File: loop_peeling.cpp

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (1178 lines) | stat: -rw-r--r-- 40,776 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/opt/loop_peeling.h"

#include <functional>
#include <memory>
#include <unordered_set>
#include <vector>

#include "source/opt/ir_builder.h"
#include "source/opt/ir_context.h"
#include "source/opt/loop_descriptor.h"
#include "source/opt/loop_utils.h"
#include "source/opt/scalar_analysis.h"
#include "source/opt/scalar_analysis_nodes.h"

namespace spvtools {
namespace opt {
namespace {
// Gather the set of blocks for all the path from |entry| to |root|.
void GetBlocksInPath(uint32_t block, uint32_t entry,
                     std::unordered_set<uint32_t>* blocks_in_path,
                     const CFG& cfg) {
  for (uint32_t pid : cfg.preds(block)) {
    if (blocks_in_path->insert(pid).second) {
      if (pid != entry) {
        GetBlocksInPath(pid, entry, blocks_in_path, cfg);
      }
    }
  }
}
}  // namespace

size_t LoopPeelingPass::code_grow_threshold_ = 1000;

bool LoopPeeling::DuplicateAndConnectLoop(
    LoopUtils::LoopCloningResult* clone_results) {
  CFG& cfg = *context_->cfg();
  analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();

  assert(CanPeelLoop() && "Cannot peel loop!");

  std::vector<BasicBlock*> ordered_loop_blocks;
  BasicBlock* pre_header = loop_->GetOrCreatePreHeaderBlock();
  if (!pre_header) {
    return false;
  }

  loop_->ComputeLoopStructuredOrder(&ordered_loop_blocks);

  cloned_loop_ = loop_utils_.CloneLoop(clone_results, ordered_loop_blocks);
  if (!cloned_loop_) {
    return false;
  }

  // Add the basic block to the function.
  Function::iterator it =
      loop_utils_.GetFunction()->FindBlock(pre_header->id());
  assert(it != loop_utils_.GetFunction()->end() &&
         "Pre-header not found in the function.");
  loop_utils_.GetFunction()->AddBasicBlocks(
      clone_results->cloned_bb_.begin(), clone_results->cloned_bb_.end(), ++it);

  // Make the |loop_|'s preheader the |cloned_loop_| one.
  BasicBlock* cloned_header = cloned_loop_->GetHeaderBlock();
  pre_header->ForEachSuccessorLabel(
      [cloned_header](uint32_t* succ) { *succ = cloned_header->id(); });

  // Update cfg.
  cfg.RemoveEdge(pre_header->id(), loop_->GetHeaderBlock()->id());
  cloned_loop_->SetPreHeaderBlock(pre_header);
  loop_->SetPreHeaderBlock(nullptr);

  // When cloning the loop, we didn't cloned the merge block, so currently
  // |cloned_loop_| shares the same block as |loop_|.
  // We mutate all branches from |cloned_loop_| block to |loop_|'s merge into a
  // branch to |loop_|'s header (so header will also be the merge of
  // |cloned_loop_|).
  uint32_t cloned_loop_exit = 0;
  for (uint32_t pred_id : cfg.preds(loop_->GetMergeBlock()->id())) {
    if (loop_->IsInsideLoop(pred_id)) continue;
    BasicBlock* bb = cfg.block(pred_id);
    assert(cloned_loop_exit == 0 && "The loop has multiple exits.");
    cloned_loop_exit = bb->id();
    bb->ForEachSuccessorLabel([this](uint32_t* succ) {
      if (*succ == loop_->GetMergeBlock()->id())
        *succ = loop_->GetHeaderBlock()->id();
    });
  }

  // Update cfg.
  cfg.RemoveNonExistingEdges(loop_->GetMergeBlock()->id());
  cfg.AddEdge(cloned_loop_exit, loop_->GetHeaderBlock()->id());

  // Patch the phi of the original loop header:
  //  - Set the loop entry branch to come from the cloned loop exit block;
  //  - Set the initial value of the phi using the corresponding cloned loop
  //    exit values.
  //
  // We patch the iterating value initializers of the original loop using the
  // corresponding cloned loop exit values. Connects the cloned loop iterating
  // values to the original loop. This make sure that the initial value of the
  // second loop starts with the last value of the first loop.
  //
  // For example, loops like:
  //
  // int z = 0;
  // for (int i = 0; i++ < M; i += cst1) {
  //   if (cond)
  //     z += cst2;
  // }
  //
  // Will become:
  //
  // int z = 0;
  // int i = 0;
  // for (; i++ < M; i += cst1) {
  //   if (cond)
  //     z += cst2;
  // }
  // for (; i++ < M; i += cst1) {
  //   if (cond)
  //     z += cst2;
  // }
  loop_->GetHeaderBlock()->ForEachPhiInst([cloned_loop_exit, def_use_mgr,
                                           clone_results,
                                           this](Instruction* phi) {
    for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
      if (!loop_->IsInsideLoop(phi->GetSingleWordInOperand(i + 1))) {
        phi->SetInOperand(i,
                          {clone_results->value_map_.at(
                              exit_value_.at(phi->result_id())->result_id())});
        phi->SetInOperand(i + 1, {cloned_loop_exit});
        def_use_mgr->AnalyzeInstUse(phi);
        return;
      }
    }
  });

  // Force the creation of a new preheader for the original loop and set it as
  // the merge block for the cloned loop.
  BasicBlock* new_pre_header = loop_->GetOrCreatePreHeaderBlock();
  if (!new_pre_header) {
    return false;
  }
  cloned_loop_->SetMergeBlock(new_pre_header);
  return true;
}

bool LoopPeeling::InsertCanonicalInductionVariable(
    LoopUtils::LoopCloningResult* clone_results) {
  if (original_loop_canonical_induction_variable_) {
    canonical_induction_variable_ =
        context_->get_def_use_mgr()->GetDef(clone_results->value_map_.at(
            original_loop_canonical_induction_variable_->result_id()));
    return true;
  }

  BasicBlock::iterator insert_point = GetClonedLoop()->GetLatchBlock()->tail();
  if (GetClonedLoop()->GetLatchBlock()->GetMergeInst()) {
    --insert_point;
  }
  InstructionBuilder builder(
      context_, &*insert_point,
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
  Instruction* uint_1_cst =
      builder.GetIntConstant<uint32_t>(1, int_type_->IsSigned());
  if (!uint_1_cst) return false;
  // Create the increment.
  // Note that we do "1 + 1" here, one of the operand should the phi
  // value but we don't have it yet. The operand will be set latter.
  Instruction* iv_inc = builder.AddIAdd(
      uint_1_cst->type_id(), uint_1_cst->result_id(), uint_1_cst->result_id());
  if (!iv_inc) return false;

  builder.SetInsertPoint(&*GetClonedLoop()->GetHeaderBlock()->begin());

  Instruction* initial_value =
      builder.GetIntConstant<uint32_t>(0, int_type_->IsSigned());
  if (!initial_value) return false;

  canonical_induction_variable_ = builder.AddPhi(
      uint_1_cst->type_id(),
      {initial_value->result_id(), GetClonedLoop()->GetPreHeaderBlock()->id(),
       iv_inc->result_id(), GetClonedLoop()->GetLatchBlock()->id()});
  if (!canonical_induction_variable_) return false;
  // Connect everything.
  iv_inc->SetInOperand(0, {canonical_induction_variable_->result_id()});

  // Update def/use manager.
  context_->get_def_use_mgr()->AnalyzeInstUse(iv_inc);

  // If do-while form, use the incremented value.
  if (do_while_form_) {
    canonical_induction_variable_ = iv_inc;
  }
  return true;
}

void LoopPeeling::GetIteratorUpdateOperations(
    const Loop* loop, Instruction* iterator,
    std::unordered_set<Instruction*>* operations) {
  analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
  operations->insert(iterator);
  iterator->ForEachInId([def_use_mgr, loop, operations, this](uint32_t* id) {
    Instruction* insn = def_use_mgr->GetDef(*id);
    if (insn->opcode() == spv::Op::OpLabel) {
      return;
    }
    if (operations->count(insn)) {
      return;
    }
    if (!loop->IsInsideLoop(insn)) {
      return;
    }
    GetIteratorUpdateOperations(loop, insn, operations);
  });
}

bool LoopPeeling::IsConditionCheckSideEffectFree() const {
  CFG& cfg = *context_->cfg();

  // The "do-while" form does not cause issues, the algorithm takes into account
  // the first iteration.
  if (!do_while_form_) {
    uint32_t condition_block_id = cfg.preds(loop_->GetMergeBlock()->id())[0];

    std::unordered_set<uint32_t> blocks_in_path;

    blocks_in_path.insert(condition_block_id);
    GetBlocksInPath(condition_block_id, loop_->GetHeaderBlock()->id(),
                    &blocks_in_path, cfg);

    for (uint32_t bb_id : blocks_in_path) {
      BasicBlock* bb = cfg.block(bb_id);
      if (!bb->WhileEachInst([this](Instruction* insn) {
            if (insn->IsBranch()) return true;
            switch (insn->opcode()) {
              case spv::Op::OpLabel:
              case spv::Op::OpSelectionMerge:
              case spv::Op::OpLoopMerge:
                return true;
              default:
                break;
            }
            return context_->IsCombinatorInstruction(insn);
          })) {
        return false;
      }
    }
  }

  return true;
}

void LoopPeeling::GetIteratingExitValues() {
  CFG& cfg = *context_->cfg();

  loop_->GetHeaderBlock()->ForEachPhiInst(
      [this](Instruction* phi) { exit_value_[phi->result_id()] = nullptr; });

  if (!loop_->GetMergeBlock()) {
    return;
  }
  if (cfg.preds(loop_->GetMergeBlock()->id()).size() != 1) {
    return;
  }
  analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();

  uint32_t condition_block_id = cfg.preds(loop_->GetMergeBlock()->id())[0];

  auto& header_pred = cfg.preds(loop_->GetHeaderBlock()->id());
  do_while_form_ = std::find(header_pred.begin(), header_pred.end(),
                             condition_block_id) != header_pred.end();
  if (do_while_form_) {
    loop_->GetHeaderBlock()->ForEachPhiInst(
        [condition_block_id, def_use_mgr, this](Instruction* phi) {
          std::unordered_set<Instruction*> operations;

          for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
            if (condition_block_id == phi->GetSingleWordInOperand(i + 1)) {
              exit_value_[phi->result_id()] =
                  def_use_mgr->GetDef(phi->GetSingleWordInOperand(i));
            }
          }
        });
  } else {
    DominatorTree* dom_tree =
        &context_->GetDominatorAnalysis(loop_utils_.GetFunction())
             ->GetDomTree();
    BasicBlock* condition_block = cfg.block(condition_block_id);

    loop_->GetHeaderBlock()->ForEachPhiInst(
        [dom_tree, condition_block, this](Instruction* phi) {
          std::unordered_set<Instruction*> operations;

          // Not the back-edge value, check if the phi instruction is the only
          // possible candidate.
          GetIteratorUpdateOperations(loop_, phi, &operations);

          for (Instruction* insn : operations) {
            if (insn == phi) {
              continue;
            }
            if (dom_tree->Dominates(context_->get_instr_block(insn),
                                    condition_block)) {
              return;
            }
          }
          exit_value_[phi->result_id()] = phi;
        });
  }
}

bool LoopPeeling::FixExitCondition(
    const std::function<uint32_t(Instruction*)>& condition_builder) {
  CFG& cfg = *context_->cfg();

  uint32_t condition_block_id = 0;
  for (uint32_t id : cfg.preds(GetClonedLoop()->GetMergeBlock()->id())) {
    if (GetClonedLoop()->IsInsideLoop(id)) {
      condition_block_id = id;
      break;
    }
  }
  assert(condition_block_id != 0 && "2nd loop in improperly connected");

  BasicBlock* condition_block = cfg.block(condition_block_id);
  Instruction* exit_condition = condition_block->terminator();
  assert(exit_condition->opcode() == spv::Op::OpBranchConditional);
  BasicBlock::iterator insert_point = condition_block->tail();
  if (condition_block->GetMergeInst()) {
    --insert_point;
  }

  uint32_t new_cond_id = condition_builder(&*insert_point);
  if (new_cond_id == 0) {
    return false;
  }
  exit_condition->SetInOperand(0, {new_cond_id});

  uint32_t to_continue_block_idx =
      GetClonedLoop()->IsInsideLoop(exit_condition->GetSingleWordInOperand(1))
          ? 1
          : 2;
  exit_condition->SetInOperand(
      1, {exit_condition->GetSingleWordInOperand(to_continue_block_idx)});
  exit_condition->SetInOperand(2, {GetClonedLoop()->GetMergeBlock()->id()});

  // Update def/use manager.
  context_->get_def_use_mgr()->AnalyzeInstUse(exit_condition);
  return true;
}

BasicBlock* LoopPeeling::CreateBlockBefore(BasicBlock* bb) {
  analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
  CFG& cfg = *context_->cfg();
  assert(cfg.preds(bb->id()).size() == 1 && "More than one predecessor");

  uint32_t new_id = context_->TakeNextId();
  if (new_id == 0) {
    return nullptr;
  }
  std::unique_ptr<BasicBlock> new_bb =
      MakeUnique<BasicBlock>(std::unique_ptr<Instruction>(
          new Instruction(context_, spv::Op::OpLabel, 0, new_id, {})));
  // Update the loop descriptor.
  Loop* in_loop = (*loop_utils_.GetLoopDescriptor())[bb];
  if (in_loop) {
    in_loop->AddBasicBlock(new_bb.get());
    loop_utils_.GetLoopDescriptor()->SetBasicBlockToLoop(new_bb->id(), in_loop);
  }

  context_->set_instr_block(new_bb->GetLabelInst(), new_bb.get());
  def_use_mgr->AnalyzeInstDefUse(new_bb->GetLabelInst());

  BasicBlock* bb_pred = cfg.block(cfg.preds(bb->id())[0]);
  bb_pred->tail()->ForEachInId([bb, &new_bb](uint32_t* id) {
    if (*id == bb->id()) {
      *id = new_bb->id();
    }
  });
  cfg.RemoveEdge(bb_pred->id(), bb->id());
  cfg.AddEdge(bb_pred->id(), new_bb->id());
  def_use_mgr->AnalyzeInstUse(&*bb_pred->tail());

  // Update the incoming branch.
  bb->ForEachPhiInst([&new_bb, def_use_mgr](Instruction* phi) {
    phi->SetInOperand(1, {new_bb->id()});
    def_use_mgr->AnalyzeInstUse(phi);
  });
  InstructionBuilder(
      context_, new_bb.get(),
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping)
      .AddBranch(bb->id());
  cfg.RegisterBlock(new_bb.get());

  // Add the basic block to the function.
  Function::iterator it = loop_utils_.GetFunction()->FindBlock(bb->id());
  assert(it != loop_utils_.GetFunction()->end() &&
         "Basic block not found in the function.");
  BasicBlock* ret = new_bb.get();
  loop_utils_.GetFunction()->AddBasicBlock(std::move(new_bb), it);
  return ret;
}

BasicBlock* LoopPeeling::ProtectLoop(Loop* loop, Instruction* condition,
                                     BasicBlock* if_merge) {
  BasicBlock* if_block = loop->GetOrCreatePreHeaderBlock();
  if (!if_block) {
    return nullptr;
  }
  // Will no longer be a pre-header because of the if.
  loop->SetPreHeaderBlock(nullptr);
  // Kill the branch to the header.
  context_->KillInst(&*if_block->tail());

  InstructionBuilder builder(
      context_, if_block,
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
  builder.AddConditionalBranch(condition->result_id(),
                               loop->GetHeaderBlock()->id(), if_merge->id(),
                               if_merge->id());

  return if_block;
}

bool LoopPeeling::PeelBefore(uint32_t peel_factor) {
  assert(CanPeelLoop() && "Cannot peel loop");
  LoopUtils::LoopCloningResult clone_results;

  // Clone the loop and insert the cloned one before the loop.
  if (!DuplicateAndConnectLoop(&clone_results)) {
    return false;
  }

  // Add a canonical induction variable "canonical_induction_variable_".
  if (!InsertCanonicalInductionVariable(&clone_results)) {
    return false;
  }

  InstructionBuilder builder(
      context_, &*cloned_loop_->GetPreHeaderBlock()->tail(),
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
  Instruction* factor =
      builder.GetIntConstant(peel_factor, int_type_->IsSigned());
  if (!factor) return false;

  Instruction* has_remaining_iteration = builder.AddLessThan(
      factor->result_id(), loop_iteration_count_->result_id());
  if (!has_remaining_iteration) return false;
  Instruction* max_iteration = builder.AddSelect(
      factor->type_id(), has_remaining_iteration->result_id(),
      factor->result_id(), loop_iteration_count_->result_id());
  if (!max_iteration) return false;

  // Change the exit condition of the cloned loop to be (exit when become
  // false):
  //  "canonical_induction_variable_" < min("factor", "loop_iteration_count_")
  if (!FixExitCondition(
          [max_iteration, this](Instruction* insert_before_point) {
            Instruction* new_cond =
                InstructionBuilder(context_, insert_before_point,
                                   IRContext::kAnalysisDefUse |
                                       IRContext::kAnalysisInstrToBlockMapping)
                    .AddLessThan(canonical_induction_variable_->result_id(),
                                 max_iteration->result_id());
            return new_cond ? new_cond->result_id() : 0;
          })) {
    return false;
  }

  // "Protect" the second loop: the second loop can only be executed if
  // |has_remaining_iteration| is true (i.e. factor < loop_iteration_count_).
  BasicBlock* if_merge_block = loop_->GetMergeBlock();
  BasicBlock* new_merge_block = CreateBlockBefore(loop_->GetMergeBlock());
  if (!new_merge_block) return false;
  loop_->SetMergeBlock(new_merge_block);
  // Prevent the second loop from being executed if we already executed all the
  // required iterations.
  BasicBlock* if_block =
      ProtectLoop(loop_, has_remaining_iteration, if_merge_block);
  if (!if_block) return false;

  // Patch the phi of the merge block.
  if_merge_block->ForEachPhiInst(
      [&clone_results, if_block, this](Instruction* phi) {
        // if_merge_block had previously only 1 predecessor.
        uint32_t incoming_value = phi->GetSingleWordInOperand(0);
        auto def_in_loop = clone_results.value_map_.find(incoming_value);
        if (def_in_loop != clone_results.value_map_.end())
          incoming_value = def_in_loop->second;
        phi->AddOperand(
            {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {incoming_value}});
        phi->AddOperand(
            {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {if_block->id()}});
        context_->get_def_use_mgr()->AnalyzeInstUse(phi);
      });

  context_->InvalidateAnalysesExceptFor(
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping |
      IRContext::kAnalysisLoopAnalysis | IRContext::kAnalysisCFG);
  return true;
}

bool LoopPeeling::PeelAfter(uint32_t peel_factor) {
  assert(CanPeelLoop() && "Cannot peel loop");
  LoopUtils::LoopCloningResult clone_results;

  // Clone the loop and insert the cloned one before the loop.
  if (!DuplicateAndConnectLoop(&clone_results)) {
    return false;
  }

  // Add a canonical induction variable "canonical_induction_variable_".
  InsertCanonicalInductionVariable(&clone_results);

  InstructionBuilder builder(
      context_, &*cloned_loop_->GetPreHeaderBlock()->tail(),
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
  Instruction* factor =
      builder.GetIntConstant(peel_factor, int_type_->IsSigned());
  if (!factor) return false;

  Instruction* has_remaining_iteration = builder.AddLessThan(
      factor->result_id(), loop_iteration_count_->result_id());
  if (!has_remaining_iteration) return false;

  // Change the exit condition of the cloned loop to be (exit when become
  // false):
  //  "canonical_induction_variable_" + "factor" < "loop_iteration_count_"
  if (!FixExitCondition([factor,
                         this](Instruction* insert_before_point) -> uint32_t {
        InstructionBuilder cond_builder(
            context_, insert_before_point,
            IRContext::kAnalysisDefUse |
                IRContext::kAnalysisInstrToBlockMapping);
        // Build the following check: canonical_induction_variable_ + factor <
        // iteration_count
        Instruction* add = cond_builder.AddIAdd(
            canonical_induction_variable_->type_id(),
            canonical_induction_variable_->result_id(), factor->result_id());
        if (!add) return 0;
        Instruction* new_cond = cond_builder.AddLessThan(
            add->result_id(), loop_iteration_count_->result_id());
        return new_cond ? new_cond->result_id() : 0;
      })) {
    return false;
  }

  // "Protect" the first loop: the first loop can only be executed if
  // factor < loop_iteration_count_.

  // The original loop's pre-header was the cloned loop merge block.
  BasicBlock* pre_header = GetOriginalLoop()->GetPreHeaderBlock();
  if (!pre_header) {
    return false;
  }
  BasicBlock* new_merge_block = CreateBlockBefore(pre_header);
  if (!new_merge_block) {
    return false;
  }
  GetClonedLoop()->SetMergeBlock(new_merge_block);
  // Use the second loop preheader as if merge block.

  // Prevent the first loop if only the peeled loop needs it.
  BasicBlock* if_block = ProtectLoop(cloned_loop_, has_remaining_iteration,
                                     GetOriginalLoop()->GetPreHeaderBlock());
  if (!if_block) {
    return false;
  }

  // Patch the phi of the header block.
  // We added an if to enclose the first loop and because the phi node are
  // connected to the exit value of the first loop, the definition no longer
  // dominate the preheader.
  // We had to the preheader (our if merge block) the required phi instruction
  // and patch the header phi.
  bool ok = true;
  GetOriginalLoop()->GetHeaderBlock()->ForEachPhiInst(
      [&clone_results, if_block, &ok, this](Instruction* phi) {
        if (!ok) return;
        analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();

        auto find_value_idx = [](Instruction* phi_inst, Loop* loop) {
          uint32_t preheader_value_idx =
              !loop->IsInsideLoop(phi_inst->GetSingleWordInOperand(1)) ? 0 : 2;
          return preheader_value_idx;
        };

        Instruction* cloned_phi =
            def_use_mgr->GetDef(clone_results.value_map_.at(phi->result_id()));
        uint32_t cloned_preheader_value = cloned_phi->GetSingleWordInOperand(
            find_value_idx(cloned_phi, GetClonedLoop()));

        Instruction* new_phi =
            InstructionBuilder(context_,
                               &*GetOriginalLoop()->GetPreHeaderBlock()->tail(),
                               IRContext::kAnalysisDefUse |
                                   IRContext::kAnalysisInstrToBlockMapping)
                .AddPhi(phi->type_id(),
                        {phi->GetSingleWordInOperand(
                             find_value_idx(phi, GetOriginalLoop())),
                         GetClonedLoop()->GetMergeBlock()->id(),
                         cloned_preheader_value, if_block->id()});
        if (!new_phi) {
          ok = false;
          return;
        }

        phi->SetInOperand(find_value_idx(phi, GetOriginalLoop()),
                          {new_phi->result_id()});
        def_use_mgr->AnalyzeInstUse(phi);
      });
  if (!ok) return false;

  context_->InvalidateAnalysesExceptFor(
      IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping |
      IRContext::kAnalysisLoopAnalysis | IRContext::kAnalysisCFG);
  return true;
}

Pass::Status LoopPeelingPass::Process() {
  bool modified = false;
  Module* module = context()->module();

  // Process each function in the module
  for (Function& f : *module) {
    Pass::Status status = ProcessFunction(&f);
    if (status == Status::Failure) {
      return Status::Failure;
    }
    if (status == Status::SuccessWithChange) {
      modified = true;
    }
  }

  return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}

Pass::Status LoopPeelingPass::ProcessFunction(Function* f) {
  bool modified = false;
  LoopDescriptor& loop_descriptor = *context()->GetLoopDescriptor(f);

  std::vector<Loop*> to_process_loop;
  to_process_loop.reserve(loop_descriptor.NumLoops());
  for (Loop& l : loop_descriptor) {
    to_process_loop.push_back(&l);
  }

  ScalarEvolutionAnalysis scev_analysis(context());

  for (Loop* loop : to_process_loop) {
    CodeMetrics loop_size;
    loop_size.Analyze(*loop);

    auto try_peel = [&loop_size, &modified, this](
                        Loop* loop_to_peel) -> std::pair<Pass::Status, Loop*> {
      if (!loop_to_peel->IsLCSSA()) {
        if (!LoopUtils(context(), loop_to_peel).MakeLoopClosedSSA()) {
          return {Pass::Status::Failure, nullptr};
        }
      }

      Pass::Status status;
      Loop* still_peelable_loop;
      std::tie(status, still_peelable_loop) =
          ProcessLoop(loop_to_peel, &loop_size);

      if (status == Pass::Status::SuccessWithChange) {
        modified = true;
      }

      return {status, still_peelable_loop};
    };

    Pass::Status status;
    Loop* still_peelable_loop;
    std::tie(status, still_peelable_loop) = try_peel(loop);

    if (status == Pass::Status::Failure) {
      return Pass::Status::Failure;
    }

    // The pass is working out the maximum factor by which a loop can be peeled.
    // If the loop can potentially be peeled again, then there is only one
    // possible direction, so only one call is still needed.
    if (still_peelable_loop) {
      std::tie(status, still_peelable_loop) = try_peel(still_peelable_loop);
      if (status == Pass::Status::Failure) {
        return Pass::Status::Failure;
      }
    }
  }

  return modified ? Pass::Status::SuccessWithChange
                  : Pass::Status::SuccessWithoutChange;
}

std::tuple<Pass::Status, Loop*> LoopPeelingPass::ProcessLoop(
    Loop* loop, CodeMetrics* loop_size) {
  ScalarEvolutionAnalysis* scev_analysis =
      context()->GetScalarEvolutionAnalysis();
  // Default values for bailing out.
  std::tuple<Pass::Status, Loop*> bail_out{Pass::Status::SuccessWithoutChange,
                                           nullptr};

  BasicBlock* exit_block = loop->FindConditionBlock();
  if (!exit_block) {
    return bail_out;
  }

  Instruction* exiting_iv = loop->FindConditionVariable(exit_block);
  if (!exiting_iv) {
    return bail_out;
  }
  size_t iterations = 0;
  if (!loop->FindNumberOfIterations(exiting_iv, &*exit_block->tail(),
                                    &iterations)) {
    return bail_out;
  }
  if (!iterations) {
    return bail_out;
  }

  Instruction* canonical_induction_variable = nullptr;

  loop->GetHeaderBlock()->WhileEachPhiInst([&canonical_induction_variable,
                                            scev_analysis,
                                            this](Instruction* insn) {
    if (const SERecurrentNode* iv =
            scev_analysis->AnalyzeInstruction(insn)->AsSERecurrentNode()) {
      const SEConstantNode* offset = iv->GetOffset()->AsSEConstantNode();
      const SEConstantNode* coeff = iv->GetCoefficient()->AsSEConstantNode();
      if (offset && coeff && offset->FoldToSingleValue() == 0 &&
          coeff->FoldToSingleValue() == 1) {
        if (context()->get_type_mgr()->GetType(insn->type_id())->AsInteger()) {
          canonical_induction_variable = insn;
          return false;
        }
      }
    }
    return true;
  });

  bool is_signed = canonical_induction_variable
                       ? context()
                             ->get_type_mgr()
                             ->GetType(canonical_induction_variable->type_id())
                             ->AsInteger()
                             ->IsSigned()
                       : false;

  LoopPeeling peeler(
      loop,
      InstructionBuilder(
          context(), loop->GetHeaderBlock(),
          IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping)
          .GetIntConstant<uint32_t>(static_cast<uint32_t>(iterations),
                                    is_signed),
      canonical_induction_variable);

  if (!peeler.CanPeelLoop()) {
    return bail_out;
  }

  // For each basic block in the loop, check if it can be peeled. If it
  // can, get the direction (before/after) and by which factor.
  LoopPeelingInfo peel_info(loop, iterations, scev_analysis);

  uint32_t peel_before_factor = 0;
  uint32_t peel_after_factor = 0;

  for (uint32_t block : loop->GetBlocks()) {
    if (block == exit_block->id()) {
      continue;
    }
    BasicBlock* bb = cfg()->block(block);
    PeelDirection direction;
    uint32_t factor;
    std::tie(direction, factor) = peel_info.GetPeelingInfo(bb);

    if (direction == PeelDirection::kNone) {
      continue;
    }
    if (direction == PeelDirection::kBefore) {
      peel_before_factor = std::max(peel_before_factor, factor);
    } else {
      assert(direction == PeelDirection::kAfter);
      peel_after_factor = std::max(peel_after_factor, factor);
    }
  }
  PeelDirection direction = PeelDirection::kNone;
  uint32_t factor = 0;

  // Find which direction we should peel.
  if (peel_before_factor) {
    factor = peel_before_factor;
    direction = PeelDirection::kBefore;
  }
  if (peel_after_factor) {
    if (peel_before_factor < peel_after_factor) {
      // Favor a peel after here and give the peel before another shot later.
      factor = peel_after_factor;
      direction = PeelDirection::kAfter;
    }
  }

  // Do the peel if we can.
  if (direction == PeelDirection::kNone) return bail_out;

  // This does not take into account branch elimination opportunities and
  // the unrolling. It assumes the peeled loop will be unrolled as well.
  if (factor * loop_size->roi_size_ > code_grow_threshold_) {
    return bail_out;
  }
  loop_size->roi_size_ *= factor;

  // Find if a loop should be peeled again.
  Loop* extra_opportunity = nullptr;

  if (direction == PeelDirection::kBefore) {
    if (!peeler.PeelBefore(factor)) {
      return {Pass::Status::Failure, nullptr};
    }
    if (stats_) {
      stats_->peeled_loops_.emplace_back(loop, PeelDirection::kBefore, factor);
    }
    if (peel_after_factor) {
      // We could have peeled after, give it another try.
      extra_opportunity = peeler.GetOriginalLoop();
    }
  } else {
    if (!peeler.PeelAfter(factor)) {
      return {Pass::Status::Failure, nullptr};
    }
    if (stats_) {
      stats_->peeled_loops_.emplace_back(loop, PeelDirection::kAfter, factor);
    }
    if (peel_before_factor) {
      // We could have peeled before, give it another try.
      extra_opportunity = peeler.GetClonedLoop();
    }
  }

  return {Pass::Status::SuccessWithChange, extra_opportunity};
}

uint32_t LoopPeelingPass::LoopPeelingInfo::GetFirstLoopInvariantOperand(
    Instruction* condition) const {
  for (uint32_t i = 0; i < condition->NumInOperands(); i++) {
    BasicBlock* bb =
        context_->get_instr_block(condition->GetSingleWordInOperand(i));
    if (bb && loop_->IsInsideLoop(bb)) {
      return condition->GetSingleWordInOperand(i);
    }
  }

  return 0;
}

uint32_t LoopPeelingPass::LoopPeelingInfo::GetFirstNonLoopInvariantOperand(
    Instruction* condition) const {
  for (uint32_t i = 0; i < condition->NumInOperands(); i++) {
    BasicBlock* bb =
        context_->get_instr_block(condition->GetSingleWordInOperand(i));
    if (!bb || !loop_->IsInsideLoop(bb)) {
      return condition->GetSingleWordInOperand(i);
    }
  }

  return 0;
}

static bool IsHandledCondition(spv::Op opcode) {
  switch (opcode) {
    case spv::Op::OpIEqual:
    case spv::Op::OpINotEqual:
    case spv::Op::OpUGreaterThan:
    case spv::Op::OpSGreaterThan:
    case spv::Op::OpUGreaterThanEqual:
    case spv::Op::OpSGreaterThanEqual:
    case spv::Op::OpULessThan:
    case spv::Op::OpSLessThan:
    case spv::Op::OpULessThanEqual:
    case spv::Op::OpSLessThanEqual:
      return true;
    default:
      return false;
  }
}

LoopPeelingPass::LoopPeelingInfo::Direction
LoopPeelingPass::LoopPeelingInfo::GetPeelingInfo(BasicBlock* bb) const {
  if (bb->terminator()->opcode() != spv::Op::OpBranchConditional) {
    return GetNoneDirection();
  }

  analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();

  Instruction* condition =
      def_use_mgr->GetDef(bb->terminator()->GetSingleWordInOperand(0));

  if (!IsHandledCondition(condition->opcode())) {
    return GetNoneDirection();
  }

  if (!GetFirstLoopInvariantOperand(condition)) {
    // No loop invariant, it cannot be peeled by this pass.
    return GetNoneDirection();
  }
  if (!GetFirstNonLoopInvariantOperand(condition)) {
    // Seems to be a job for the unswitch pass.
    return GetNoneDirection();
  }

  // Left hand-side.
  SExpression lhs = scev_analysis_->AnalyzeInstruction(
      def_use_mgr->GetDef(condition->GetSingleWordInOperand(0)));
  if (lhs->GetType() == SENode::CanNotCompute) {
    // Can't make any conclusion.
    return GetNoneDirection();
  }

  // Right hand-side.
  SExpression rhs = scev_analysis_->AnalyzeInstruction(
      def_use_mgr->GetDef(condition->GetSingleWordInOperand(1)));
  if (rhs->GetType() == SENode::CanNotCompute) {
    // Can't make any conclusion.
    return GetNoneDirection();
  }

  // Only take into account recurrent expression over the current loop.
  bool is_lhs_rec = !scev_analysis_->IsLoopInvariant(loop_, lhs);
  bool is_rhs_rec = !scev_analysis_->IsLoopInvariant(loop_, rhs);

  if ((is_lhs_rec && is_rhs_rec) || (!is_lhs_rec && !is_rhs_rec)) {
    return GetNoneDirection();
  }

  if (is_lhs_rec) {
    if (!lhs->AsSERecurrentNode() ||
        lhs->AsSERecurrentNode()->GetLoop() != loop_) {
      return GetNoneDirection();
    }
  }
  if (is_rhs_rec) {
    if (!rhs->AsSERecurrentNode() ||
        rhs->AsSERecurrentNode()->GetLoop() != loop_) {
      return GetNoneDirection();
    }
  }

  // If the op code is ==, then we try a peel before or after.
  // If opcode is not <, >, <= or >=, we bail out.
  //
  // For the remaining cases, we canonicalize the expression so that the
  // constant expression is on the left hand side and the recurring expression
  // is on the right hand side. If we swap hand side, then < becomes >, <=
  // becomes >= etc.
  // If the opcode is <=, then we add 1 to the right hand side and do the peel
  // check on <.
  // If the opcode is >=, then we add 1 to the left hand side and do the peel
  // check on >.

  CmpOperator cmp_operator;
  switch (condition->opcode()) {
    default:
      return GetNoneDirection();
    case spv::Op::OpIEqual:
    case spv::Op::OpINotEqual:
      return HandleEquality(lhs, rhs);
    case spv::Op::OpUGreaterThan:
    case spv::Op::OpSGreaterThan: {
      cmp_operator = CmpOperator::kGT;
      break;
    }
    case spv::Op::OpULessThan:
    case spv::Op::OpSLessThan: {
      cmp_operator = CmpOperator::kLT;
      break;
    }
    // We add one to transform >= into > and <= into <.
    case spv::Op::OpUGreaterThanEqual:
    case spv::Op::OpSGreaterThanEqual: {
      cmp_operator = CmpOperator::kGE;
      break;
    }
    case spv::Op::OpULessThanEqual:
    case spv::Op::OpSLessThanEqual: {
      cmp_operator = CmpOperator::kLE;
      break;
    }
  }

  // Force the left hand side to be the non recurring expression.
  if (is_lhs_rec) {
    std::swap(lhs, rhs);
    switch (cmp_operator) {
      case CmpOperator::kLT: {
        cmp_operator = CmpOperator::kGT;
        break;
      }
      case CmpOperator::kGT: {
        cmp_operator = CmpOperator::kLT;
        break;
      }
      case CmpOperator::kLE: {
        cmp_operator = CmpOperator::kGE;
        break;
      }
      case CmpOperator::kGE: {
        cmp_operator = CmpOperator::kLE;
        break;
      }
    }
  }
  return HandleInequality(cmp_operator, lhs, rhs->AsSERecurrentNode());
}

SExpression LoopPeelingPass::LoopPeelingInfo::GetValueAtFirstIteration(
    SERecurrentNode* rec) const {
  return rec->GetOffset();
}

SExpression LoopPeelingPass::LoopPeelingInfo::GetValueAtIteration(
    SERecurrentNode* rec, int64_t iteration) const {
  SExpression coeff = rec->GetCoefficient();
  SExpression offset = rec->GetOffset();

  return (coeff * iteration) + offset;
}

SExpression LoopPeelingPass::LoopPeelingInfo::GetValueAtLastIteration(
    SERecurrentNode* rec) const {
  return GetValueAtIteration(rec, loop_max_iterations_ - 1);
}

bool LoopPeelingPass::LoopPeelingInfo::EvalOperator(CmpOperator cmp_op,
                                                    SExpression lhs,
                                                    SExpression rhs,
                                                    bool* result) const {
  assert(scev_analysis_->IsLoopInvariant(loop_, lhs));
  assert(scev_analysis_->IsLoopInvariant(loop_, rhs));
  // We perform the test: 0 cmp_op rhs - lhs
  // What is left is then to determine the sign of the expression.
  switch (cmp_op) {
    case CmpOperator::kLT: {
      return scev_analysis_->IsAlwaysGreaterThanZero(rhs - lhs, result);
    }
    case CmpOperator::kGT: {
      return scev_analysis_->IsAlwaysGreaterThanZero(lhs - rhs, result);
    }
    case CmpOperator::kLE: {
      return scev_analysis_->IsAlwaysGreaterOrEqualToZero(rhs - lhs, result);
    }
    case CmpOperator::kGE: {
      return scev_analysis_->IsAlwaysGreaterOrEqualToZero(lhs - rhs, result);
    }
  }
  return false;
}

LoopPeelingPass::LoopPeelingInfo::Direction
LoopPeelingPass::LoopPeelingInfo::HandleEquality(SExpression lhs,
                                                 SExpression rhs) const {
  {
    // Try peel before opportunity.
    SExpression lhs_cst = lhs;
    if (SERecurrentNode* rec_node = lhs->AsSERecurrentNode()) {
      lhs_cst = rec_node->GetOffset();
    }
    SExpression rhs_cst = rhs;
    if (SERecurrentNode* rec_node = rhs->AsSERecurrentNode()) {
      rhs_cst = rec_node->GetOffset();
    }

    if (lhs_cst == rhs_cst) {
      return Direction{LoopPeelingPass::PeelDirection::kBefore, 1};
    }
  }

  {
    // Try peel after opportunity.
    SExpression lhs_cst = lhs;
    if (SERecurrentNode* rec_node = lhs->AsSERecurrentNode()) {
      // rec_node(x) = a * x + b
      // assign to lhs: a * (loop_max_iterations_ - 1) + b
      lhs_cst = GetValueAtLastIteration(rec_node);
    }
    SExpression rhs_cst = rhs;
    if (SERecurrentNode* rec_node = rhs->AsSERecurrentNode()) {
      // rec_node(x) = a * x + b
      // assign to lhs: a * (loop_max_iterations_ - 1) + b
      rhs_cst = GetValueAtLastIteration(rec_node);
    }

    if (lhs_cst == rhs_cst) {
      return Direction{LoopPeelingPass::PeelDirection::kAfter, 1};
    }
  }

  return GetNoneDirection();
}

LoopPeelingPass::LoopPeelingInfo::Direction
LoopPeelingPass::LoopPeelingInfo::HandleInequality(CmpOperator cmp_op,
                                                   SExpression lhs,
                                                   SERecurrentNode* rhs) const {
  SExpression offset = rhs->GetOffset();
  SExpression coefficient = rhs->GetCoefficient();
  // Compute (cst - B) / A.
  std::pair<SExpression, int64_t> flip_iteration = (lhs - offset) / coefficient;
  if (!flip_iteration.first->AsSEConstantNode()) {
    return GetNoneDirection();
  }
  // note: !!flip_iteration.second normalize to 0/1 (via bool cast).
  int64_t iteration =
      flip_iteration.first->AsSEConstantNode()->FoldToSingleValue() +
      !!flip_iteration.second;
  if (iteration <= 0 ||
      loop_max_iterations_ <= static_cast<uint64_t>(iteration)) {
    // Always true or false within the loop bounds.
    return GetNoneDirection();
  }
  // If this is a <= or >= operator and the iteration, make sure |iteration| is
  // the one flipping the condition.
  // If (cst - B) and A are not divisible, this equivalent to a < or > check, so
  // we skip this test.
  if (!flip_iteration.second &&
      (cmp_op == CmpOperator::kLE || cmp_op == CmpOperator::kGE)) {
    bool first_iteration;
    bool current_iteration;
    if (!EvalOperator(cmp_op, lhs, offset, &first_iteration) ||
        !EvalOperator(cmp_op, lhs, GetValueAtIteration(rhs, iteration),
                      &current_iteration)) {
      return GetNoneDirection();
    }
    // If the condition did not flip the next will.
    if (first_iteration == current_iteration) {
      iteration++;
    }
  }

  uint32_t cast_iteration = 0;
  // Integrity check: can we fit |iteration| in a uint32_t ?
  if (static_cast<uint64_t>(iteration) < std::numeric_limits<uint32_t>::max()) {
    cast_iteration = static_cast<uint32_t>(iteration);
  }

  if (cast_iteration) {
    // Peel before if we are closer to the start, after if closer to the end.
    if (loop_max_iterations_ / 2 > cast_iteration) {
      return Direction{LoopPeelingPass::PeelDirection::kBefore, cast_iteration};
    } else {
      return Direction{
          LoopPeelingPass::PeelDirection::kAfter,
          static_cast<uint32_t>(loop_max_iterations_ - cast_iteration)};
    }
  }

  return GetNoneDirection();
}

}  // namespace opt
}  // namespace spvtools