1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
// Copyright (c) 2025 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/canonicalize_ids_pass.h"
#include <algorithm>
#include <limits>
namespace spvtools {
namespace opt {
Pass::Status CanonicalizeIdsPass::Process() {
// Initialize the new ID map.
new_id_.resize(GetBound(), unused_);
// Scan the IDs and set to unmapped.
ScanIds();
// Create new IDs for types and consts.
CanonicalizeTypeAndConst();
// Create new IDs for names.
CanonicalizeNames();
// Create new IDs for functions.
CanonicalizeFunctions();
// Create new IDs for everything else.
CanonicalizeRemainders();
// Apply the new IDs to the module.
auto const modified = ApplyMap();
// Update bound in the header.
if (modified) {
UpdateBound();
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
void CanonicalizeIdsPass::ScanIds() {
get_module()->ForEachInst(
[this](Instruction* inst) {
// Look for types and constants.
if (spvOpcodeGeneratesType(inst->opcode()) ||
spvOpcodeIsConstant(inst->opcode())) {
type_and_const_ids_.push_back(inst->result_id());
SetNewId(inst->result_id(), unmapped_);
}
// Look for names.
else if (inst->opcode() == spv::Op::OpName) {
// store name string in map so that we can compute the hash later
auto const name = inst->GetOperand(1).AsString();
auto const target = inst->GetSingleWordInOperand(0);
name_ids_[name] = target;
SetNewId(target, unmapped_);
}
// Look for function IDs.
else if (inst->opcode() == spv::Op::OpFunction) {
auto const res_id = inst->result_id();
function_ids_.push_back(res_id);
SetNewId(res_id, unmapped_);
}
// Look for remaining result IDs.
else if (inst->HasResultId()) {
auto const res_id = inst->result_id();
SetNewId(res_id, unmapped_);
}
},
true);
}
void CanonicalizeIdsPass::CanonicalizeTypeAndConst() {
// Remap type IDs.
static constexpr std::uint32_t soft_type_id_limit = 3011; // small prime.
static constexpr std::uint32_t first_mapped_id = 8; // offset into ID space
for (auto const id : type_and_const_ids_) {
if (!IsOldIdUnmapped(id)) {
continue;
}
// Compute the hash value.
auto const hash_value = HashTypeAndConst(id);
if (hash_value != unmapped_) {
SetNewId(id, hash_value % soft_type_id_limit + first_mapped_id);
}
}
}
// Hash types to canonical values. This can return ID collisions (it's a bit
// inevitable): it's up to the caller to handle that gracefully.
spv::Id CanonicalizeIdsPass::HashTypeAndConst(spv::Id const id) const {
spv::Id value = 0;
auto const inst = get_def_use_mgr()->GetDef(id);
auto const op_code = inst->opcode();
switch (op_code) {
case spv::Op::OpTypeVoid:
value = 0;
break;
case spv::Op::OpTypeBool:
value = 1;
break;
case spv::Op::OpTypeInt: {
auto const signedness = inst->GetSingleWordOperand(2);
value = 3 + signedness;
break;
}
case spv::Op::OpTypeFloat:
value = 5;
break;
case spv::Op::OpTypeVector: {
auto const component_type = inst->GetSingleWordOperand(1);
auto const component_count = inst->GetSingleWordOperand(2);
value = 6 + HashTypeAndConst(component_type) * (component_count - 1);
break;
}
case spv::Op::OpTypeMatrix: {
auto const column_type = inst->GetSingleWordOperand(1);
auto const column_count = inst->GetSingleWordOperand(2);
value = 30 + HashTypeAndConst(column_type) * (column_count - 1);
break;
}
case spv::Op::OpTypeImage: {
// TODO: Why isn't the format used to compute the hash value?
auto const sampled_type = inst->GetSingleWordOperand(1);
auto const dim = inst->GetSingleWordOperand(2);
auto const depth = inst->GetSingleWordOperand(3);
auto const arrayed = inst->GetSingleWordOperand(4);
auto const ms = inst->GetSingleWordOperand(5);
auto const sampled = inst->GetSingleWordOperand(6);
value = 120 + HashTypeAndConst(sampled_type) + dim + depth * 8 * 16 +
arrayed * 4 * 16 + ms * 2 * 16 + sampled * 1 * 16;
break;
}
case spv::Op::OpTypeSampler:
value = 500;
break;
case spv::Op::OpTypeSampledImage:
value = 502;
break;
case spv::Op::OpTypeArray: {
auto const element_type = inst->GetSingleWordOperand(1);
auto const length = inst->GetSingleWordOperand(2);
value = 501 + HashTypeAndConst(element_type) * length;
break;
}
case spv::Op::OpTypeRuntimeArray: {
auto const element_type = inst->GetSingleWordOperand(1);
value = 5000 + HashTypeAndConst(element_type);
break;
}
case spv::Op::OpTypeStruct:
value = 10000;
for (uint32_t w = 1; w < inst->NumOperandWords(); ++w) {
value += (w + 1) * HashTypeAndConst(inst->GetSingleWordOperand(w));
}
break;
case spv::Op::OpTypeOpaque: {
// TODO: Name is a literal that may have more than one word.
auto const name = inst->GetSingleWordOperand(1);
value = 6000 + name;
break;
}
case spv::Op::OpTypePointer: {
auto const type = inst->GetSingleWordOperand(2);
value = 100000 + HashTypeAndConst(type);
break;
}
case spv::Op::OpTypeFunction:
value = 200000;
for (uint32_t w = 1; w < inst->NumOperandWords(); ++w) {
value += (w + 1) * HashTypeAndConst(inst->GetSingleWordOperand(w));
}
break;
case spv::Op::OpTypeEvent:
value = 300000;
break;
case spv::Op::OpTypeDeviceEvent:
value = 300001;
break;
case spv::Op::OpTypeReserveId:
value = 300002;
break;
case spv::Op::OpTypeQueue:
value = 300003;
break;
case spv::Op::OpTypePipe:
value = 300004;
break;
case spv::Op::OpTypePipeStorage:
value = 300005;
break;
case spv::Op::OpTypeNamedBarrier:
value = 300006;
break;
case spv::Op::OpConstantTrue:
value = 300007;
break;
case spv::Op::OpConstantFalse:
value = 300008;
break;
case spv::Op::OpTypeRayQueryKHR:
value = 300009;
break;
case spv::Op::OpTypeAccelerationStructureKHR:
value = 300010;
break;
// Don't map the following types.
// TODO: These types were not remapped in the glslang version of the
// remapper. Support should be added as necessary.
case spv::Op::OpTypeCooperativeMatrixNV:
case spv::Op::OpTypeCooperativeMatrixKHR:
case spv::Op::OpTypeCooperativeVectorNV:
case spv::Op::OpTypeHitObjectNV:
case spv::Op::OpTypeUntypedPointerKHR:
case spv::Op::OpTypeNodePayloadArrayAMDX:
case spv::Op::OpTypeTensorLayoutNV:
case spv::Op::OpTypeTensorViewNV:
case spv::Op::OpTypeTensorARM:
case spv::Op::OpTypeTaskSequenceINTEL:
value = unmapped_;
break;
case spv::Op::OpConstant: {
auto const result_type = inst->GetSingleWordOperand(0);
value = 400011 + HashTypeAndConst(result_type);
auto const literal = inst->GetOperand(2);
for (uint32_t w = 0; w < literal.words.size(); ++w) {
value += (w + 3) * literal.words[w];
}
break;
}
case spv::Op::OpConstantComposite: {
auto const result_type = inst->GetSingleWordOperand(0);
value = 300011 + HashTypeAndConst(result_type);
for (uint32_t w = 2; w < inst->NumOperandWords(); ++w) {
value += (w + 1) * HashTypeAndConst(inst->GetSingleWordOperand(w));
}
break;
}
case spv::Op::OpConstantNull: {
auto const result_type = inst->GetSingleWordOperand(0);
value = 500009 + HashTypeAndConst(result_type);
break;
}
case spv::Op::OpConstantSampler: {
auto const result_type = inst->GetSingleWordOperand(0);
value = 600011 + HashTypeAndConst(result_type);
for (uint32_t w = 2; w < inst->NumOperandWords(); ++w) {
value += (w + 1) * inst->GetSingleWordOperand(w);
}
break;
}
// Don't map the following constants.
// TODO: These constants were not remapped in the glslang version of the
// remapper. Support should be added as necessary.
case spv::Op::OpConstantCompositeReplicateEXT:
case spv::Op::OpConstantFunctionPointerINTEL:
case spv::Op::OpConstantStringAMDX:
case spv::Op::OpSpecConstantTrue:
case spv::Op::OpSpecConstantFalse:
case spv::Op::OpSpecConstant:
case spv::Op::OpSpecConstantComposite:
case spv::Op::OpSpecConstantCompositeReplicateEXT:
case spv::Op::OpSpecConstantOp:
case spv::Op::OpSpecConstantStringAMDX:
value = unmapped_;
break;
// TODO: Add additional types/constants as needed. See
// spvOpcodeGeneratesType and spvOpcodeIsConstant.
default:
context()->consumer()(SPV_MSG_WARNING, "", {0, 0, 0},
"unhandled opcode will not be canonicalized");
break;
}
return value;
}
void CanonicalizeIdsPass::CanonicalizeNames() {
static constexpr std::uint32_t soft_type_id_limit = 3011; // Small prime.
static constexpr std::uint32_t first_mapped_id =
3019; // Offset into ID space.
for (auto const& [name, target] : name_ids_) {
if (!IsOldIdUnmapped(target)) {
continue;
}
spv::Id hash_value = 1911;
for (const char c : name) {
hash_value = hash_value * 1009 + c;
}
if (IsOldIdUnmapped(target)) {
SetNewId(target, hash_value % soft_type_id_limit + first_mapped_id);
}
}
}
void CanonicalizeIdsPass::CanonicalizeFunctions() {
static constexpr std::uint32_t soft_type_id_limit = 19071; // Small prime.
static constexpr std::uint32_t first_mapped_id =
6203; // Offset into ID space.
// Window size for context-sensitive canonicalization values
// Empirical best size from a single data set. TODO: Would be a good tunable.
// We essentially perform a little convolution around each instruction,
// to capture the flavor of nearby code, to hopefully match to similar
// code in other modules.
static const int32_t window_size = 2;
for (auto const func_id : function_ids_) {
// Store the instructions and opcode hash values in vectors so that the
// window of instructions can be easily accessed and avoid having to
// recompute the hash value repeatedly in overlapping windows.
std::vector<Instruction*> insts;
std::vector<uint32_t> opcode_hashvals;
auto const func = context()->GetFunction(func_id);
func->WhileEachInst([&](Instruction* inst) {
insts.emplace_back(inst);
opcode_hashvals.emplace_back(HashOpCode(inst));
return true;
});
// For every instruction in the function, compute the hash value using the
// instruction and a small window of surrounding instructions.
assert(insts.size() < (size_t)std::numeric_limits<int32_t>::max());
for (int32_t i = 0; i < (int32_t)insts.size(); ++i) {
auto const inst = insts[i];
if (!inst->HasResultId()) {
continue;
}
auto const old_id = inst->result_id();
if (!IsOldIdUnmapped(old_id)) {
continue;
}
int32_t const lower_bound = std::max(0, i - window_size);
int32_t const upper_bound =
std::min((int32_t)insts.size() - 1, i + window_size);
spv::Id hash_value = func_id * 17; // Small prime.
// Include the hash value of the preceding instructions in the hash but
// don't include instructions before the OpFunction.
for (int32_t j = i - 1; j >= lower_bound; --j) {
auto const local_inst = insts[j];
if (local_inst->opcode() == spv::Op::OpFunction) {
break;
}
hash_value = hash_value * 30103 +
opcode_hashvals[j]; // 30103 is a semi-arbitrary prime.
}
// Include the hash value of the subsequent instructions in the hash but
// don't include instructions past OpFunctionEnd.
for (int32_t j = i; j <= upper_bound; ++j) {
auto const local_inst = insts[j];
if (local_inst->opcode() == spv::Op::OpFunctionEnd) {
break;
}
hash_value = hash_value * 30103 +
opcode_hashvals[j]; // 30103 is a semiarbitrary prime.
}
SetNewId(old_id, hash_value % soft_type_id_limit + first_mapped_id);
}
}
}
spv::Id CanonicalizeIdsPass::HashOpCode(Instruction const* const inst) const {
auto const op_code = inst->opcode();
std::uint32_t offset = 0;
if (op_code == spv::Op::OpExtInst) {
// offset is literal instruction
offset = inst->GetSingleWordOperand(3);
}
return (std::uint32_t)op_code * 19 + offset; // 19 is a small prime.
}
// Assign remaining IDs sequentially from remaining holes in the new ID space.
void CanonicalizeIdsPass::CanonicalizeRemainders() {
spv::Id next_id = 1;
for (uint32_t old_id = 0; old_id < new_id_.size(); ++old_id) {
if (IsOldIdUnmapped(old_id)) {
next_id = SetNewId(old_id, next_id);
}
}
}
bool CanonicalizeIdsPass::ApplyMap() {
bool modified = false;
context()->module()->ForEachInst(
[this, &modified](Instruction* inst) {
for (auto operand = inst->begin(); operand != inst->end(); ++operand) {
const auto type = operand->type;
if (spvIsIdType(type)) {
uint32_t& id = operand->words[0];
uint32_t const new_id = GetNewId(id);
if (new_id == unused_) {
continue;
}
assert(new_id != unmapped_ && "new_id should not be unmapped_");
if (id != new_id) {
modified = true;
id = new_id;
if (type == SPV_OPERAND_TYPE_RESULT_ID) {
inst->SetResultId(new_id);
} else if (type == SPV_OPERAND_TYPE_TYPE_ID) {
inst->SetResultType(new_id);
}
}
}
}
},
true);
return modified;
}
spv::Id CanonicalizeIdsPass::GetBound() const {
return context()->module()->id_bound();
}
void CanonicalizeIdsPass::UpdateBound() {
context()->module()->SetIdBound(context()->module()->ComputeIdBound());
context()->ResetFeatureManager();
}
// Set a new ID. If the new ID is alreadly claimed, the next consecutive ID
// will be claimed, mapped, and returned to the caller.
spv::Id CanonicalizeIdsPass::SetNewId(spv::Id const old_id, spv::Id new_id) {
assert(old_id < GetBound() && "don't remap an ID that is out of bounds");
if (old_id >= new_id_.size()) {
new_id_.resize(old_id + 1, unused_);
}
if (new_id != unmapped_ && new_id != unused_) {
assert(!IsOldIdUnused(old_id) && "don't remap unused IDs");
assert(IsOldIdUnmapped(old_id) && "don't remap already mapped IDs");
new_id = ClaimNewId(new_id);
}
new_id_[old_id] = new_id;
return new_id;
}
// Helper function for SetNewID. Claim a new ID. If the new ID is already
// claimed, the next consecutive ID will be claimed and returned to the caller.
spv::Id CanonicalizeIdsPass::ClaimNewId(spv::Id new_id) {
// Return the ID if it's not taken.
auto iter = claimed_new_ids_.find(new_id);
if (iter != claimed_new_ids_.end()) {
// Otherwise, search for the next unused ID using our current iterator.
// Technically, it's a linear search across the set starting at the
// iterator, but it's not as bad as it would appear in practice assuming the
// hash values are well distributed.
iter = std::adjacent_find(iter, claimed_new_ids_.end(), [](int a, int b) {
return a + 1 != b; // Stop at the first non-consecutive pair.
});
if (iter != claimed_new_ids_.end()) {
new_id =
*iter + 1; // We need the next ID after where the search stopped.
} else {
new_id = *(--iter) + 1; // We reached the end so we use the next ID.
}
}
assert(!IsNewIdClaimed(new_id) &&
"don't remap to an ID that is already claimed");
iter = claimed_new_ids_.insert(iter, new_id);
assert(*iter == new_id);
return new_id;
}
std::string CanonicalizeIdsPass::IdAsString(spv::Id const id) const {
if (id == unused_) {
return "unused";
} else if (id == unmapped_) {
return "unmapped";
} else {
return std::to_string(id);
}
}
void CanonicalizeIdsPass::PrintNewIds() const {
for (spv::Id id = 0; id < new_id_.size(); ++id) {
auto const message =
"new id[" + IdAsString(id) + "]: " + IdAsString(new_id_[id]);
context()->consumer()(SPV_MSG_INFO, "", {0, 0, 0}, message.c_str());
}
}
} // namespace opt
} // namespace spvtools
|