id,
std::initializer_list<opt::Operand>{});
module->AddType(std::move(variant_bool));
}
// Spec constant architecture and target
std::vector<uint32_t> spec_const_arch_ids;
for (const auto& arch_def : variant_def.GetArchDefs()) {
const uint32_t spec_const_arch_id = context->TakeNextId();
spec_const_arch_ids.push_back(spec_const_arch_id);
auto inst = std::make_unique<Instruction>(
context, spv::Op::OpSpecConstantArchitectureINTEL, bool_id,
spec_const_arch_id,
std::initializer_list<opt::Operand>{
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {arch_def.category}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {arch_def.family}},
// Using spec op opcode here expects then next operand to be
// a type:
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {arch_def.op}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {arch_def.architecture}},
});
module->AddType(std::move(inst));
}
std::vector<uint32_t> spec_const_tgt_ids;
for (const auto& tgt_def : variant_def.GetTgtDefs()) {
const uint32_t spec_const_tgt_id = context->TakeNextId();
spec_const_tgt_ids.push_back(spec_const_tgt_id);
auto inst = std::make_unique<Instruction>(
context, spv::Op::OpSpecConstantTargetINTEL, bool_id,
spec_const_tgt_id,
std::initializer_list<opt::Operand>{
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {tgt_def.target}},
});
for (const auto& feat : tgt_def.features) {
inst->AddOperand({SPV_OPERAND_TYPE_LITERAL_INTEGER, {feat}});
}
module->AddType(std::move(inst));
}
std::vector<uint32_t> spec_const_ids;
// Spec constant capabilities
const auto variant_capabilities = variant_def.GetCapabilities();
if (!variant_capabilities.empty()) {
const uint32_t spec_const_cap_id = context->TakeNextId();
auto inst = std::make_unique<Instruction>(
context, spv::Op::OpSpecConstantCapabilitiesINTEL, bool_id,
spec_const_cap_id, std::initializer_list<opt::Operand>{});
for (const auto& cap : variant_capabilities) {
inst->AddOperand({SPV_OPERAND_TYPE_CAPABILITY, {uint32_t(cap)}});
}
module->AddType(std::move(inst));
spec_const_ids.push_back(spec_const_cap_id);
}
// Combine architectures such that, for the same module, those with the same
// category and family are combined with AND and different cat/fam are
// combined with OR.
// This lets you create combinations like "architecture between X and Y".
// map (category, family) -> IDs
std::map<std::pair<uint32_t, uint32_t>, std::vector<uint32_t>> arch_map_and;
for (size_t i = 0; i < spec_const_arch_ids.size(); ++i) {
const auto& arch_def = variant_def.GetArchDefs()[i];
const auto id = spec_const_arch_ids[i];
const auto key = std::make_pair(arch_def.category, arch_def.family);
if (arch_map_and.find(key) == arch_map_and.end()) {
arch_map_and[key] = {id};
} else {
arch_map_and[key].push_back(id);
}
}
std::vector<uint32_t> arch_ids_or;
for (const auto& it : arch_map_and) {
const auto id = CombineIds(context, it.second, spv::Op::OpLogicalAnd);
if (id > 0) {
arch_ids_or.push_back(id);
}
}
const uint32_t spec_const_arch_id =
CombineIds(context, arch_ids_or, spv::Op::OpLogicalOr);
if (spec_const_arch_id > 0) {
spec_const_ids.push_back(spec_const_arch_id);
}
const uint32_t spec_const_tgt_id =
CombineIds(context, spec_const_tgt_ids, spv::Op::OpLogicalOr);
if (spec_const_tgt_id > 0) {
spec_const_ids.push_back(spec_const_tgt_id);
}
uint32_t combined_spec_const_id =
CombineIds(context, spec_const_ids, spv::Op::OpLogicalAnd);
if (combined_spec_const_id == 0) {
// If the variant module has no constraints, use SpecConstantTrue
combined_spec_const_id = context->TakeNextId();
auto inst = std::make_unique<Instruction>(
context, spv::Op::OpSpecConstantTrue, bool_id, combined_spec_const_id,
std::initializer_list<opt::Operand>{});
context->module()->AddType(std::move(inst));
}
assert(combined_spec_const_id != 0);
// Add a name the combined boolean ID so we can look it up after the IDs are
// shifted
auto inst = std::make_unique<Instruction>(context, spv::Op::OpName);
inst->AddOperand({SPV_OPERAND_TYPE_ID, {combined_spec_const_id}});
std::vector<uint32_t> str_words;
utils::AppendToVector(variant_def.GetName(), &str_words);
inst->AddOperand({SPV_OPERAND_TYPE_LITERAL_STRING, {str_words}});
module->AddDebug2Inst(std::move(inst));
// Annotate all instructions in the types section (eg. constants) with
// ConditionalINTEL, unless they can be shared between variant_defs_ (eg.
// types). Spec constants are excluded because they might have been
// generated by this extension.
for (const auto& type_inst : module->types_values()) {
if (!CanBeFnVarCombined(&type_inst) &&
!spvOpcodeIsSpecConstant(type_inst.opcode())) {
DecorateConditional(context, type_inst.result_id(),
combined_spec_const_id);
}
}
}
// Annotate functions with ConditionalINTEL
for (const auto& base_fn : *variant_defs_[0].GetModule()) {
// For each function of the base module, find matching variant functions in
// other modules
auto base_fn_name = GetFnName(base_fn.DefInst());
if (base_fn_name.empty()) {
err_ << "Could not find name of a function " << base_fn.result_id()
<< " in a base module " << variant_defs_[0].GetName()
<< ". To be usable by SPV_INTEL_function_variants, a function "
"must either have an entry point or an export "
"LinkAttribute decoration.";
return false;
}
bool base_fn_needs_conditional = false;
for (size_t i = 1; i < variant_defs_.size(); ++i) {
const auto& variant_def = variant_defs_[i];
auto* variant_module = variant_def.GetModule();
auto* variant_context = variant_module->context();
for (const auto& var_fn : *variant_module) {
auto var_fn_name = GetFnName(var_fn.DefInst());
if (var_fn_name.empty()) {
err_ << "Could not find name of a function " << var_fn.result_id()
<< " in a base module " << variant_def.GetName()
<< ". To be usable by SPV_INTEL_function_variants, a function "
"must either have an entry point or an export "
"LinkAttribute decoration.";
return false;
}
if (base_fn_name == var_fn_name) {
base_fn_needs_conditional = true;
}
// each function in a variant module gets a ConditionalINTEL decoration
uint32_t spec_const_id =
FindSpecConstByName(variant_module, variant_def.GetName());
assert(spec_const_id != 0);
DecorateConditional(variant_context, var_fn.result_id(), spec_const_id);
ConvertEPToConditional(variant_module, var_fn, spec_const_id);
}
}
if (base_fn_needs_conditional) {
// only a base function that has a variant in another module gets a
// ConditionalINTEL decoration, the others are common for all
// variant_defs_
auto* base_module = variant_defs_[0].GetModule();
auto* base_context = base_module->context();
uint32_t spec_const_id =
FindSpecConstByName(base_module, variant_defs_[0].GetName());
assert(spec_const_id != 0);
DecorateConditional(base_context, base_fn.result_id(), spec_const_id);
ConvertEPToConditional(base_module, base_fn, spec_const_id);
}
}
return true;
}
void VariantDefs::CollectBaseFnCalls() {
auto* base_mod = variant_defs_[0].GetModule();
assert(variant_defs_[0].IsBase());
const auto* base_def_use_mgr = base_mod->context()->get_def_use_mgr();
base_mod->ForEachInst([this, &base_def_use_mgr](const Instruction* inst) {
if (inst->opcode() == spv::Op::OpFunctionCall) {
// For each function call in base module, get the function name
const auto fn_id = inst->GetOperand(2).AsId();
const auto* called_fn_inst = base_def_use_mgr->GetDef(fn_id);
assert(called_fn_inst != nullptr);
const auto called_fn_name = GetFnName(*called_fn_inst);
assert(!called_fn_name.empty());
std::vector<std::pair<std::string, const opt::Function*>> called_fns;
for (size_t i = 1; i < variant_defs_.size(); ++i) {
// ... then see in which variant the called function was defined
const auto& variant_def = variant_defs_[i];
assert(!variant_def.IsBase());
for (const auto& fn : *variant_def.GetModule()) {
const auto fn_name = GetFnName(fn.DefInst());
if (fn_name == called_fn_name) {
called_fns.push_back(std::make_pair(variant_def.GetName(), &fn));
}
}
}
if (!called_fns.empty()) {
base_fn_calls_[inst->result_id()] = called_fns;
}
}
});
}
void VariantDefs::CombineBaseFnCalls(IRContext* linked_context) {
for (auto kv : base_fn_calls_) {
const uint32_t call_id = kv.first;
const auto called_fns = kv.second;
if (called_fns.empty()) {
return;
}
opt::BasicBlock* fn_call_bb = linked_context->get_instr_block(call_id);
Instruction* found_call_inst = nullptr;
auto bb_iter = fn_call_bb->begin();
while (bb_iter != fn_call_bb->end() && found_call_inst == nullptr) {
if (bb_iter->HasResultId() && bb_iter->result_id() == call_id) {
found_call_inst = &*bb_iter;
}
++bb_iter;
}
if (found_call_inst == nullptr) {
return;
}
const auto base_spec_const_id = FindSpecConstByName(
variant_defs_[0].GetModule(), variant_defs_[0].GetName());
const auto base_type_op = found_call_inst->context()
->get_def_use_mgr()
->GetDef(found_call_inst->type_id())
->opcode();
const auto base_call_id = found_call_inst->result_id();
// decorate the base call with ConditionalINTEL
DecorateConditional(linked_context, base_call_id, base_spec_const_id);
// Add OpFunctionCall for each variant
Instruction* last_inst = found_call_inst;
std::vector<std::pair<uint32_t, uint32_t>> var_call_ids;
for (const auto& kv2 : called_fns) {
const std::string var_name = kv2.first;
const opt::Function* fn = kv2.second;
const uint32_t spec_const_id =
FindSpecConstByName(linked_context->module(), var_name);
assert(spec_const_id != 0);
const uint32_t var_call_id = linked_context->TakeNextId();
var_call_ids.push_back(std::make_pair(spec_const_id, var_call_id));
auto* var_call_inst = found_call_inst->Clone(linked_context);
var_call_inst->SetResultId(var_call_id);
var_call_inst->SetOperand(2, {fn->result_id()});
var_call_inst->InsertAfter(last_inst);
linked_context->set_instr_block(var_call_inst, fn_call_bb);
last_inst = var_call_inst;
// decorate the variant call with ConditionalINTEL
DecorateConditional(linked_context, var_call_id, spec_const_id);
}
if (base_type_op != spv::Op::OpTypeVoid) {
// Add OpConditionalCopyObjectINTEL combining the function calls
const uint32_t result_id = linked_context->TakeNextId();
auto conditional_copy_inst = new Instruction(
linked_context, spv::Op::OpConditionalCopyObjectINTEL,
found_call_inst->type_id(), result_id,
{{SPV_OPERAND_TYPE_ID, {base_spec_const_id}},
{SPV_OPERAND_TYPE_ID, {found_call_inst->result_id()}}});
for (const auto& kv3 : var_call_ids) {
const auto spec_const_id = kv3.first;
const auto var_call_id = kv3.second;
conditional_copy_inst->AddOperand(
{SPV_OPERAND_TYPE_ID, {spec_const_id}});
conditional_copy_inst->AddOperand({SPV_OPERAND_TYPE_ID, {var_call_id}});
}
conditional_copy_inst->InsertAfter(last_inst);
linked_context->set_instr_block(conditional_copy_inst, fn_call_bb);
last_inst = conditional_copy_inst;
// In all remaining instructions within the basic block, replace all
// usages of the base call ID with the result of
// OpConditionalCopyObjectINTEL
do {
last_inst = last_inst->NextNode();
last_inst->ForEachInId([base_call_id, result_id](uint32_t* id) {
if (*id == base_call_id) {
*id = result_id;
}
});
} while (last_inst != nullptr && *last_inst != *fn_call_bb->tail());
}
}
// Combine spec consts for the base module (base module is activated if all
// variant defs are inactive AND the base module constraints are satisfied)
std::vector<uint32_t> var_spec_const_ids;
for (const auto& variant_def : variant_defs_) {
if (variant_def.IsBase()) {
continue;
}
const auto id =
FindSpecConstByName(linked_context->module(), variant_def.GetName());
assert(id != 0);
var_spec_const_ids.push_back(id);
}
const uint32_t base_or_id =
CombineIds(linked_context, var_spec_const_ids, spv::Op::OpLogicalOr);
if (base_or_id != 0) {
const uint32_t bool_id = FindIdOfBoolType(linked_context->module());
assert(bool_id != 0);
const uint32_t base_not_id = linked_context->TakeNextId();
auto spec_const_op_inst = std::make_unique<Instruction>(
linked_context, spv::Op::OpSpecConstantOp, bool_id, base_not_id,
std::initializer_list<opt::Operand>{
{SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER,
{(uint32_t)(spv::Op::OpLogicalNot)}},
{SPV_OPERAND_TYPE_ID, {base_or_id}}});
linked_context->module()->AddType(std::move(spec_const_op_inst));
// Update any ConditionalINTEL annotations, names and entry points
// referencing the old spec const ID to use the new one
const uint32_t old_base_spec_const_id = FindSpecConstByName(
linked_context->module(), variant_defs_[0].GetName());
assert(old_base_spec_const_id != 0);
const uint32_t base_spec_const_id =
CombineIds(linked_context, {old_base_spec_const_id, base_not_id},
spv::Op::OpLogicalAnd);
for (auto& annot_inst : linked_context->module()->annotations()) {
if ((annot_inst.GetSingleWordOperand(1) ==
uint32_t(spv::Decoration::ConditionalINTEL)) &&
(annot_inst.GetOperand(2).AsId() == old_base_spec_const_id)) {
annot_inst.SetOperand(2, {base_spec_const_id});
}
}
for (auto& name_inst : linked_context->module()->debugs2()) {
if ((name_inst.opcode() == spv::Op::OpName) &&
(name_inst.GetOperand(0).AsId() == old_base_spec_const_id)) {
name_inst.SetOperand(0, {base_spec_const_id});
}
}
for (auto& ep_inst : linked_context->module()->entry_points()) {
if ((ep_inst.opcode() == spv::Op::OpConditionalEntryPointINTEL) &&
(ep_inst.GetOperand(0).AsId() == old_base_spec_const_id)) {
ep_inst.SetOperand(0, {base_spec_const_id});
}
}
linked_context->module()->ForEachInst(
[old_base_spec_const_id, base_spec_const_id](Instruction* inst) {
if (inst->opcode() == spv::Op::OpConditionalCopyObjectINTEL) {
inst->ForEachInId(
[old_base_spec_const_id, base_spec_const_id](uint32_t* id) {
if (*id == old_base_spec_const_id) {
*id = base_spec_const_id;
}
});
}
});
}
}
void VariantDefs::CombineInstructions(IRContext* linked_context) {
// cache for existing variant ID combinations
std::map<std::vector<size_t>, uint32_t> spec_const_comb_ids;
linked_context->module()->ForEachInst(
[this, &linked_context, &spec_const_comb_ids](Instruction* inst) {
if (!CanBeFnVarCombined(inst)) {
return;
}
const size_t inst_hash = HashInst(inst);
if (fnvar_usage_.find(inst_hash) != fnvar_usage_.end()) {
const std::vector<size_t> var_ids = fnvar_usage_[inst_hash];
const uint32_t spec_const_comb_id = CombineVariantDefs(
variant_defs_, var_ids, linked_context, spec_const_comb_ids);
if (spec_const_comb_id != 0) {
if (inst->HasResultId()) {
DecorateConditional(linked_context, inst->result_id(),
spec_const_comb_id);
} else if (inst->opcode() == spv::Op::OpCapability) {
const uint32_t cap = inst->GetSingleWordOperand(0);
inst->SetOpcode(spv::Op::OpConditionalCapabilityINTEL);
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {spec_const_comb_id}},
{SPV_OPERAND_TYPE_CAPABILITY, {cap}}});
} else if (inst->opcode() == spv::Op::OpExtension) {
const std::string ext_name = inst->GetOperand(0).AsString();
inst->SetOpcode(spv::Op::OpConditionalExtensionINTEL);
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {spec_const_comb_id}},
{SPV_OPERAND_TYPE_LITERAL_STRING,
{utils::MakeVector(ext_name)}}});
} else {
assert(false && "Unsupported");
}
}
}
});
}
} // namespace spvtools
|