1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/loop_descriptor.h"
#include <algorithm>
#include <limits>
#include <stack>
#include <utility>
#include <vector>
#include "source/opt/cfg.h"
#include "source/opt/constants.h"
#include "source/opt/dominator_tree.h"
#include "source/opt/ir_context.h"
#include "source/opt/iterator.h"
#include "source/opt/pass.h"
#include "source/opt/tree_iterator.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace opt {
// Takes in a phi instruction |induction| and the loop |header| and returns the
// step operation of the loop.
Instruction* Loop::GetInductionStepOperation(
const Instruction* induction) const {
// Induction must be a phi instruction.
assert(induction->opcode() == spv::Op::OpPhi);
Instruction* step = nullptr;
analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();
// Traverse the incoming operands of the phi instruction.
for (uint32_t operand_id = 1; operand_id < induction->NumInOperands();
operand_id += 2) {
// Incoming edge.
BasicBlock* incoming_block =
context_->cfg()->block(induction->GetSingleWordInOperand(operand_id));
// Check if the block is dominated by header, and thus coming from within
// the loop.
if (IsInsideLoop(incoming_block)) {
step = def_use_manager->GetDef(
induction->GetSingleWordInOperand(operand_id - 1));
break;
}
}
if (!step || !IsSupportedStepOp(step->opcode())) {
return nullptr;
}
// The induction variable which binds the loop must only be modified once.
uint32_t lhs = step->GetSingleWordInOperand(0);
uint32_t rhs = step->GetSingleWordInOperand(1);
// One of the left hand side or right hand side of the step instruction must
// be the induction phi and the other must be an OpConstant.
if (lhs != induction->result_id() && rhs != induction->result_id()) {
return nullptr;
}
if (def_use_manager->GetDef(lhs)->opcode() != spv::Op::OpConstant &&
def_use_manager->GetDef(rhs)->opcode() != spv::Op::OpConstant) {
return nullptr;
}
return step;
}
// Returns true if the |step| operation is an induction variable step operation
// which is currently handled.
bool Loop::IsSupportedStepOp(spv::Op step) const {
switch (step) {
case spv::Op::OpISub:
case spv::Op::OpIAdd:
return true;
default:
return false;
}
}
bool Loop::IsSupportedCondition(spv::Op condition) const {
switch (condition) {
// <
case spv::Op::OpULessThan:
case spv::Op::OpSLessThan:
// >
case spv::Op::OpUGreaterThan:
case spv::Op::OpSGreaterThan:
// >=
case spv::Op::OpSGreaterThanEqual:
case spv::Op::OpUGreaterThanEqual:
// <=
case spv::Op::OpSLessThanEqual:
case spv::Op::OpULessThanEqual:
return true;
default:
return false;
}
}
int64_t Loop::GetResidualConditionValue(spv::Op condition,
int64_t initial_value,
int64_t step_value,
size_t number_of_iterations,
size_t factor) {
int64_t remainder =
initial_value + (number_of_iterations % factor) * step_value;
// We subtract or add one as the above formula calculates the remainder if the
// loop where just less than or greater than. Adding or subtracting one should
// give a functionally equivalent value.
switch (condition) {
case spv::Op::OpSGreaterThanEqual:
case spv::Op::OpUGreaterThanEqual: {
remainder -= 1;
break;
}
case spv::Op::OpSLessThanEqual:
case spv::Op::OpULessThanEqual: {
remainder += 1;
break;
}
default:
break;
}
return remainder;
}
Instruction* Loop::GetConditionInst() const {
BasicBlock* condition_block = FindConditionBlock();
if (!condition_block) {
return nullptr;
}
Instruction* branch_conditional = &*condition_block->tail();
if (!branch_conditional ||
branch_conditional->opcode() != spv::Op::OpBranchConditional) {
return nullptr;
}
Instruction* condition_inst = context_->get_def_use_mgr()->GetDef(
branch_conditional->GetSingleWordInOperand(0));
if (IsSupportedCondition(condition_inst->opcode())) {
return condition_inst;
}
return nullptr;
}
// Extract the initial value from the |induction| OpPhi instruction and store it
// in |value|. If the function couldn't find the initial value of |induction|
// return false.
bool Loop::GetInductionInitValue(const Instruction* induction,
int64_t* value) const {
Instruction* constant_instruction = nullptr;
analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();
for (uint32_t operand_id = 0; operand_id < induction->NumInOperands();
operand_id += 2) {
BasicBlock* bb = context_->cfg()->block(
induction->GetSingleWordInOperand(operand_id + 1));
if (!IsInsideLoop(bb)) {
constant_instruction = def_use_manager->GetDef(
induction->GetSingleWordInOperand(operand_id));
}
}
if (!constant_instruction) return false;
const analysis::Constant* constant =
context_->get_constant_mgr()->FindDeclaredConstant(
constant_instruction->result_id());
if (!constant) return false;
if (value) {
const analysis::Integer* type = constant->type()->AsInteger();
if (!type) {
return false;
}
*value = type->IsSigned() ? constant->GetSignExtendedValue()
: constant->GetZeroExtendedValue();
}
return true;
}
Loop::Loop(IRContext* context, DominatorAnalysis* dom_analysis,
BasicBlock* header, BasicBlock* continue_target,
BasicBlock* merge_target)
: context_(context),
loop_header_(header),
loop_continue_(continue_target),
loop_merge_(merge_target),
loop_preheader_(nullptr),
parent_(nullptr),
loop_is_marked_for_removal_(false) {
assert(context);
assert(dom_analysis);
loop_preheader_ = FindLoopPreheader(dom_analysis);
loop_latch_ = FindLatchBlock();
}
BasicBlock* Loop::FindLoopPreheader(DominatorAnalysis* dom_analysis) {
CFG* cfg = context_->cfg();
DominatorTree& dom_tree = dom_analysis->GetDomTree();
DominatorTreeNode* header_node = dom_tree.GetTreeNode(loop_header_);
// The loop predecessor.
BasicBlock* loop_pred = nullptr;
auto header_pred = cfg->preds(loop_header_->id());
for (uint32_t p_id : header_pred) {
DominatorTreeNode* node = dom_tree.GetTreeNode(p_id);
if (node && !dom_tree.Dominates(header_node, node)) {
// The predecessor is not part of the loop, so potential loop preheader.
if (loop_pred && node->bb_ != loop_pred) {
// If we saw 2 distinct predecessors that are outside the loop, we don't
// have a loop preheader.
return nullptr;
}
loop_pred = node->bb_;
}
}
// Safe guard against invalid code, SPIR-V spec forbids loop with the entry
// node as header.
assert(loop_pred && "The header node is the entry block ?");
// So we have a unique basic block that can enter this loop.
// If this loop is the unique successor of this block, then it is a loop
// preheader.
bool is_preheader = true;
uint32_t loop_header_id = loop_header_->id();
const auto* const_loop_pred = loop_pred;
const_loop_pred->ForEachSuccessorLabel(
[&is_preheader, loop_header_id](const uint32_t id) {
if (id != loop_header_id) is_preheader = false;
});
if (is_preheader) return loop_pred;
return nullptr;
}
bool Loop::IsInsideLoop(Instruction* inst) const {
const BasicBlock* parent_block = context_->get_instr_block(inst);
if (!parent_block) return false;
return IsInsideLoop(parent_block);
}
bool Loop::IsBasicBlockInLoopSlow(const BasicBlock* bb) {
assert(bb->GetParent() && "The basic block does not belong to a function");
DominatorAnalysis* dom_analysis =
context_->GetDominatorAnalysis(bb->GetParent());
if (dom_analysis->IsReachable(bb) &&
!dom_analysis->Dominates(GetHeaderBlock(), bb))
return false;
return true;
}
BasicBlock* Loop::GetOrCreatePreHeaderBlock() {
if (loop_preheader_) return loop_preheader_;
CFG* cfg = context_->cfg();
loop_header_ = cfg->SplitLoopHeader(loop_header_);
if (loop_header_ == nullptr) {
return nullptr;
}
return loop_preheader_;
}
void Loop::SetContinueBlock(BasicBlock* continue_block) {
assert(IsInsideLoop(continue_block));
loop_continue_ = continue_block;
}
void Loop::SetLatchBlock(BasicBlock* latch) {
#ifndef NDEBUG
assert(latch->GetParent() && "The basic block does not belong to a function");
const auto* const_latch = latch;
const_latch->ForEachSuccessorLabel([this](uint32_t id) {
assert((!IsInsideLoop(id) || id == GetHeaderBlock()->id()) &&
"A predecessor of the continue block does not belong to the loop");
});
#endif // NDEBUG
assert(IsInsideLoop(latch) && "The continue block is not in the loop");
SetLatchBlockImpl(latch);
}
void Loop::SetMergeBlock(BasicBlock* merge) {
#ifndef NDEBUG
assert(merge->GetParent() && "The basic block does not belong to a function");
#endif // NDEBUG
assert(!IsInsideLoop(merge) && "The merge block is in the loop");
SetMergeBlockImpl(merge);
if (GetHeaderBlock()->GetLoopMergeInst()) {
UpdateLoopMergeInst();
}
}
void Loop::SetPreHeaderBlock(BasicBlock* preheader) {
if (preheader) {
assert(!IsInsideLoop(preheader) && "The preheader block is in the loop");
assert(preheader->tail()->opcode() == spv::Op::OpBranch &&
"The preheader block does not unconditionally branch to the header "
"block");
assert(preheader->tail()->GetSingleWordOperand(0) ==
GetHeaderBlock()->id() &&
"The preheader block does not unconditionally branch to the header "
"block");
}
loop_preheader_ = preheader;
}
BasicBlock* Loop::FindLatchBlock() {
CFG* cfg = context_->cfg();
DominatorAnalysis* dominator_analysis =
context_->GetDominatorAnalysis(loop_header_->GetParent());
// Look at the predecessors of the loop header to find a predecessor block
// which is dominated by the loop continue target. There should only be one
// block which meets this criteria and this is the latch block, as per the
// SPIR-V spec.
for (uint32_t block_id : cfg->preds(loop_header_->id())) {
if (dominator_analysis->Dominates(loop_continue_->id(), block_id)) {
return cfg->block(block_id);
}
}
assert(
false &&
"Every loop should have a latch block dominated by the continue target");
return nullptr;
}
void Loop::GetExitBlocks(std::unordered_set<uint32_t>* exit_blocks) const {
CFG* cfg = context_->cfg();
exit_blocks->clear();
for (uint32_t bb_id : GetBlocks()) {
const BasicBlock* bb = cfg->block(bb_id);
bb->ForEachSuccessorLabel([exit_blocks, this](uint32_t succ) {
if (!IsInsideLoop(succ)) {
exit_blocks->insert(succ);
}
});
}
}
void Loop::GetMergingBlocks(
std::unordered_set<uint32_t>* merging_blocks) const {
assert(GetMergeBlock() && "This loop is not structured");
CFG* cfg = context_->cfg();
merging_blocks->clear();
std::stack<const BasicBlock*> to_visit;
to_visit.push(GetMergeBlock());
while (!to_visit.empty()) {
const BasicBlock* bb = to_visit.top();
to_visit.pop();
merging_blocks->insert(bb->id());
for (uint32_t pred_id : cfg->preds(bb->id())) {
if (!IsInsideLoop(pred_id) && !merging_blocks->count(pred_id)) {
to_visit.push(cfg->block(pred_id));
}
}
}
}
namespace {
inline bool IsBasicBlockSafeToClone(IRContext* context, BasicBlock* bb) {
for (Instruction& inst : *bb) {
if (!inst.IsBranch() && !context->IsCombinatorInstruction(&inst))
return false;
}
return true;
}
} // namespace
bool Loop::IsSafeToClone() const {
CFG& cfg = *context_->cfg();
for (uint32_t bb_id : GetBlocks()) {
BasicBlock* bb = cfg.block(bb_id);
assert(bb);
if (!IsBasicBlockSafeToClone(context_, bb)) return false;
}
// Look at the merge construct.
if (GetHeaderBlock()->GetLoopMergeInst()) {
std::unordered_set<uint32_t> blocks;
GetMergingBlocks(&blocks);
blocks.erase(GetMergeBlock()->id());
for (uint32_t bb_id : blocks) {
BasicBlock* bb = cfg.block(bb_id);
assert(bb);
if (!IsBasicBlockSafeToClone(context_, bb)) return false;
}
}
return true;
}
bool Loop::IsLCSSA() const {
CFG* cfg = context_->cfg();
analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
std::unordered_set<uint32_t> exit_blocks;
GetExitBlocks(&exit_blocks);
// Declare ir_context so we can capture context_ in the below lambda
IRContext* ir_context = context_;
for (uint32_t bb_id : GetBlocks()) {
for (Instruction& insn : *cfg->block(bb_id)) {
// All uses must be either:
// - In the loop;
// - In an exit block and in a phi instruction.
if (!def_use_mgr->WhileEachUser(
&insn,
[&exit_blocks, ir_context, this](Instruction* use) -> bool {
BasicBlock* parent = ir_context->get_instr_block(use);
assert(parent && "Invalid analysis");
if (IsInsideLoop(parent)) return true;
if (use->opcode() != spv::Op::OpPhi) return false;
return exit_blocks.count(parent->id());
}))
return false;
}
}
return true;
}
bool Loop::ShouldHoistInstruction(const Instruction& inst) const {
return inst.IsOpcodeCodeMotionSafe() && AreAllOperandsOutsideLoop(inst) &&
(!inst.IsLoad() || inst.IsReadOnlyLoad());
}
bool Loop::AreAllOperandsOutsideLoop(const Instruction& inst) const {
analysis::DefUseManager* def_use_mgr = GetContext()->get_def_use_mgr();
const std::function<bool(const uint32_t*)> operand_outside_loop =
[this, &def_use_mgr](const uint32_t* id) {
return !this->IsInsideLoop(def_use_mgr->GetDef(*id));
};
return inst.WhileEachInId(operand_outside_loop);
}
void Loop::ComputeLoopStructuredOrder(
std::vector<BasicBlock*>* ordered_loop_blocks, bool include_pre_header,
bool include_merge) const {
CFG& cfg = *context_->cfg();
// Reserve the memory: all blocks in the loop + extra if needed.
ordered_loop_blocks->reserve(GetBlocks().size() + include_pre_header +
include_merge);
if (include_pre_header && GetPreHeaderBlock())
ordered_loop_blocks->push_back(loop_preheader_);
bool is_shader =
context_->get_feature_mgr()->HasCapability(spv::Capability::Shader);
if (!is_shader) {
cfg.ForEachBlockInReversePostOrder(
loop_header_, [ordered_loop_blocks, this](BasicBlock* bb) {
if (IsInsideLoop(bb)) ordered_loop_blocks->push_back(bb);
});
} else {
// If this is a shader, it is possible that there are unreachable merge and
// continue blocks that must be copied to retain the structured order.
// The structured order will include these.
std::list<BasicBlock*> order;
cfg.ComputeStructuredOrder(loop_header_->GetParent(), loop_header_,
loop_merge_, &order);
for (BasicBlock* bb : order) {
if (bb == GetMergeBlock()) {
break;
}
ordered_loop_blocks->push_back(bb);
}
}
if (include_merge && GetMergeBlock())
ordered_loop_blocks->push_back(loop_merge_);
}
LoopDescriptor::LoopDescriptor(IRContext* context, const Function* f)
: loops_(), placeholder_top_loop_(nullptr) {
PopulateList(context, f);
}
LoopDescriptor::~LoopDescriptor() { ClearLoops(); }
void LoopDescriptor::PopulateList(IRContext* context, const Function* f) {
DominatorAnalysis* dom_analysis = context->GetDominatorAnalysis(f);
ClearLoops();
// Post-order traversal of the dominator tree to find all the OpLoopMerge
// instructions.
DominatorTree& dom_tree = dom_analysis->GetDomTree();
for (DominatorTreeNode& node :
make_range(dom_tree.post_begin(), dom_tree.post_end())) {
Instruction* merge_inst = node.bb_->GetLoopMergeInst();
if (merge_inst) {
bool all_backedge_unreachable = true;
for (uint32_t pid : context->cfg()->preds(node.bb_->id())) {
if (dom_analysis->IsReachable(pid) &&
dom_analysis->Dominates(node.bb_->id(), pid)) {
all_backedge_unreachable = false;
break;
}
}
if (all_backedge_unreachable)
continue; // ignore this one, we actually never branch back.
// The id of the merge basic block of this loop.
uint32_t merge_bb_id = merge_inst->GetSingleWordOperand(0);
// The id of the continue basic block of this loop.
uint32_t continue_bb_id = merge_inst->GetSingleWordOperand(1);
// The merge target of this loop.
BasicBlock* merge_bb = context->cfg()->block(merge_bb_id);
// The continue target of this loop.
BasicBlock* continue_bb = context->cfg()->block(continue_bb_id);
// The basic block containing the merge instruction.
BasicBlock* header_bb = context->get_instr_block(merge_inst);
// Add the loop to the list of all the loops in the function.
Loop* current_loop =
new Loop(context, dom_analysis, header_bb, continue_bb, merge_bb);
loops_.push_back(current_loop);
// We have a bottom-up construction, so if this loop has nested-loops,
// they are by construction at the tail of the loop list.
for (auto itr = loops_.rbegin() + 1; itr != loops_.rend(); ++itr) {
Loop* previous_loop = *itr;
// If the loop already has a parent, then it has been processed.
if (previous_loop->HasParent()) continue;
// If the current loop does not dominates the previous loop then it is
// not nested loop.
if (!dom_analysis->Dominates(header_bb,
previous_loop->GetHeaderBlock()))
continue;
// If the current loop merge dominates the previous loop then it is
// not nested loop.
if (dom_analysis->Dominates(merge_bb, previous_loop->GetHeaderBlock()))
continue;
current_loop->AddNestedLoop(previous_loop);
}
DominatorTreeNode* dom_merge_node = dom_tree.GetTreeNode(merge_bb);
for (DominatorTreeNode& loop_node :
make_range(node.df_begin(), node.df_end())) {
// Check if we are in the loop.
if (dom_tree.Dominates(dom_merge_node, &loop_node)) continue;
current_loop->AddBasicBlock(loop_node.bb_);
basic_block_to_loop_.insert(
std::make_pair(loop_node.bb_->id(), current_loop));
}
}
}
for (Loop* loop : loops_) {
if (!loop->HasParent()) placeholder_top_loop_.nested_loops_.push_back(loop);
}
}
std::vector<Loop*> LoopDescriptor::GetLoopsInBinaryLayoutOrder() {
std::vector<uint32_t> ids{};
for (size_t i = 0; i < NumLoops(); ++i) {
ids.push_back(GetLoopByIndex(i).GetHeaderBlock()->id());
}
std::vector<Loop*> loops{};
if (!ids.empty()) {
auto function = GetLoopByIndex(0).GetHeaderBlock()->GetParent();
for (const auto& block : *function) {
auto block_id = block.id();
auto element = std::find(std::begin(ids), std::end(ids), block_id);
if (element != std::end(ids)) {
loops.push_back(&GetLoopByIndex(element - std::begin(ids)));
}
}
}
return loops;
}
BasicBlock* Loop::FindConditionBlock() const {
if (!loop_merge_) {
return nullptr;
}
BasicBlock* condition_block = nullptr;
uint32_t in_loop_pred = 0;
for (uint32_t p : context_->cfg()->preds(loop_merge_->id())) {
if (IsInsideLoop(p)) {
if (in_loop_pred) {
// 2 in-loop predecessors.
return nullptr;
}
in_loop_pred = p;
}
}
if (!in_loop_pred) {
// Merge block is unreachable.
return nullptr;
}
BasicBlock* bb = context_->cfg()->block(in_loop_pred);
if (!bb) return nullptr;
const Instruction& branch = *bb->ctail();
// Make sure the branch is a conditional branch.
if (branch.opcode() != spv::Op::OpBranchConditional) return nullptr;
// Make sure one of the two possible branches is to the merge block.
if (branch.GetSingleWordInOperand(1) == loop_merge_->id() ||
branch.GetSingleWordInOperand(2) == loop_merge_->id()) {
condition_block = bb;
}
return condition_block;
}
bool Loop::FindNumberOfIterations(const Instruction* induction,
const Instruction* branch_inst,
size_t* iterations_out,
int64_t* step_value_out,
int64_t* init_value_out) const {
// From the branch instruction find the branch condition.
analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();
// Condition instruction from the OpConditionalBranch.
Instruction* condition =
def_use_manager->GetDef(branch_inst->GetSingleWordOperand(0));
assert(IsSupportedCondition(condition->opcode()));
// Get the constant manager from the ir context.
analysis::ConstantManager* const_manager = context_->get_constant_mgr();
// Find the constant value used by the condition variable. Exit out if it
// isn't a constant int.
const analysis::Constant* upper_bound =
const_manager->FindDeclaredConstant(condition->GetSingleWordOperand(3));
if (!upper_bound) return false;
// Must be integer because of the opcode on the condition.
const analysis::Integer* type = upper_bound->type()->AsInteger();
if (!type || type->width() > 64) {
return false;
}
int64_t condition_value = type->IsSigned()
? upper_bound->GetSignExtendedValue()
: upper_bound->GetZeroExtendedValue();
// Find the instruction which is stepping through the loop.
//
// GetInductionStepOperation returns nullptr if |step_inst| is OpConstantNull.
Instruction* step_inst = GetInductionStepOperation(induction);
if (!step_inst) return false;
// Find the constant value used by the condition variable.
const analysis::Constant* step_constant =
const_manager->FindDeclaredConstant(step_inst->GetSingleWordOperand(3));
if (!step_constant) return false;
// Must be integer because of the opcode on the condition.
int64_t step_value = 0;
const analysis::Integer* step_type =
step_constant->AsIntConstant()->type()->AsInteger();
if (step_type->IsSigned()) {
step_value = step_constant->AsIntConstant()->GetS32BitValue();
} else {
step_value = step_constant->AsIntConstant()->GetU32BitValue();
}
// If this is a subtraction step we should negate the step value.
if (step_inst->opcode() == spv::Op::OpISub) {
step_value = -step_value;
}
// Find the initial value of the loop and make sure it is a constant integer.
int64_t init_value = 0;
if (!GetInductionInitValue(induction, &init_value)) return false;
// If iterations is non null then store the value in that.
int64_t num_itrs = GetIterations(condition->opcode(), condition_value,
init_value, step_value);
// If the loop body will not be reached return false.
if (num_itrs <= 0) {
return false;
}
if (iterations_out) {
assert(static_cast<size_t>(num_itrs) <= std::numeric_limits<size_t>::max());
*iterations_out = static_cast<size_t>(num_itrs);
}
if (step_value_out) {
*step_value_out = step_value;
}
if (init_value_out) {
*init_value_out = init_value;
}
return true;
}
// We retrieve the number of iterations using the following formula, diff /
// |step_value| where diff is calculated differently according to the
// |condition| and uses the |condition_value| and |init_value|. If diff /
// |step_value| is NOT cleanly divisible then we add one to the sum.
int64_t Loop::GetIterations(spv::Op condition, int64_t condition_value,
int64_t init_value, int64_t step_value) const {
if (step_value == 0) {
return 0;
}
int64_t diff = 0;
switch (condition) {
case spv::Op::OpSLessThan:
case spv::Op::OpULessThan: {
// If the condition is not met to begin with the loop will never iterate.
if (!(init_value < condition_value)) return 0;
diff = condition_value - init_value;
// If the operation is a less then operation then the diff and step must
// have the same sign otherwise the induction will never cross the
// condition (either never true or always true).
if ((diff < 0 && step_value > 0) || (diff > 0 && step_value < 0)) {
return 0;
}
break;
}
case spv::Op::OpSGreaterThan:
case spv::Op::OpUGreaterThan: {
// If the condition is not met to begin with the loop will never iterate.
if (!(init_value > condition_value)) return 0;
diff = init_value - condition_value;
// If the operation is a greater than operation then the diff and step
// must have opposite signs. Otherwise the condition will always be true
// or will never be true.
if ((diff < 0 && step_value < 0) || (diff > 0 && step_value > 0)) {
return 0;
}
break;
}
case spv::Op::OpSGreaterThanEqual:
case spv::Op::OpUGreaterThanEqual: {
// If the condition is not met to begin with the loop will never iterate.
if (!(init_value >= condition_value)) return 0;
// We subtract one to make it the same as spv::Op::OpGreaterThan as it is
// functionally equivalent.
diff = init_value - (condition_value - 1);
// If the operation is a greater than operation then the diff and step
// must have opposite signs. Otherwise the condition will always be true
// or will never be true.
if ((diff > 0 && step_value > 0) || (diff < 0 && step_value < 0)) {
return 0;
}
break;
}
case spv::Op::OpSLessThanEqual:
case spv::Op::OpULessThanEqual: {
// If the condition is not met to begin with the loop will never iterate.
if (!(init_value <= condition_value)) return 0;
// We add one to make it the same as spv::Op::OpLessThan as it is
// functionally equivalent.
diff = (condition_value + 1) - init_value;
// If the operation is a less than operation then the diff and step must
// have the same sign otherwise the induction will never cross the
// condition (either never true or always true).
if ((diff < 0 && step_value > 0) || (diff > 0 && step_value < 0)) {
return 0;
}
break;
}
default:
assert(false &&
"Could not retrieve number of iterations from the loop condition. "
"Condition is not supported.");
}
// Take the abs of - step values.
step_value = llabs(step_value);
diff = llabs(diff);
int64_t result = diff / step_value;
if (diff % step_value != 0) {
result += 1;
}
return result;
}
// Returns the list of induction variables within the loop.
void Loop::GetInductionVariables(
std::vector<Instruction*>& induction_variables) const {
for (Instruction& inst : *loop_header_) {
if (inst.opcode() == spv::Op::OpPhi) {
induction_variables.push_back(&inst);
}
}
}
Instruction* Loop::FindConditionVariable(
const BasicBlock* condition_block) const {
// Find the branch instruction.
const Instruction& branch_inst = *condition_block->ctail();
Instruction* induction = nullptr;
// Verify that the branch instruction is a conditional branch.
if (branch_inst.opcode() == spv::Op::OpBranchConditional) {
// From the branch instruction find the branch condition.
analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();
// Find the instruction representing the condition used in the conditional
// branch.
Instruction* condition =
def_use_manager->GetDef(branch_inst.GetSingleWordOperand(0));
// Ensure that the condition is a less than operation.
if (condition && IsSupportedCondition(condition->opcode())) {
// The left hand side operand of the operation.
Instruction* variable_inst =
def_use_manager->GetDef(condition->GetSingleWordOperand(2));
// Make sure the variable instruction used is a phi.
if (!variable_inst || variable_inst->opcode() != spv::Op::OpPhi)
return nullptr;
// Make sure the phi instruction only has two incoming blocks. Each
// incoming block will be represented by two in operands in the phi
// instruction, the value and the block which that value came from. We
// assume the cannocalised phi will have two incoming values, one from the
// preheader and one from the continue block.
size_t max_supported_operands = 4;
if (variable_inst->NumInOperands() == max_supported_operands) {
// The operand index of the first incoming block label.
uint32_t operand_label_1 = 1;
// The operand index of the second incoming block label.
uint32_t operand_label_2 = 3;
// Make sure one of them is the preheader.
if (!IsInsideLoop(
variable_inst->GetSingleWordInOperand(operand_label_1)) &&
!IsInsideLoop(
variable_inst->GetSingleWordInOperand(operand_label_2))) {
return nullptr;
}
// And make sure that the other is the latch block.
if (variable_inst->GetSingleWordInOperand(operand_label_1) !=
loop_latch_->id() &&
variable_inst->GetSingleWordInOperand(operand_label_2) !=
loop_latch_->id()) {
return nullptr;
}
} else {
return nullptr;
}
if (!FindNumberOfIterations(variable_inst, &branch_inst, nullptr))
return nullptr;
induction = variable_inst;
}
}
return induction;
}
LoopDescriptor::Status LoopDescriptor::CreatePreHeaderBlocksIfMissing() {
bool modified = false;
for (auto& loop : *this) {
if (!loop.GetPreHeaderBlock()) {
if (!loop.GetOrCreatePreHeaderBlock()) {
return Status::Failure;
}
modified = true;
}
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
// Add and remove loops which have been marked for addition and removal to
// maintain the state of the loop descriptor class.
void LoopDescriptor::PostModificationCleanup() {
LoopContainerType loops_to_remove_;
for (Loop* loop : loops_) {
if (loop->IsMarkedForRemoval()) {
loops_to_remove_.push_back(loop);
if (loop->HasParent()) {
loop->GetParent()->RemoveChildLoop(loop);
}
}
}
for (Loop* loop : loops_to_remove_) {
loops_.erase(std::find(loops_.begin(), loops_.end(), loop));
delete loop;
}
for (auto& pair : loops_to_add_) {
Loop* parent = pair.first;
std::unique_ptr<Loop> loop = std::move(pair.second);
if (parent) {
loop->SetParent(nullptr);
parent->AddNestedLoop(loop.get());
for (uint32_t block_id : loop->GetBlocks()) {
parent->AddBasicBlock(block_id);
}
}
loops_.emplace_back(loop.release());
}
loops_to_add_.clear();
}
void LoopDescriptor::ClearLoops() {
for (Loop* loop : loops_) {
delete loop;
}
loops_.clear();
}
// Adds a new loop nest to the descriptor set.
Loop* LoopDescriptor::AddLoopNest(std::unique_ptr<Loop> new_loop) {
Loop* loop = new_loop.release();
if (!loop->HasParent()) placeholder_top_loop_.nested_loops_.push_back(loop);
// Iterate from inner to outer most loop, adding basic block to loop mapping
// as we go.
for (Loop& current_loop :
make_range(iterator::begin(loop), iterator::end(nullptr))) {
loops_.push_back(¤t_loop);
for (uint32_t bb_id : current_loop.GetBlocks())
basic_block_to_loop_.insert(std::make_pair(bb_id, ¤t_loop));
}
return loop;
}
void LoopDescriptor::RemoveLoop(Loop* loop) {
Loop* parent = loop->GetParent() ? loop->GetParent() : &placeholder_top_loop_;
parent->nested_loops_.erase(std::find(parent->nested_loops_.begin(),
parent->nested_loops_.end(), loop));
std::for_each(
loop->nested_loops_.begin(), loop->nested_loops_.end(),
[loop](Loop* sub_loop) { sub_loop->SetParent(loop->GetParent()); });
parent->nested_loops_.insert(parent->nested_loops_.end(),
loop->nested_loops_.begin(),
loop->nested_loops_.end());
for (uint32_t bb_id : loop->GetBlocks()) {
Loop* l = FindLoopForBasicBlock(bb_id);
if (l == loop) {
SetBasicBlockToLoop(bb_id, l->GetParent());
} else {
ForgetBasicBlock(bb_id);
}
}
LoopContainerType::iterator it =
std::find(loops_.begin(), loops_.end(), loop);
assert(it != loops_.end());
delete loop;
loops_.erase(it);
}
} // namespace opt
} // namespace spvtools
|