1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
// Copyright (c) 2023 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/invocation_interlock_placement_pass.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <optional>
#include <queue>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "source/enum_set.h"
#include "source/opt/ir_context.h"
#include "source/opt/reflect.h"
#include "source/spirv_target_env.h"
#include "source/table2.h"
#include "source/util/string_utils.h"
namespace spvtools {
namespace opt {
namespace {
constexpr uint32_t kEntryPointExecutionModelInIdx = 0;
constexpr uint32_t kEntryPointFunctionIdInIdx = 1;
constexpr uint32_t kFunctionCallFunctionIdInIdx = 0;
} // namespace
bool InvocationInterlockPlacementPass::hasSingleNextBlock(uint32_t block_id,
bool reverse_cfg) {
if (reverse_cfg) {
// We are traversing forward, so check whether there is a single successor.
BasicBlock* block = cfg()->block(block_id);
switch (block->tail()->opcode()) {
case spv::Op::OpBranchConditional:
return false;
case spv::Op::OpSwitch:
return block->tail()->NumInOperandWords() == 1;
default:
return !block->tail()->IsReturnOrAbort();
}
} else {
// We are traversing backward, so check whether there is a single
// predecessor.
return cfg()->preds(block_id).size() == 1;
}
}
void InvocationInterlockPlacementPass::forEachNext(
uint32_t block_id, bool reverse_cfg, std::function<void(uint32_t)> f) {
if (reverse_cfg) {
BasicBlock* block = cfg()->block(block_id);
block->ForEachSuccessorLabel([f](uint32_t succ_id) { f(succ_id); });
} else {
for (uint32_t pred_id : cfg()->preds(block_id)) {
f(pred_id);
}
}
}
void InvocationInterlockPlacementPass::addInstructionAtBlockBoundary(
BasicBlock* block, spv::Op opcode, bool at_end) {
if (at_end) {
assert(block->begin()->opcode() != spv::Op::OpPhi &&
"addInstructionAtBlockBoundary expects to be called with at_end == "
"true only if there is a single successor to block");
// Insert a begin instruction at the end of the block.
Instruction* begin_inst = new Instruction(context(), opcode);
begin_inst->InsertAfter(&*--block->tail());
} else {
assert(block->begin()->opcode() != spv::Op::OpPhi &&
"addInstructionAtBlockBoundary expects to be called with at_end == "
"false only if there is a single predecessor to block");
// Insert an end instruction at the beginning of the block.
Instruction* end_inst = new Instruction(context(), opcode);
end_inst->InsertBefore(&*block->begin());
}
}
bool InvocationInterlockPlacementPass::killDuplicateBegin(BasicBlock* block) {
bool found = false;
return context()->KillInstructionIf(
block->begin(), block->end(), [&found](Instruction* inst) {
if (inst->opcode() == spv::Op::OpBeginInvocationInterlockEXT) {
if (found) {
return true;
}
found = true;
}
return false;
});
}
bool InvocationInterlockPlacementPass::killDuplicateEnd(BasicBlock* block) {
std::vector<Instruction*> to_kill;
block->ForEachInst([&to_kill](Instruction* inst) {
if (inst->opcode() == spv::Op::OpEndInvocationInterlockEXT) {
to_kill.push_back(inst);
}
});
if (to_kill.size() <= 1) {
return false;
}
to_kill.pop_back();
for (Instruction* inst : to_kill) {
context()->KillInst(inst);
}
return true;
}
void InvocationInterlockPlacementPass::recordBeginOrEndInFunction(
Function* func) {
if (extracted_functions_.count(func)) {
return;
}
bool had_begin = false;
bool had_end = false;
func->ForEachInst([this, &had_begin, &had_end](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpBeginInvocationInterlockEXT:
had_begin = true;
break;
case spv::Op::OpEndInvocationInterlockEXT:
had_end = true;
break;
case spv::Op::OpFunctionCall: {
uint32_t function_id =
inst->GetSingleWordInOperand(kFunctionCallFunctionIdInIdx);
Function* inner_func = context()->GetFunction(function_id);
recordBeginOrEndInFunction(inner_func);
ExtractionResult result = extracted_functions_[inner_func];
had_begin = had_begin || result.had_begin;
had_end = had_end || result.had_end;
break;
}
default:
break;
}
});
ExtractionResult result = {had_begin, had_end};
extracted_functions_[func] = result;
}
bool InvocationInterlockPlacementPass::
removeBeginAndEndInstructionsFromFunction(Function* func) {
bool modified = false;
func->ForEachInst([this, &modified](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpBeginInvocationInterlockEXT:
context()->KillInst(inst);
modified = true;
break;
case spv::Op::OpEndInvocationInterlockEXT:
context()->KillInst(inst);
modified = true;
break;
default:
break;
}
});
return modified;
}
bool InvocationInterlockPlacementPass::extractInstructionsFromCalls(
std::vector<BasicBlock*> blocks) {
bool modified = false;
for (BasicBlock* block : blocks) {
block->ForEachInst([this, &modified](Instruction* inst) {
if (inst->opcode() == spv::Op::OpFunctionCall) {
uint32_t function_id =
inst->GetSingleWordInOperand(kFunctionCallFunctionIdInIdx);
Function* func = context()->GetFunction(function_id);
ExtractionResult result = extracted_functions_[func];
if (result.had_begin) {
Instruction* new_inst = new Instruction(
context(), spv::Op::OpBeginInvocationInterlockEXT);
new_inst->InsertBefore(inst);
modified = true;
}
if (result.had_end) {
Instruction* new_inst =
new Instruction(context(), spv::Op::OpEndInvocationInterlockEXT);
new_inst->InsertAfter(inst);
modified = true;
}
}
});
}
return modified;
}
void InvocationInterlockPlacementPass::recordExistingBeginAndEndBlock(
std::vector<BasicBlock*> blocks) {
for (BasicBlock* block : blocks) {
block->ForEachInst([this, block](Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpBeginInvocationInterlockEXT:
begin_.insert(block->id());
break;
case spv::Op::OpEndInvocationInterlockEXT:
end_.insert(block->id());
break;
default:
break;
}
});
}
}
InvocationInterlockPlacementPass::BlockSet
InvocationInterlockPlacementPass::computeReachableBlocks(
BlockSet& previous_inside, const BlockSet& starting_nodes,
bool reverse_cfg) {
BlockSet inside = starting_nodes;
std::deque<uint32_t> worklist;
worklist.insert(worklist.begin(), starting_nodes.begin(),
starting_nodes.end());
while (!worklist.empty()) {
uint32_t block_id = worklist.front();
worklist.pop_front();
forEachNext(block_id, reverse_cfg,
[&inside, &previous_inside, &worklist](uint32_t next_id) {
previous_inside.insert(next_id);
if (inside.insert(next_id).second) {
worklist.push_back(next_id);
}
});
}
return inside;
}
bool InvocationInterlockPlacementPass::removeUnneededInstructions(
BasicBlock* block) {
bool modified = false;
if (!predecessors_after_begin_.count(block->id()) &&
after_begin_.count(block->id())) {
// None of the previous blocks are in the critical section, but this block
// is. This can only happen if this block already has at least one begin
// instruction. Leave the first begin instruction, and remove any others.
modified |= killDuplicateBegin(block);
} else if (predecessors_after_begin_.count(block->id())) {
// At least one previous block is in the critical section; remove all
// begin instructions in this block.
modified |= context()->KillInstructionIf(
block->begin(), block->end(), [](Instruction* inst) {
return inst->opcode() == spv::Op::OpBeginInvocationInterlockEXT;
});
}
if (!successors_before_end_.count(block->id()) &&
before_end_.count(block->id())) {
// Same as above
modified |= killDuplicateEnd(block);
} else if (successors_before_end_.count(block->id())) {
modified |= context()->KillInstructionIf(
block->begin(), block->end(), [](Instruction* inst) {
return inst->opcode() == spv::Op::OpEndInvocationInterlockEXT;
});
}
return modified;
}
BasicBlock* InvocationInterlockPlacementPass::splitEdge(BasicBlock* block,
uint32_t succ_id) {
// Create a new block to replace the critical edge.
uint32_t new_id = context()->TakeNextId();
if (new_id == 0) {
return nullptr;
}
auto new_succ_temp = MakeUnique<BasicBlock>(
MakeUnique<Instruction>(context(), spv::Op::OpLabel, 0, new_id,
std::initializer_list<Operand>{}));
auto* new_succ = new_succ_temp.get();
// Insert the new block into the function.
block->GetParent()->InsertBasicBlockAfter(std::move(new_succ_temp), block);
new_succ->AddInstruction(MakeUnique<Instruction>(
context(), spv::Op::OpBranch, 0, 0,
std::initializer_list<Operand>{
Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {succ_id})}));
assert(block->tail()->opcode() == spv::Op::OpBranchConditional ||
block->tail()->opcode() == spv::Op::OpSwitch);
// Update the first branch to successor to instead branch to
// the new successor. If there are multiple edges, we arbitrarily choose the
// first time it appears in the list. The other edges to `succ_id` will have
// to be split by another call to `splitEdge`.
block->tail()->WhileEachInId([new_succ, succ_id](uint32_t* branch_id) {
if (*branch_id == succ_id) {
*branch_id = new_succ->id();
return false;
}
return true;
});
return new_succ;
}
Pass::Status InvocationInterlockPlacementPass::placeInstructionsForEdge(
BasicBlock* block, uint32_t next_id, BlockSet& inside,
BlockSet& previous_inside, spv::Op opcode, bool reverse_cfg) {
bool modified = false;
if (previous_inside.count(next_id) && !inside.count(block->id())) {
// This block is not in the critical section but the next has at least one
// other previous block that is, so this block should be enter it as well.
// We need to add begin or end instructions to the edge.
modified = true;
if (hasSingleNextBlock(block->id(), reverse_cfg)) {
// This is the only next block.
// Additionally, because `next_id` is in `previous_inside`, we know that
// `next_id` has at least one previous block in `inside`. And because
// 'block` is not in `inside`, that means the `next_id` has to have at
// least one other previous block in `inside`.
// This is solely for a debug assertion. It is essentially recomputing the
// value of `previous_inside` to verify that it was computed correctly
// such that the above statement is true.
bool next_has_previous_inside = false;
// By passing !reverse_cfg to forEachNext, we are actually iterating over
// the previous blocks.
forEachNext(next_id, !reverse_cfg,
[&next_has_previous_inside, inside](uint32_t previous_id) {
if (inside.count(previous_id)) {
next_has_previous_inside = true;
}
});
assert(next_has_previous_inside &&
"`previous_inside` must be the set of blocks with at least one "
"previous block in `inside`");
addInstructionAtBlockBoundary(block, opcode, reverse_cfg);
} else {
// This block has multiple next blocks. Split the edge and insert the
// instruction in the new next block.
BasicBlock* new_branch;
if (reverse_cfg) {
new_branch = splitEdge(block, next_id);
} else {
new_branch = splitEdge(cfg()->block(next_id), block->id());
}
if (!new_branch) {
return Status::Failure;
}
auto inst = new Instruction(context(), opcode);
inst->InsertBefore(&*new_branch->tail());
}
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
Pass::Status InvocationInterlockPlacementPass::placeInstructions(
BasicBlock* block) {
Status status = Status::SuccessWithoutChange;
block->ForEachSuccessorLabel([this, block, &status](uint32_t succ_id) {
if (status == Status::Failure) {
return;
}
Status edge_status = placeInstructionsForEdge(
block, succ_id, after_begin_, predecessors_after_begin_,
spv::Op::OpBeginInvocationInterlockEXT, /* reverse_cfg= */ true);
status = CombineStatus(status, edge_status);
if (status == Status::Failure) {
return;
}
edge_status = placeInstructionsForEdge(cfg()->block(succ_id), block->id(),
before_end_, successors_before_end_,
spv::Op::OpEndInvocationInterlockEXT,
/* reverse_cfg= */ false);
status = CombineStatus(status, edge_status);
});
return status;
}
Pass::Status InvocationInterlockPlacementPass::processFragmentShaderEntry(
Function* entry_func) {
bool modified = false;
// Save the original order of blocks in the function, so we don't iterate over
// newly-added blocks.
std::vector<BasicBlock*> original_blocks;
for (auto bi = entry_func->begin(); bi != entry_func->end(); ++bi) {
original_blocks.push_back(&*bi);
}
modified |= extractInstructionsFromCalls(original_blocks);
recordExistingBeginAndEndBlock(original_blocks);
after_begin_ = computeReachableBlocks(predecessors_after_begin_, begin_,
/* reverse_cfg= */ true);
before_end_ = computeReachableBlocks(successors_before_end_, end_,
/* reverse_cfg= */ false);
for (BasicBlock* block : original_blocks) {
modified |= removeUnneededInstructions(block);
Status place_status = placeInstructions(block);
if (place_status == Status::Failure) {
return Status::Failure;
}
if (place_status == Status::SuccessWithChange) {
modified = true;
}
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
bool InvocationInterlockPlacementPass::isFragmentShaderInterlockEnabled() {
if (!context()->get_feature_mgr()->HasExtension(
kSPV_EXT_fragment_shader_interlock)) {
return false;
}
if (context()->get_feature_mgr()->HasCapability(
spv::Capability::FragmentShaderSampleInterlockEXT)) {
return true;
}
if (context()->get_feature_mgr()->HasCapability(
spv::Capability::FragmentShaderPixelInterlockEXT)) {
return true;
}
if (context()->get_feature_mgr()->HasCapability(
spv::Capability::FragmentShaderShadingRateInterlockEXT)) {
return true;
}
return false;
}
Pass::Status InvocationInterlockPlacementPass::Process() {
// Skip this pass if the necessary extension or capability is missing
if (!isFragmentShaderInterlockEnabled()) {
return Status::SuccessWithoutChange;
}
Status status = Status::SuccessWithoutChange;
std::unordered_set<Function*> entry_points;
for (Instruction& entry_inst : context()->module()->entry_points()) {
uint32_t entry_id =
entry_inst.GetSingleWordInOperand(kEntryPointFunctionIdInIdx);
entry_points.insert(context()->GetFunction(entry_id));
}
for (auto fi = context()->module()->begin(); fi != context()->module()->end();
++fi) {
Function* func = &*fi;
recordBeginOrEndInFunction(func);
if (!entry_points.count(func) && extracted_functions_.count(func)) {
if (removeBeginAndEndInstructionsFromFunction(func)) {
status = Status::SuccessWithChange;
}
}
}
for (Instruction& entry_inst : context()->module()->entry_points()) {
uint32_t entry_id =
entry_inst.GetSingleWordInOperand(kEntryPointFunctionIdInIdx);
Function* entry_func = context()->GetFunction(entry_id);
auto execution_model = spv::ExecutionModel(
entry_inst.GetSingleWordInOperand(kEntryPointExecutionModelInIdx));
if (execution_model != spv::ExecutionModel::Fragment) {
continue;
}
Status frag_status = processFragmentShaderEntry(entry_func);
if (frag_status == Status::Failure) {
return Status::Failure;
}
status = CombineStatus(status, frag_status);
}
return status;
}
} // namespace opt
} // namespace spvtools
|