1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <memory>
#include <set>
#include "source/cfa.h"
#include "source/opt/dominator_tree.h"
#include "source/opt/ir_context.h"
// Calculates the dominator or postdominator tree for a given function.
// 1 - Compute the successors and predecessors for each BasicBlock. We add a
// placeholder node for the start node or for postdominators the exit. This node
// will point to all entry or all exit nodes.
// 2 - Using the CFA::DepthFirstTraversal get a depth first postordered list of
// all BasicBlocks. Using the successors (or for postdominator, predecessors)
// calculated in step 1 to traverse the tree.
// 3 - Pass the list calculated in step 2 to the CFA::CalculateDominators using
// the predecessors list (or for postdominator, successors). This will give us a
// vector of BB pairs. Each BB and its immediate dominator.
// 4 - Using the list from 3 use those edges to build a tree of
// DominatorTreeNodes. Each node containing a link to the parent dominator and
// children which are dominated.
// 5 - Using the tree from 4, perform a depth first traversal to calculate the
// preorder and postorder index of each node. We use these indexes to compare
// nodes against each other for domination checks.
namespace spvtools {
namespace opt {
namespace {
// Wrapper around CFA::DepthFirstTraversal to provide an interface to perform
// depth first search on generic BasicBlock types. Will call post and pre order
// user defined functions during traversal
//
// BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode
// SuccessorLambda - Lamdba matching the signature of 'const
// std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes
// succeeding BasicBlock A.
// PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be
// called on each node traversed AFTER their children.
// PreLambda - Lamdba matching the signature of 'void (const BBType*)' will be
// called on each node traversed BEFORE their children.
template <typename BBType, typename SuccessorLambda, typename PreLambda,
typename PostLambda>
void DepthFirstSearch(const BBType* bb, SuccessorLambda successors,
PreLambda pre, PostLambda post) {
auto no_terminal_blocks = [](const BBType*) { return false; };
CFA<BBType>::DepthFirstTraversal(bb, successors, pre, post,
no_terminal_blocks);
}
// Wrapper around CFA::DepthFirstTraversal to provide an interface to perform
// depth first search on generic BasicBlock types. This overload is for only
// performing user defined post order.
//
// BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode
// SuccessorLambda - Lamdba matching the signature of 'const
// std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes
// succeeding BasicBlock A.
// PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be
// called on each node traversed after their children.
template <typename BBType, typename SuccessorLambda, typename PostLambda>
void DepthFirstSearchPostOrder(const BBType* bb, SuccessorLambda successors,
PostLambda post) {
// Ignore preorder operation.
auto nop_preorder = [](const BBType*) {};
DepthFirstSearch(bb, successors, nop_preorder, post);
}
// Small type trait to get the function class type.
template <typename BBType>
struct GetFunctionClass {
using FunctionType = Function;
};
// Helper class to compute predecessors and successors for each Basic Block in a
// function. Through GetPredFunctor and GetSuccessorFunctor it provides an
// interface to get the successor and predecessor lists for each basic
// block. This is required by the DepthFirstTraversal and ComputeDominator
// functions which take as parameter an std::function returning the successors
// and predecessors respectively.
//
// When computing the post-dominator tree, all edges are inverted. So successors
// returned by this class will be predecessors in the original CFG.
template <typename BBType>
class BasicBlockSuccessorHelper {
// This should eventually become const BasicBlock.
using BasicBlock = BBType;
using Function = typename GetFunctionClass<BBType>::FunctionType;
using BasicBlockListTy = std::vector<BasicBlock*>;
using BasicBlockMapTy =
std::unordered_map<const BasicBlock*, BasicBlockListTy>;
public:
// For compliance with the dominance tree computation, entry nodes are
// connected to a single placeholder node.
BasicBlockSuccessorHelper(Function& func,
const BasicBlock* placeholder_start_node,
bool post);
// CFA::CalculateDominators requires std::vector<BasicBlock*>.
using GetBlocksFunction =
std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>;
// Returns the list of predecessor functions.
GetBlocksFunction GetPredFunctor() {
return [this](const BasicBlock* bb) {
BasicBlockListTy* v = &this->predecessors_[bb];
return v;
};
}
// Returns a vector of the list of successor nodes from a given node.
GetBlocksFunction GetSuccessorFunctor() {
return [this](const BasicBlock* bb) {
BasicBlockListTy* v = &this->successors_[bb];
return v;
};
}
private:
bool invert_graph_;
BasicBlockMapTy successors_;
BasicBlockMapTy predecessors_;
// Build the successors and predecessors map for each basic blocks |f|.
// If |invert_graph_| is true, all edges are reversed (successors becomes
// predecessors and vice versa).
// For convenience, the start of the graph is |placeholder_start_node|.
// The dominator tree construction requires a unique entry node, which cannot
// be guaranteed for the postdominator graph. The |placeholder_start_node| BB
// is here to gather all entry nodes.
void CreateSuccessorMap(Function& f,
const BasicBlock* placeholder_start_node);
};
template <typename BBType>
BasicBlockSuccessorHelper<BBType>::BasicBlockSuccessorHelper(
Function& func, const BasicBlock* placeholder_start_node, bool invert)
: invert_graph_(invert) {
CreateSuccessorMap(func, placeholder_start_node);
}
template <typename BBType>
void BasicBlockSuccessorHelper<BBType>::CreateSuccessorMap(
Function& f, const BasicBlock* placeholder_start_node) {
IRContext* context = f.DefInst().context();
if (invert_graph_) {
// For the post dominator tree, we see the inverted graph.
// successors_ in the inverted graph are the predecessors in the CFG.
// The tree construction requires 1 entry point, so we add a placeholder
// node that is connected to all function exiting basic blocks. An exiting
// basic block is a block with an OpKill, OpUnreachable, OpReturn,
// OpReturnValue, or OpTerminateInvocation as terminator instruction.
for (BasicBlock& bb : f) {
if (bb.hasSuccessor()) {
BasicBlockListTy& pred_list = predecessors_[&bb];
const auto& const_bb = bb;
const_bb.ForEachSuccessorLabel(
[this, &pred_list, &bb, context](const uint32_t successor_id) {
BasicBlock* succ = context->get_instr_block(successor_id);
// Inverted graph: our successors in the CFG
// are our predecessors in the inverted graph.
this->successors_[succ].push_back(&bb);
pred_list.push_back(succ);
});
} else {
successors_[placeholder_start_node].push_back(&bb);
predecessors_[&bb].push_back(
const_cast<BasicBlock*>(placeholder_start_node));
}
}
} else {
successors_[placeholder_start_node].push_back(f.entry().get());
predecessors_[f.entry().get()].push_back(
const_cast<BasicBlock*>(placeholder_start_node));
for (BasicBlock& bb : f) {
BasicBlockListTy& succ_list = successors_[&bb];
const auto& const_bb = bb;
const_bb.ForEachSuccessorLabel([&](const uint32_t successor_id) {
BasicBlock* succ = context->get_instr_block(successor_id);
succ_list.push_back(succ);
predecessors_[succ].push_back(&bb);
});
}
}
}
} // namespace
bool DominatorTree::StrictlyDominates(uint32_t a, uint32_t b) const {
if (a == b) return false;
return Dominates(a, b);
}
bool DominatorTree::StrictlyDominates(const BasicBlock* a,
const BasicBlock* b) const {
return DominatorTree::StrictlyDominates(a->id(), b->id());
}
bool DominatorTree::StrictlyDominates(const DominatorTreeNode* a,
const DominatorTreeNode* b) const {
if (a == b) return false;
return Dominates(a, b);
}
bool DominatorTree::Dominates(uint32_t a, uint32_t b) const {
// Check that both of the inputs are actual nodes.
const DominatorTreeNode* a_node = GetTreeNode(a);
const DominatorTreeNode* b_node = GetTreeNode(b);
if (!a_node || !b_node) return false;
return Dominates(a_node, b_node);
}
bool DominatorTree::Dominates(const DominatorTreeNode* a,
const DominatorTreeNode* b) const {
if (!a || !b) return false;
// Node A dominates node B if they are the same.
if (a == b) return true;
return a->dfs_num_pre_ < b->dfs_num_pre_ &&
a->dfs_num_post_ > b->dfs_num_post_;
}
bool DominatorTree::Dominates(const BasicBlock* A, const BasicBlock* B) const {
return Dominates(A->id(), B->id());
}
BasicBlock* DominatorTree::ImmediateDominator(const BasicBlock* A) const {
return ImmediateDominator(A->id());
}
BasicBlock* DominatorTree::ImmediateDominator(uint32_t a) const {
// Check that A is a valid node in the tree.
auto a_itr = nodes_.find(a);
if (a_itr == nodes_.end()) return nullptr;
const DominatorTreeNode* node = &a_itr->second;
if (node->parent_ == nullptr) {
return nullptr;
}
return node->parent_->bb_;
}
DominatorTreeNode* DominatorTree::GetOrInsertNode(BasicBlock* bb) {
DominatorTreeNode* dtn = nullptr;
std::map<uint32_t, DominatorTreeNode>::iterator node_iter =
nodes_.find(bb->id());
if (node_iter == nodes_.end()) {
dtn = &nodes_.emplace(std::make_pair(bb->id(), DominatorTreeNode{bb}))
.first->second;
} else {
dtn = &node_iter->second;
}
return dtn;
}
void DominatorTree::GetDominatorEdges(
const Function* f, const BasicBlock* placeholder_start_node,
std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges) {
// Each time the depth first traversal calls the postorder callback
// std::function we push that node into the postorder vector to create our
// postorder list.
std::vector<const BasicBlock*> postorder;
auto postorder_function = [&](const BasicBlock* b) {
postorder.push_back(b);
};
// CFA::CalculateDominators requires std::vector<BasicBlock*>
// BB are derived from F, so we need to const cast it at some point
// no modification is made on F.
BasicBlockSuccessorHelper<BasicBlock> helper{
*const_cast<Function*>(f), placeholder_start_node, postdominator_};
// The successor function tells DepthFirstTraversal how to move to successive
// nodes by providing an interface to get a list of successor nodes from any
// given node.
auto successor_functor = helper.GetSuccessorFunctor();
// The predecessor functor does the same as the successor functor
// but for all nodes preceding a given node.
auto predecessor_functor = helper.GetPredFunctor();
// If we're building a post dominator tree we traverse the tree in reverse
// using the predecessor function in place of the successor function and vice
// versa.
DepthFirstSearchPostOrder(placeholder_start_node, successor_functor,
postorder_function);
*edges = CFA<BasicBlock>::CalculateDominators(postorder, predecessor_functor);
}
void DominatorTree::InitializeTree(const CFG& cfg, const Function* f) {
ClearTree();
// Skip over empty functions.
if (f->cbegin() == f->cend()) {
return;
}
const BasicBlock* placeholder_start_node =
postdominator_ ? cfg.pseudo_exit_block() : cfg.pseudo_entry_block();
// Get the immediate dominator for each node.
std::vector<std::pair<BasicBlock*, BasicBlock*>> edges;
GetDominatorEdges(f, placeholder_start_node, &edges);
// Transform the vector<pair> into the tree structure which we can use to
// efficiently query dominance.
for (auto edge : edges) {
DominatorTreeNode* first = GetOrInsertNode(edge.first);
if (edge.first == edge.second) {
if (std::find(roots_.begin(), roots_.end(), first) == roots_.end())
roots_.push_back(first);
continue;
}
DominatorTreeNode* second = GetOrInsertNode(edge.second);
first->parent_ = second;
second->children_.push_back(first);
}
ResetDFNumbering();
}
void DominatorTree::ResetDFNumbering() {
int index = 0;
auto preFunc = [&index](const DominatorTreeNode* node) {
const_cast<DominatorTreeNode*>(node)->dfs_num_pre_ = ++index;
};
auto postFunc = [&index](const DominatorTreeNode* node) {
const_cast<DominatorTreeNode*>(node)->dfs_num_post_ = ++index;
};
auto getSucc = [](const DominatorTreeNode* node) { return &node->children_; };
for (auto root : roots_) DepthFirstSearch(root, getSucc, preFunc, postFunc);
}
void DominatorTree::DumpTreeAsDot(std::ostream& out_stream) const {
out_stream << "digraph {\n";
Visit([&out_stream](const DominatorTreeNode* node) {
// Print the node.
if (node->bb_) {
out_stream << node->bb_->id() << "[label=\"" << node->bb_->id()
<< "\"];\n";
}
// Print the arrow from the parent to this node. Entry nodes will not have
// parents so draw them as children from the placeholder node.
if (node->parent_) {
out_stream << node->parent_->bb_->id() << " -> " << node->bb_->id()
<< ";\n";
}
// Return true to continue the traversal.
return true;
});
out_stream << "}\n";
}
} // namespace opt
} // namespace spvtools
|