1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/mem_pass.h"
#include <memory>
#include <set>
#include <vector>
#include "source/cfa.h"
#include "source/opt/basic_block.h"
#include "source/opt/ir_context.h"
namespace spvtools {
namespace opt {
namespace {
constexpr uint32_t kCopyObjectOperandInIdx = 0;
constexpr uint32_t kTypePointerStorageClassInIdx = 0;
constexpr uint32_t kTypePointerTypeIdInIdx = 1;
} // namespace
bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
switch (typeInst->opcode()) {
case spv::Op::OpTypeInt:
case spv::Op::OpTypeFloat:
case spv::Op::OpTypeBool:
case spv::Op::OpTypeVector:
case spv::Op::OpTypeMatrix:
case spv::Op::OpTypeImage:
case spv::Op::OpTypeSampler:
case spv::Op::OpTypeSampledImage:
case spv::Op::OpTypePointer:
case spv::Op::OpTypeCooperativeMatrixNV:
case spv::Op::OpTypeCooperativeMatrixKHR:
return true;
default:
break;
}
return false;
}
bool MemPass::IsTargetType(const Instruction* typeInst) const {
if (IsBaseTargetType(typeInst)) return true;
if (typeInst->opcode() == spv::Op::OpTypeArray) {
if (!IsTargetType(
get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
return false;
}
return true;
}
if (typeInst->opcode() != spv::Op::OpTypeStruct) return false;
// All struct members must be math type
return typeInst->WhileEachInId([this](const uint32_t* tid) {
Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
if (!IsTargetType(compTypeInst)) return false;
return true;
});
}
bool MemPass::IsNonPtrAccessChain(const spv::Op opcode) const {
return opcode == spv::Op::OpAccessChain ||
opcode == spv::Op::OpInBoundsAccessChain;
}
bool MemPass::IsPtr(uint32_t ptrId) {
uint32_t varId = ptrId;
Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
if (ptrInst->opcode() == spv::Op::OpFunction) {
// A function is not a pointer, but it's return type could be, which will
// erroneously lead to this function returning true later on
return false;
}
while (ptrInst->opcode() == spv::Op::OpCopyObject) {
varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
ptrInst = get_def_use_mgr()->GetDef(varId);
}
const spv::Op op = ptrInst->opcode();
if (op == spv::Op::OpVariable || IsNonPtrAccessChain(op)) return true;
const uint32_t varTypeId = ptrInst->type_id();
if (varTypeId == 0) return false;
const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
return varTypeInst->opcode() == spv::Op::OpTypePointer;
}
Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
*varId = ptrId;
Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
Instruction* varInst;
switch (ptrInst->opcode()) {
case spv::Op::OpVariable:
case spv::Op::OpFunctionParameter:
varInst = ptrInst;
break;
case spv::Op::OpAccessChain:
case spv::Op::OpInBoundsAccessChain:
case spv::Op::OpPtrAccessChain:
case spv::Op::OpInBoundsPtrAccessChain:
case spv::Op::OpImageTexelPointer:
case spv::Op::OpCopyObject:
varInst = ptrInst->GetBaseAddress();
break;
default:
*varId = 0;
return ptrInst;
break;
}
if (varInst->opcode() == spv::Op::OpVariable) {
*varId = varInst->result_id();
} else {
*varId = 0;
}
while (ptrInst->opcode() == spv::Op::OpCopyObject) {
uint32_t temp = ptrInst->GetSingleWordInOperand(0);
ptrInst = get_def_use_mgr()->GetDef(temp);
}
return ptrInst;
}
Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
assert(ip->opcode() == spv::Op::OpStore || ip->opcode() == spv::Op::OpLoad ||
ip->opcode() == spv::Op::OpImageTexelPointer ||
ip->IsAtomicWithLoad());
// All of these opcode place the pointer in position 0.
const uint32_t ptrId = ip->GetSingleWordInOperand(0);
return GetPtr(ptrId, varId);
}
bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
spv::Op op = user->opcode();
if (op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
return false;
}
return true;
});
}
void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
bp->KillAllInsts(killLabel);
}
bool MemPass::HasLoads(uint32_t varId) const {
return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
spv::Op op = user->opcode();
// TODO(): The following is slightly conservative. Could be
// better handling of non-store/name.
if (IsNonPtrAccessChain(op) || op == spv::Op::OpCopyObject) {
if (HasLoads(user->result_id())) {
return false;
}
} else if (op != spv::Op::OpStore && op != spv::Op::OpName &&
!IsNonTypeDecorate(op)) {
return false;
}
return true;
});
}
bool MemPass::IsLiveVar(uint32_t varId) const {
const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
// assume live if not a variable eg. function parameter
if (varInst->opcode() != spv::Op::OpVariable) return true;
// non-function scope vars are live
const uint32_t varTypeId = varInst->type_id();
const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
kTypePointerStorageClassInIdx)) != spv::StorageClass::Function)
return true;
// test if variable is loaded from
return HasLoads(varId);
}
void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
spv::Op op = user->opcode();
if (IsNonPtrAccessChain(op)) {
AddStores(user->result_id(), insts);
} else if (op == spv::Op::OpStore) {
insts->push(user);
}
});
}
void MemPass::DCEInst(Instruction* inst,
const std::function<void(Instruction*)>& call_back) {
std::queue<Instruction*> deadInsts;
deadInsts.push(inst);
while (!deadInsts.empty()) {
Instruction* di = deadInsts.front();
// Don't delete labels
if (di->opcode() == spv::Op::OpLabel) {
deadInsts.pop();
continue;
}
// Remember operands
std::set<uint32_t> ids;
di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
uint32_t varId = 0;
// Remember variable if dead load
if (di->opcode() == spv::Op::OpLoad) (void)GetPtr(di, &varId);
if (call_back) {
call_back(di);
}
context()->KillInst(di);
// For all operands with no remaining uses, add their instruction
// to the dead instruction queue.
for (auto id : ids)
if (HasOnlyNamesAndDecorates(id)) {
Instruction* odi = get_def_use_mgr()->GetDef(id);
if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
}
// if a load was deleted and it was the variable's
// last load, add all its stores to dead queue
if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
deadInsts.pop();
}
}
MemPass::MemPass() {}
bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
auto dbg_op = user->GetCommonDebugOpcode();
if (dbg_op == CommonDebugInfoDebugDeclare ||
dbg_op == CommonDebugInfoDebugValue) {
return true;
}
spv::Op op = user->opcode();
if (op != spv::Op::OpStore && op != spv::Op::OpLoad &&
op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
return false;
}
return true;
});
}
uint32_t MemPass::Type2Undef(uint32_t type_id) {
const auto uitr = type2undefs_.find(type_id);
if (uitr != type2undefs_.end()) return uitr->second;
const uint32_t undefId = TakeNextId();
if (undefId == 0) {
return 0;
}
std::unique_ptr<Instruction> undef_inst(
new Instruction(context(), spv::Op::OpUndef, type_id, undefId, {}));
get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
get_module()->AddGlobalValue(std::move(undef_inst));
type2undefs_[type_id] = undefId;
return undefId;
}
bool MemPass::IsTargetVar(uint32_t varId) {
if (varId == 0) {
return false;
}
if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
return false;
if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
if (varInst->opcode() != spv::Op::OpVariable) return false;
const uint32_t varTypeId = varInst->type_id();
const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
kTypePointerStorageClassInIdx)) != spv::StorageClass::Function) {
seen_non_target_vars_.insert(varId);
return false;
}
const uint32_t varPteTypeId =
varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
if (!IsTargetType(varPteTypeInst)) {
seen_non_target_vars_.insert(varId);
return false;
}
seen_target_vars_.insert(varId);
return true;
}
// Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
// |reachable_blocks|). There are two types of removal that this function can
// perform:
//
// 1- Any operand that comes directly from an unreachable block is completely
// removed. Since the block is unreachable, the edge between the unreachable
// block and the block holding |phi| has been removed.
//
// 2- Any operand that comes via a live block and was defined at an unreachable
// block gets its value replaced with an OpUndef value. Since the argument
// was generated in an unreachable block, it no longer exists, so it cannot
// be referenced. However, since the value does not reach |phi| directly
// from the unreachable block, the operand cannot be removed from |phi|.
// Therefore, we replace the argument value with OpUndef.
//
// For example, in the switch() below, assume that we want to remove the
// argument with value %11 coming from block %41.
//
// [ ... ]
// %41 = OpLabel <--- Unreachable block
// %11 = OpLoad %int %y
// [ ... ]
// OpSelectionMerge %16 None
// OpSwitch %12 %16 10 %13 13 %14 18 %15
// %13 = OpLabel
// OpBranch %16
// %14 = OpLabel
// OpStore %outparm %int_14
// OpBranch %16
// %15 = OpLabel
// OpStore %outparm %int_15
// OpBranch %16
// %16 = OpLabel
// %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
//
// Since %41 is now an unreachable block, the first operand of |phi| needs to
// be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
// removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
// in those arguments, we replace all references to %11 with an OpUndef value.
// This results in |phi| looking like:
//
// %50 = OpUndef %int
// [ ... ]
// %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
void MemPass::RemovePhiOperands(
Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
std::vector<Operand> keep_operands;
uint32_t type_id = 0;
// The id of an undefined value we've generated.
uint32_t undef_id = 0;
// Traverse all the operands in |phi|. Build the new operand vector by adding
// all the original operands from |phi| except the unwanted ones.
for (uint32_t i = 0; i < phi->NumOperands();) {
if (i < 2) {
// The first two arguments are always preserved.
keep_operands.push_back(phi->GetOperand(i));
++i;
continue;
}
// The remaining Phi arguments come in pairs. Index 'i' contains the
// variable id, index 'i + 1' is the originating block id.
assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
"malformed Phi arguments");
BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
// If the incoming block is unreachable, remove both operands as this
// means that the |phi| has lost an incoming edge.
i += 2;
continue;
}
// In all other cases, the operand must be kept but may need to be changed.
uint32_t arg_id = phi->GetSingleWordOperand(i);
Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
if (def_block &&
reachable_blocks.find(def_block) == reachable_blocks.end()) {
// If the current |phi| argument was defined in an unreachable block, it
// means that this |phi| argument is no longer defined. Replace it with
// |undef_id|.
if (!undef_id) {
type_id = arg_def_instr->type_id();
undef_id = Type2Undef(type_id);
}
keep_operands.push_back(
Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
} else {
// Otherwise, the argument comes from a reachable block or from no block
// at all (meaning that it was defined in the global section of the
// program). In both cases, keep the argument intact.
keep_operands.push_back(phi->GetOperand(i));
}
keep_operands.push_back(phi->GetOperand(i + 1));
i += 2;
}
context()->ForgetUses(phi);
phi->ReplaceOperands(keep_operands);
context()->AnalyzeUses(phi);
}
void MemPass::RemoveBlock(Function::iterator* bi) {
auto& rm_block = **bi;
// Remove instructions from the block.
rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
// Note that we do not kill the block label instruction here. The label
// instruction is needed to identify the block, which is needed by the
// removal of phi operands.
if (inst != rm_block.GetLabelInst()) {
context()->KillInst(inst);
}
});
// Remove the label instruction last.
auto label = rm_block.GetLabelInst();
context()->KillInst(label);
*bi = bi->Erase();
}
bool MemPass::RemoveUnreachableBlocks(Function* func) {
if (func->IsDeclaration()) return false;
bool modified = false;
// Mark reachable all blocks reachable from the function's entry block.
std::unordered_set<BasicBlock*> reachable_blocks;
std::unordered_set<BasicBlock*> visited_blocks;
std::queue<BasicBlock*> worklist;
reachable_blocks.insert(func->entry().get());
// Initially mark the function entry point as reachable.
worklist.push(func->entry().get());
auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
this](uint32_t label_id) {
auto successor = cfg()->block(label_id);
if (visited_blocks.count(successor) == 0) {
reachable_blocks.insert(successor);
worklist.push(successor);
visited_blocks.insert(successor);
}
};
// Transitively mark all blocks reachable from the entry as reachable.
while (!worklist.empty()) {
BasicBlock* block = worklist.front();
worklist.pop();
// All the successors of a live block are also live.
static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
mark_reachable);
// All the Merge and ContinueTarget blocks of a live block are also live.
block->ForMergeAndContinueLabel(mark_reachable);
}
// Update operands of Phi nodes that reference unreachable blocks.
for (auto& block : *func) {
// If the block is about to be removed, don't bother updating its
// Phi instructions.
if (reachable_blocks.count(&block) == 0) {
continue;
}
// If the block is reachable and has Phi instructions, remove all
// operands from its Phi instructions that reference unreachable blocks.
// If the block has no Phi instructions, this is a no-op.
block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
RemovePhiOperands(phi, reachable_blocks);
});
}
// Erase unreachable blocks.
for (auto ebi = func->begin(); ebi != func->end();) {
if (reachable_blocks.count(&*ebi) == 0) {
RemoveBlock(&ebi);
modified = true;
} else {
++ebi;
}
}
return modified;
}
bool MemPass::CFGCleanup(Function* func) {
bool modified = false;
modified |= RemoveUnreachableBlocks(func);
return modified;
}
void MemPass::CollectTargetVars(Function* func) {
seen_target_vars_.clear();
seen_non_target_vars_.clear();
type2undefs_.clear();
// Collect target (and non-) variable sets. Remove variables with
// non-load/store refs from target variable set
for (auto& blk : *func) {
for (auto& inst : blk) {
switch (inst.opcode()) {
case spv::Op::OpStore:
case spv::Op::OpLoad: {
uint32_t varId;
(void)GetPtr(&inst, &varId);
if (!IsTargetVar(varId)) break;
if (HasOnlySupportedRefs(varId)) break;
seen_non_target_vars_.insert(varId);
seen_target_vars_.erase(varId);
} break;
default:
break;
}
}
}
}
} // namespace opt
} // namespace spvtools
|