1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "code_sink.h"
#include <vector>
#include "source/opt/instruction.h"
#include "source/opt/ir_context.h"
#include "source/util/bit_vector.h"
namespace spvtools {
namespace opt {
Pass::Status CodeSinkingPass::Process() {
bool modified = false;
for (Function& function : *get_module()) {
cfg()->ForEachBlockInPostOrder(function.entry().get(),
[&modified, this](BasicBlock* bb) {
if (SinkInstructionsInBB(bb)) {
modified = true;
}
});
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
bool CodeSinkingPass::SinkInstructionsInBB(BasicBlock* bb) {
bool modified = false;
for (auto inst = bb->rbegin(); inst != bb->rend(); ++inst) {
if (SinkInstruction(&*inst)) {
inst = bb->rbegin();
modified = true;
}
}
return modified;
}
bool CodeSinkingPass::SinkInstruction(Instruction* inst) {
if (inst->opcode() != spv::Op::OpLoad &&
inst->opcode() != spv::Op::OpAccessChain) {
return false;
}
if (ReferencesMutableMemory(inst)) {
return false;
}
if (BasicBlock* target_bb = FindNewBasicBlockFor(inst)) {
Instruction* pos = &*target_bb->begin();
while (pos->opcode() == spv::Op::OpPhi) {
pos = pos->NextNode();
}
inst->InsertBefore(pos);
context()->set_instr_block(inst, target_bb);
return true;
}
return false;
}
BasicBlock* CodeSinkingPass::FindNewBasicBlockFor(Instruction* inst) {
assert(inst->result_id() != 0 && "Instruction should have a result.");
BasicBlock* original_bb = context()->get_instr_block(inst);
BasicBlock* bb = original_bb;
std::unordered_set<uint32_t> bbs_with_uses;
get_def_use_mgr()->ForEachUse(
inst, [&bbs_with_uses, this](Instruction* use, uint32_t idx) {
if (use->opcode() != spv::Op::OpPhi) {
BasicBlock* use_bb = context()->get_instr_block(use);
if (use_bb) {
bbs_with_uses.insert(use_bb->id());
}
} else {
bbs_with_uses.insert(use->GetSingleWordOperand(idx + 1));
}
});
while (true) {
// If |inst| is used in |bb|, then |inst| cannot be moved any further.
if (bbs_with_uses.count(bb->id())) {
break;
}
// If |bb| has one successor (succ_bb), and |bb| is the only predecessor
// of succ_bb, then |inst| can be moved to succ_bb. If succ_bb, has move
// then one predecessor, then moving |inst| into succ_bb could cause it to
// be executed more often, so the search has to stop.
if (bb->terminator()->opcode() == spv::Op::OpBranch) {
uint32_t succ_bb_id = bb->terminator()->GetSingleWordInOperand(0);
if (cfg()->preds(succ_bb_id).size() == 1) {
bb = context()->get_instr_block(succ_bb_id);
continue;
} else {
break;
}
}
// The remaining checks need to know the merge node. If there is no merge
// instruction or an OpLoopMerge, then it is a break or continue. We could
// figure it out, but not worth doing it now.
Instruction* merge_inst = bb->GetMergeInst();
if (merge_inst == nullptr ||
merge_inst->opcode() != spv::Op::OpSelectionMerge) {
break;
}
// Check all of the successors of |bb| it see which lead to a use of |inst|
// before reaching the merge node.
bool used_in_multiple_blocks = false;
uint32_t bb_used_in = 0;
bb->ForEachSuccessorLabel([this, bb, &bb_used_in, &used_in_multiple_blocks,
&bbs_with_uses](uint32_t* succ_bb_id) {
if (IntersectsPath(*succ_bb_id, bb->MergeBlockIdIfAny(), bbs_with_uses)) {
if (bb_used_in == 0) {
bb_used_in = *succ_bb_id;
} else {
used_in_multiple_blocks = true;
}
}
});
// If more than one successor, which is not the merge block, uses |inst|
// then we have to leave |inst| in bb because there is none of the
// successors dominate all uses of |inst|.
if (used_in_multiple_blocks) {
break;
}
if (bb_used_in == 0) {
// If |inst| is not used before reaching the merge node, then we can move
// |inst| to the merge node.
bb = context()->get_instr_block(bb->MergeBlockIdIfAny());
} else {
// If the only successor that leads to a used of |inst| has more than 1
// predecessor, then moving |inst| could cause it to be executed more
// often, so we cannot move it.
if (cfg()->preds(bb_used_in).size() != 1) {
break;
}
// If |inst| is used after the merge block, then |bb_used_in| does not
// dominate all of the uses. So we cannot move |inst| any further.
if (IntersectsPath(bb->MergeBlockIdIfAny(), original_bb->id(),
bbs_with_uses)) {
break;
}
// Otherwise, |bb_used_in| dominates all uses, so move |inst| into that
// block.
bb = context()->get_instr_block(bb_used_in);
}
continue;
}
return (bb != original_bb ? bb : nullptr);
}
bool CodeSinkingPass::ReferencesMutableMemory(Instruction* inst) {
if (!inst->IsLoad()) {
return false;
}
Instruction* base_ptr = inst->GetBaseAddress();
if (base_ptr->opcode() != spv::Op::OpVariable) {
return true;
}
if (base_ptr->IsReadOnlyPointer()) {
return false;
}
if (HasUniformMemorySync()) {
return true;
}
if (spv::StorageClass(base_ptr->GetSingleWordInOperand(0)) !=
spv::StorageClass::Uniform) {
return true;
}
return HasPossibleStore(base_ptr);
}
bool CodeSinkingPass::HasUniformMemorySync() {
if (checked_for_uniform_sync_) {
return has_uniform_sync_;
}
bool has_sync = false;
get_module()->ForEachInst([this, &has_sync](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpMemoryBarrier: {
uint32_t mem_semantics_id = inst->GetSingleWordInOperand(1);
if (IsSyncOnUniform(mem_semantics_id)) {
has_sync = true;
}
break;
}
case spv::Op::OpControlBarrier:
case spv::Op::OpAtomicLoad:
case spv::Op::OpAtomicStore:
case spv::Op::OpAtomicExchange:
case spv::Op::OpAtomicIIncrement:
case spv::Op::OpAtomicIDecrement:
case spv::Op::OpAtomicIAdd:
case spv::Op::OpAtomicFAddEXT:
case spv::Op::OpAtomicISub:
case spv::Op::OpAtomicSMin:
case spv::Op::OpAtomicUMin:
case spv::Op::OpAtomicFMinEXT:
case spv::Op::OpAtomicSMax:
case spv::Op::OpAtomicUMax:
case spv::Op::OpAtomicFMaxEXT:
case spv::Op::OpAtomicAnd:
case spv::Op::OpAtomicOr:
case spv::Op::OpAtomicXor:
case spv::Op::OpAtomicFlagTestAndSet:
case spv::Op::OpAtomicFlagClear: {
uint32_t mem_semantics_id = inst->GetSingleWordInOperand(2);
if (IsSyncOnUniform(mem_semantics_id)) {
has_sync = true;
}
break;
}
case spv::Op::OpAtomicCompareExchange:
case spv::Op::OpAtomicCompareExchangeWeak:
if (IsSyncOnUniform(inst->GetSingleWordInOperand(2)) ||
IsSyncOnUniform(inst->GetSingleWordInOperand(3))) {
has_sync = true;
}
break;
default:
break;
}
});
has_uniform_sync_ = has_sync;
return has_sync;
}
bool CodeSinkingPass::IsSyncOnUniform(uint32_t mem_semantics_id) const {
const analysis::Constant* mem_semantics_const =
context()->get_constant_mgr()->FindDeclaredConstant(mem_semantics_id);
assert(mem_semantics_const != nullptr &&
"Expecting memory semantics id to be a constant.");
assert(mem_semantics_const->AsIntConstant() &&
"Memory semantics should be an integer.");
uint32_t mem_semantics_int = mem_semantics_const->GetU32();
// If it does not affect uniform memory, then it is does not apply to uniform
// memory.
if ((mem_semantics_int & uint32_t(spv::MemorySemanticsMask::UniformMemory)) ==
0) {
return false;
}
// Check if there is an acquire or release. If so not, this it does not add
// any memory constraints.
return (mem_semantics_int &
uint32_t(spv::MemorySemanticsMask::Acquire |
spv::MemorySemanticsMask::AcquireRelease |
spv::MemorySemanticsMask::Release)) != 0;
}
bool CodeSinkingPass::HasPossibleStore(Instruction* var_inst) {
assert(var_inst->opcode() == spv::Op::OpVariable ||
var_inst->opcode() == spv::Op::OpAccessChain ||
var_inst->opcode() == spv::Op::OpPtrAccessChain);
return get_def_use_mgr()->WhileEachUser(var_inst, [this](Instruction* use) {
switch (use->opcode()) {
case spv::Op::OpStore:
return true;
case spv::Op::OpAccessChain:
case spv::Op::OpPtrAccessChain:
return HasPossibleStore(use);
default:
return false;
}
});
}
bool CodeSinkingPass::IntersectsPath(uint32_t start, uint32_t end,
const std::unordered_set<uint32_t>& set) {
std::vector<uint32_t> worklist;
worklist.push_back(start);
std::unordered_set<uint32_t> already_done;
already_done.insert(start);
while (!worklist.empty()) {
BasicBlock* bb = context()->get_instr_block(worklist.back());
worklist.pop_back();
if (bb->id() == end) {
continue;
}
if (set.count(bb->id())) {
return true;
}
bb->ForEachSuccessorLabel([&already_done, &worklist](uint32_t* succ_bb_id) {
if (already_done.insert(*succ_bb_id).second) {
worklist.push_back(*succ_bb_id);
}
});
}
return false;
}
// namespace opt
} // namespace opt
} // namespace spvtools
|