1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
|
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/merge_return_pass.h"
#include <list>
#include <memory>
#include <utility>
#include "source/opt/instruction.h"
#include "source/opt/ir_builder.h"
#include "source/opt/ir_context.h"
#include "source/opt/reflect.h"
#include "source/util/bit_vector.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace opt {
Pass::Status MergeReturnPass::Process() {
bool is_shader =
context()->get_feature_mgr()->HasCapability(spv::Capability::Shader);
bool failed = false;
ProcessFunction pfn = [&failed, is_shader, this](Function* function) {
std::vector<BasicBlock*> return_blocks = CollectReturnBlocks(function);
if (return_blocks.size() <= 1) {
if (!is_shader || return_blocks.size() == 0) {
return false;
}
bool isInConstruct =
context()->GetStructuredCFGAnalysis()->ContainingConstruct(
return_blocks[0]->id()) != 0;
bool endsWithReturn = return_blocks[0] == function->tail();
if (!isInConstruct && endsWithReturn) {
return false;
}
}
function_ = function;
return_flag_ = nullptr;
return_value_ = nullptr;
final_return_block_ = nullptr;
if (is_shader) {
if (!ProcessStructured(function, return_blocks)) {
failed = true;
}
} else {
if (!MergeReturnBlocks(function, return_blocks)) {
failed = true;
}
}
return true;
};
bool modified = context()->ProcessReachableCallTree(pfn);
if (failed) {
return Status::Failure;
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
void MergeReturnPass::GenerateState(BasicBlock* block) {
if (Instruction* mergeInst = block->GetMergeInst()) {
if (mergeInst->opcode() == spv::Op::OpLoopMerge) {
// If new loop, break to this loop merge block
state_.emplace_back(mergeInst, mergeInst);
} else {
auto branchInst = mergeInst->NextNode();
if (branchInst->opcode() == spv::Op::OpSwitch) {
// If switch inside of loop, break to innermost loop merge block.
// Otherwise need to break to this switch merge block.
auto lastMergeInst = state_.back().BreakMergeInst();
if (lastMergeInst && lastMergeInst->opcode() == spv::Op::OpLoopMerge)
state_.emplace_back(lastMergeInst, mergeInst);
else
state_.emplace_back(mergeInst, mergeInst);
} else {
// If branch conditional inside loop, always break to innermost
// loop merge block. If branch conditional inside switch, break to
// innermost switch merge block.
auto lastMergeInst = state_.back().BreakMergeInst();
state_.emplace_back(lastMergeInst, mergeInst);
}
}
}
}
bool MergeReturnPass::ProcessStructured(
Function* function, const std::vector<BasicBlock*>& return_blocks) {
if (HasNontrivialUnreachableBlocks(function)) {
if (consumer()) {
std::string message =
"Module contains unreachable blocks during merge return. Run dead "
"branch elimination before merge return.";
consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str());
}
return false;
}
RecordImmediateDominators(function);
if (!AddSingleCaseSwitchAroundFunction()) {
return false;
}
std::list<BasicBlock*> order;
cfg()->ComputeStructuredOrder(function, &*function->begin(), &order);
state_.clear();
state_.emplace_back(nullptr, nullptr);
for (auto block : order) {
if (cfg()->IsPseudoEntryBlock(block) || cfg()->IsPseudoExitBlock(block) ||
block == final_return_block_) {
continue;
}
auto blockId = block->GetLabelInst()->result_id();
if (blockId == CurrentState().CurrentMergeId()) {
// Pop the current state as we've hit the merge
state_.pop_back();
}
if (!ProcessStructuredBlock(block)) {
return false;
}
// Generate state for next block if warranted
GenerateState(block);
}
state_.clear();
state_.emplace_back(nullptr, nullptr);
std::unordered_set<BasicBlock*> predicated;
for (auto block : order) {
if (cfg()->IsPseudoEntryBlock(block) || cfg()->IsPseudoExitBlock(block)) {
continue;
}
auto blockId = block->id();
if (blockId == CurrentState().CurrentMergeId()) {
// Pop the current state as we've hit the merge
state_.pop_back();
}
// Predicate successors of the original return blocks as necessary.
if (std::find(return_blocks.begin(), return_blocks.end(), block) !=
return_blocks.end()) {
if (!PredicateBlocks(block, &predicated, &order)) {
return false;
}
}
// Generate state for next block if warranted
GenerateState(block);
}
// We have not kept the dominator tree up-to-date.
// Invalidate it at this point to make sure it will be rebuilt.
context()->RemoveDominatorAnalysis(function);
if (!AddNewPhiNodes()) {
return false;
}
return true;
}
bool MergeReturnPass::CreateReturnBlock() {
// Create a label for the new return block
uint32_t label_id = TakeNextId();
if (label_id == 0) {
return false;
}
std::unique_ptr<Instruction> return_label(
new Instruction(context(), spv::Op::OpLabel, 0u, label_id, {}));
// Create the new basic block
std::unique_ptr<BasicBlock> return_block(
new BasicBlock(std::move(return_label)));
function_->AddBasicBlock(std::move(return_block));
final_return_block_ = &*(--function_->end());
context()->AnalyzeDefUse(final_return_block_->GetLabelInst());
context()->set_instr_block(final_return_block_->GetLabelInst(),
final_return_block_);
assert(final_return_block_->GetParent() == function_ &&
"The function should have been set when the block was created.");
return true;
}
bool MergeReturnPass::CreateReturn(BasicBlock* block) {
if (!AddReturnValue()) {
return false;
}
if (return_value_) {
// Load and return the final return value
uint32_t loadId = TakeNextId();
if (loadId == 0) {
return false;
}
block->AddInstruction(MakeUnique<Instruction>(
context(), spv::Op::OpLoad, function_->type_id(), loadId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {return_value_->result_id()}}}));
Instruction* var_inst = block->terminator();
context()->AnalyzeDefUse(var_inst);
context()->set_instr_block(var_inst, block);
context()->get_decoration_mgr()->CloneDecorations(
return_value_->result_id(), loadId,
{spv::Decoration::RelaxedPrecision});
block->AddInstruction(MakeUnique<Instruction>(
context(), spv::Op::OpReturnValue, 0, 0,
std::initializer_list<Operand>{{SPV_OPERAND_TYPE_ID, {loadId}}}));
context()->AnalyzeDefUse(block->terminator());
context()->set_instr_block(block->terminator(), block);
} else {
block->AddInstruction(
MakeUnique<Instruction>(context(), spv::Op::OpReturn));
context()->AnalyzeDefUse(block->terminator());
context()->set_instr_block(block->terminator(), block);
}
return true;
}
bool MergeReturnPass::ProcessStructuredBlock(BasicBlock* block) {
if (block->tail() == block->end()) {
return true;
}
spv::Op tail_opcode = block->tail()->opcode();
if (tail_opcode == spv::Op::OpReturn ||
tail_opcode == spv::Op::OpReturnValue) {
if (!return_flag_) {
if (!AddReturnFlag()) {
return false;
}
}
}
if (tail_opcode == spv::Op::OpReturn ||
tail_opcode == spv::Op::OpReturnValue ||
tail_opcode == spv::Op::OpUnreachable) {
assert(CurrentState().InBreakable() &&
"Should be in the placeholder construct.");
if (!BranchToBlock(block, CurrentState().BreakMergeId())) {
return false;
}
return_blocks_.insert(block->id());
}
return true;
}
bool MergeReturnPass::BranchToBlock(BasicBlock* block, uint32_t target) {
if (block->tail()->opcode() == spv::Op::OpReturn ||
block->tail()->opcode() == spv::Op::OpReturnValue) {
if (!RecordReturned(block)) {
return false;
}
RecordReturnValue(block);
}
BasicBlock* target_block = context()->get_instr_block(target);
if (target_block->GetLoopMergeInst()) {
cfg()->SplitLoopHeader(target_block);
}
if (!UpdatePhiNodes(block, target_block)) {
return false;
}
Instruction* return_inst = block->terminator();
return_inst->SetOpcode(spv::Op::OpBranch);
return_inst->ReplaceOperands({{SPV_OPERAND_TYPE_ID, {target}}});
context()->get_def_use_mgr()->AnalyzeInstDefUse(return_inst);
new_edges_[target_block].insert(block->id());
cfg()->AddEdge(block->id(), target);
return true;
}
bool MergeReturnPass::UpdatePhiNodes(BasicBlock* new_source,
BasicBlock* target) {
bool succeeded = true;
target->ForEachPhiInst([this, new_source, &succeeded](Instruction* inst) {
uint32_t undefId = Type2Undef(inst->type_id());
if (undefId == 0) {
succeeded = false;
return;
}
inst->AddOperand({SPV_OPERAND_TYPE_ID, {undefId}});
inst->AddOperand({SPV_OPERAND_TYPE_ID, {new_source->id()}});
context()->UpdateDefUse(inst);
});
return succeeded;
}
bool MergeReturnPass::CreatePhiNodesForInst(BasicBlock* merge_block,
Instruction& inst) {
DominatorAnalysis* dom_tree =
context()->GetDominatorAnalysis(merge_block->GetParent());
if (inst.result_id() != 0) {
BasicBlock* inst_bb = context()->get_instr_block(&inst);
std::vector<Instruction*> users_to_update;
context()->get_def_use_mgr()->ForEachUser(
&inst,
[&users_to_update, &dom_tree, &inst, inst_bb, this](Instruction* user) {
BasicBlock* user_bb = nullptr;
if (user->opcode() != spv::Op::OpPhi) {
user_bb = context()->get_instr_block(user);
} else {
// For OpPhi, the use should be considered to be in the predecessor.
for (uint32_t i = 0; i < user->NumInOperands(); i += 2) {
if (user->GetSingleWordInOperand(i) == inst.result_id()) {
uint32_t user_bb_id = user->GetSingleWordInOperand(i + 1);
user_bb = context()->get_instr_block(user_bb_id);
break;
}
}
}
// If |user_bb| is nullptr, then |user| is not in the function. It is
// something like an OpName or decoration, which should not be
// replaced with the result of the OpPhi.
if (user_bb && !dom_tree->Dominates(inst_bb, user_bb)) {
users_to_update.push_back(user);
}
});
if (users_to_update.empty()) {
return true;
}
// There is at least one values that needs to be replaced.
// First create the OpPhi instruction.
uint32_t undef_id = Type2Undef(inst.type_id());
std::vector<uint32_t> phi_operands;
const std::set<uint32_t>& new_edges = new_edges_[merge_block];
// Add the OpPhi operands. If the predecessor is a return block use undef,
// otherwise use |inst|'s id.
std::vector<uint32_t> preds = cfg()->preds(merge_block->id());
for (uint32_t pred_id : preds) {
if (new_edges.count(pred_id)) {
phi_operands.push_back(undef_id);
} else {
phi_operands.push_back(inst.result_id());
}
phi_operands.push_back(pred_id);
}
Instruction* new_phi = nullptr;
// If the instruction is a pointer and variable pointers are not an option,
// then we have to regenerate the instruction instead of creating an OpPhi
// instruction. If not, the Spir-V will be invalid.
Instruction* inst_type = get_def_use_mgr()->GetDef(inst.type_id());
bool regenerateInstruction = false;
if (inst_type->opcode() == spv::Op::OpTypePointer) {
if (!context()->get_feature_mgr()->HasCapability(
spv::Capability::VariablePointers)) {
regenerateInstruction = true;
}
auto storage_class =
spv::StorageClass(inst_type->GetSingleWordInOperand(0));
if (storage_class != spv::StorageClass::Workgroup &&
storage_class != spv::StorageClass::StorageBuffer) {
regenerateInstruction = true;
}
}
if (regenerateInstruction) {
std::unique_ptr<Instruction> regen_inst(inst.Clone(context()));
uint32_t new_id = TakeNextId();
if (new_id == 0) {
return false;
}
regen_inst->SetResultId(new_id);
Instruction* insert_pos = &*merge_block->begin();
while (insert_pos->opcode() == spv::Op::OpPhi) {
insert_pos = insert_pos->NextNode();
}
new_phi = insert_pos->InsertBefore(std::move(regen_inst));
get_def_use_mgr()->AnalyzeInstDefUse(new_phi);
context()->set_instr_block(new_phi, merge_block);
bool succeeded = true;
new_phi->ForEachInId([dom_tree, merge_block, this,
&succeeded](uint32_t* use_id) {
if (!succeeded) {
return;
}
Instruction* use = get_def_use_mgr()->GetDef(*use_id);
BasicBlock* use_bb = context()->get_instr_block(use);
if (use_bb != nullptr && !dom_tree->Dominates(use_bb, merge_block)) {
if (!CreatePhiNodesForInst(merge_block, *use)) {
succeeded = false;
}
}
});
if (!succeeded) {
return false;
}
} else {
InstructionBuilder builder(
context(), &*merge_block->begin(),
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_phi = builder.AddPhi(inst.type_id(), phi_operands);
if (new_phi == nullptr) {
return false;
}
}
uint32_t result_of_phi = new_phi->result_id();
// Update all of the users to use the result of the new OpPhi.
for (Instruction* user : users_to_update) {
user->ForEachInId([&inst, result_of_phi](uint32_t* id) {
if (*id == inst.result_id()) {
*id = result_of_phi;
}
});
context()->AnalyzeUses(user);
}
}
return true;
}
bool MergeReturnPass::PredicateBlocks(
BasicBlock* return_block, std::unordered_set<BasicBlock*>* predicated,
std::list<BasicBlock*>* order) {
// The CFG is being modified as the function proceeds so avoid caching
// successors.
if (predicated->count(return_block)) {
return true;
}
BasicBlock* block = nullptr;
const BasicBlock* const_block = const_cast<const BasicBlock*>(return_block);
const_block->ForEachSuccessorLabel([this, &block](const uint32_t idx) {
BasicBlock* succ_block = context()->get_instr_block(idx);
assert(block == nullptr);
block = succ_block;
});
assert(block &&
"Return blocks should have returns already replaced by a single "
"unconditional branch.");
auto state = state_.rbegin();
std::unordered_set<BasicBlock*> seen;
if (block->id() == state->CurrentMergeId()) {
state++;
} else if (block->id() == state->BreakMergeId()) {
while (state->BreakMergeId() == block->id()) {
state++;
}
}
while (block != nullptr && block != final_return_block_) {
if (!predicated->insert(block).second) break;
// Skip structured subgraphs.
assert(state->InBreakable() &&
"Should be in the placeholder construct at the very least.");
Instruction* break_merge_inst = state->BreakMergeInst();
uint32_t merge_block_id = break_merge_inst->GetSingleWordInOperand(0);
while (state->BreakMergeId() == merge_block_id) {
state++;
}
if (!BreakFromConstruct(block, predicated, order, break_merge_inst)) {
return false;
}
block = context()->get_instr_block(merge_block_id);
}
return true;
}
bool MergeReturnPass::BreakFromConstruct(
BasicBlock* block, std::unordered_set<BasicBlock*>* predicated,
std::list<BasicBlock*>* order, Instruction* break_merge_inst) {
// Make sure the CFG is build here. If we don't then it becomes very hard
// to know which new blocks need to be updated.
context()->InvalidateAnalyses(IRContext::kAnalysisCFG);
context()->BuildInvalidAnalyses(IRContext::kAnalysisCFG);
// When predicating, be aware of whether this block is a header block, a
// merge block or both.
//
// If this block is a merge block, ensure the appropriate header stays
// up-to-date with any changes (i.e. points to the pre-header).
//
// If this block is a header block, predicate the entire structured
// subgraph. This can act recursively.
// If |block| is a loop header, then the back edge must jump to the original
// code, not the new header.
if (block->GetLoopMergeInst()) {
if (cfg()->SplitLoopHeader(block) == nullptr) {
return false;
}
}
uint32_t merge_block_id = break_merge_inst->GetSingleWordInOperand(0);
BasicBlock* merge_block = context()->get_instr_block(merge_block_id);
if (merge_block->GetLoopMergeInst()) {
cfg()->SplitLoopHeader(merge_block);
}
// Leave the phi instructions behind.
auto iter = block->begin();
while (iter->opcode() == spv::Op::OpPhi) {
++iter;
}
// Forget about the edges leaving block. They will be removed.
cfg()->RemoveSuccessorEdges(block);
auto old_body_id = TakeNextId();
if (old_body_id == 0) {
return false;
}
BasicBlock* old_body = block->SplitBasicBlock(context(), old_body_id, iter);
predicated->insert(old_body);
// If a return block is being split, mark the new body block also as a return
// block.
if (return_blocks_.count(block->id())) {
return_blocks_.insert(old_body_id);
}
// If |block| was a continue target for a loop |old_body| is now the correct
// continue target.
if (break_merge_inst->opcode() == spv::Op::OpLoopMerge &&
break_merge_inst->GetSingleWordInOperand(1) == block->id()) {
break_merge_inst->SetInOperand(1, {old_body->id()});
context()->UpdateDefUse(break_merge_inst);
}
// Update |order| so old_block will be traversed.
InsertAfterElement(block, old_body, order);
// Within the new header we need the following:
// 1. Load of the return status flag
// 2. Branch to |merge_block| (true) or old body (false)
// 3. Update OpPhi instructions in |merge_block|.
// 4. Update the CFG.
//
// Since we are branching to the merge block of the current construct, there
// is no need for an OpSelectionMerge.
InstructionBuilder builder(
context(), block,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
// 1. Load of the return status flag
analysis::Bool bool_type;
uint32_t bool_id = context()->get_type_mgr()->GetId(&bool_type);
assert(bool_id != 0);
Instruction* load_inst = builder.AddLoad(bool_id, return_flag_->result_id());
if (load_inst == nullptr) {
return false;
}
uint32_t load_id = load_inst->result_id();
// 2. Branch to |merge_block| (true) or |old_body| (false)
builder.AddConditionalBranch(load_id, merge_block->id(), old_body->id(),
old_body->id());
if (!new_edges_[merge_block].insert(block->id()).second) {
// It is possible that we already inserted a new edge to the merge block.
// If so, that edge now goes from |old_body| to |merge_block|.
new_edges_[merge_block].insert(old_body->id());
}
// 3. Update OpPhi instructions in |merge_block|.
if (!UpdatePhiNodes(block, merge_block)) {
return false;
}
// 4. Update the CFG. We do this after updating the OpPhi instructions
// because |UpdatePhiNodes| assumes the edge from |block| has not been added
// to the CFG yet.
cfg()->AddEdges(block);
cfg()->RegisterBlock(old_body);
assert(old_body->begin() != old_body->end());
assert(block->begin() != block->end());
return true;
}
bool MergeReturnPass::RecordReturned(BasicBlock* block) {
if (block->tail()->opcode() != spv::Op::OpReturn &&
block->tail()->opcode() != spv::Op::OpReturnValue)
return true;
assert(return_flag_ && "Did not generate the return flag variable.");
if (!constant_true_) {
analysis::Bool temp;
const analysis::Bool* bool_type =
context()->get_type_mgr()->GetRegisteredType(&temp)->AsBool();
analysis::ConstantManager* const_mgr = context()->get_constant_mgr();
const analysis::Constant* true_const =
const_mgr->GetConstant(bool_type, {true});
constant_true_ = const_mgr->GetDefiningInstruction(true_const);
if (!constant_true_) {
return false;
}
context()->UpdateDefUse(constant_true_);
}
std::unique_ptr<Instruction> return_store(new Instruction(
context(), spv::Op::OpStore, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {return_flag_->result_id()}},
{SPV_OPERAND_TYPE_ID, {constant_true_->result_id()}}}));
Instruction* store_inst =
&*block->tail().InsertBefore(std::move(return_store));
context()->set_instr_block(store_inst, block);
context()->AnalyzeDefUse(store_inst);
return true;
}
void MergeReturnPass::RecordReturnValue(BasicBlock* block) {
auto terminator = *block->tail();
if (terminator.opcode() != spv::Op::OpReturnValue) {
return;
}
assert(return_value_ &&
"Did not generate the variable to hold the return value.");
std::unique_ptr<Instruction> value_store(new Instruction(
context(), spv::Op::OpStore, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {return_value_->result_id()}},
{SPV_OPERAND_TYPE_ID, {terminator.GetSingleWordInOperand(0u)}}}));
Instruction* store_inst =
&*block->tail().InsertBefore(std::move(value_store));
context()->set_instr_block(store_inst, block);
context()->AnalyzeDefUse(store_inst);
}
bool MergeReturnPass::AddReturnValue() {
if (return_value_) return true;
uint32_t return_type_id = function_->type_id();
if (get_def_use_mgr()->GetDef(return_type_id)->opcode() ==
spv::Op::OpTypeVoid)
return true;
uint32_t return_ptr_type = context()->get_type_mgr()->FindPointerToType(
return_type_id, spv::StorageClass::Function);
uint32_t var_id = TakeNextId();
if (var_id == 0) {
return false;
}
std::unique_ptr<Instruction> returnValue(
new Instruction(context(), spv::Op::OpVariable, return_ptr_type, var_id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_STORAGE_CLASS,
{uint32_t(spv::StorageClass::Function)}}}));
auto insert_iter = function_->begin()->begin();
insert_iter.InsertBefore(std::move(returnValue));
BasicBlock* entry_block = &*function_->begin();
return_value_ = &*entry_block->begin();
context()->AnalyzeDefUse(return_value_);
context()->set_instr_block(return_value_, entry_block);
context()->get_decoration_mgr()->CloneDecorations(
function_->result_id(), var_id, {spv::Decoration::RelaxedPrecision});
return true;
}
bool MergeReturnPass::AddReturnFlag() {
if (return_flag_) return true;
analysis::TypeManager* type_mgr = context()->get_type_mgr();
analysis::ConstantManager* const_mgr = context()->get_constant_mgr();
analysis::Bool temp;
uint32_t bool_id = type_mgr->GetTypeInstruction(&temp);
if (bool_id == 0) {
return false;
}
analysis::Bool* bool_type = type_mgr->GetType(bool_id)->AsBool();
const analysis::Constant* false_const =
const_mgr->GetConstant(bool_type, {false});
Instruction* false_inst = const_mgr->GetDefiningInstruction(false_const);
if (false_inst == nullptr) {
return false;
}
uint32_t const_false_id = false_inst->result_id();
uint32_t bool_ptr_id =
type_mgr->FindPointerToType(bool_id, spv::StorageClass::Function);
if (bool_ptr_id == 0) {
return false;
;
}
uint32_t var_id = TakeNextId();
if (var_id == 0) {
return false;
}
std::unique_ptr<Instruction> returnFlag(new Instruction(
context(), spv::Op::OpVariable, bool_ptr_id, var_id,
std::initializer_list<Operand>{{SPV_OPERAND_TYPE_STORAGE_CLASS,
{uint32_t(spv::StorageClass::Function)}},
{SPV_OPERAND_TYPE_ID, {const_false_id}}}));
auto insert_iter = function_->begin()->begin();
insert_iter.InsertBefore(std::move(returnFlag));
BasicBlock* entry_block = &*function_->begin();
return_flag_ = &*entry_block->begin();
context()->AnalyzeDefUse(return_flag_);
context()->set_instr_block(return_flag_, entry_block);
return true;
}
std::vector<BasicBlock*> MergeReturnPass::CollectReturnBlocks(
Function* function) {
std::vector<BasicBlock*> return_blocks;
for (auto& block : *function) {
Instruction& terminator = *block.tail();
if (terminator.opcode() == spv::Op::OpReturn ||
terminator.opcode() == spv::Op::OpReturnValue) {
return_blocks.push_back(&block);
}
}
return return_blocks;
}
bool MergeReturnPass::MergeReturnBlocks(
Function* function, const std::vector<BasicBlock*>& return_blocks) {
if (return_blocks.size() <= 1) {
// No work to do.
return true;
}
if (!CreateReturnBlock()) {
return false;
}
uint32_t return_id = final_return_block_->id();
auto ret_block_iter = --function->end();
// Create the PHI for the merged block (if necessary).
// Create new return.
std::vector<Operand> phi_ops;
for (auto block : return_blocks) {
if (block->tail()->opcode() == spv::Op::OpReturnValue) {
phi_ops.push_back(
{SPV_OPERAND_TYPE_ID, {block->tail()->GetSingleWordInOperand(0u)}});
phi_ops.push_back({SPV_OPERAND_TYPE_ID, {block->id()}});
}
}
if (!phi_ops.empty()) {
// Need a PHI node to select the correct return value.
uint32_t phi_result_id = TakeNextId();
if (phi_result_id == 0) {
return false;
}
uint32_t phi_type_id = function->type_id();
std::unique_ptr<Instruction> phi_inst(new Instruction(
context(), spv::Op::OpPhi, phi_type_id, phi_result_id, phi_ops));
ret_block_iter->AddInstruction(std::move(phi_inst));
BasicBlock::iterator phiIter = ret_block_iter->tail();
std::unique_ptr<Instruction> return_inst(
new Instruction(context(), spv::Op::OpReturnValue, 0u, 0u,
{{SPV_OPERAND_TYPE_ID, {phi_result_id}}}));
ret_block_iter->AddInstruction(std::move(return_inst));
BasicBlock::iterator ret = ret_block_iter->tail();
// Register the phi def and mark instructions for use updates.
get_def_use_mgr()->AnalyzeInstDefUse(&*phiIter);
get_def_use_mgr()->AnalyzeInstDef(&*ret);
} else {
std::unique_ptr<Instruction> return_inst(
new Instruction(context(), spv::Op::OpReturn));
ret_block_iter->AddInstruction(std::move(return_inst));
}
// Replace returns with branches
for (auto block : return_blocks) {
context()->ForgetUses(block->terminator());
block->tail()->SetOpcode(spv::Op::OpBranch);
block->tail()->ReplaceOperands({{SPV_OPERAND_TYPE_ID, {return_id}}});
get_def_use_mgr()->AnalyzeInstUse(block->terminator());
get_def_use_mgr()->AnalyzeInstUse(block->GetLabelInst());
}
get_def_use_mgr()->AnalyzeInstDefUse(ret_block_iter->GetLabelInst());
return true;
}
bool MergeReturnPass::AddNewPhiNodes() {
std::list<BasicBlock*> order;
cfg()->ComputeStructuredOrder(function_, &*function_->begin(), &order);
for (BasicBlock* bb : order) {
if (!AddNewPhiNodes(bb)) {
return false;
}
}
return true;
}
bool MergeReturnPass::AddNewPhiNodes(BasicBlock* bb) {
// New phi nodes are needed for any id whose definition used to dominate |bb|,
// but no longer dominates |bb|. These are found by walking the dominator
// tree starting at the original immediate dominator of |bb| and ending at its
// current dominator.
// Because we are walking the updated dominator tree it is important that the
// new phi nodes for the original dominators of |bb| have already been added.
// Otherwise some ids might be missed. Consider the case where bb1 dominates
// bb2, and bb2 dominates bb3. Suppose there are changes such that bb1 no
// longer dominates bb2 and the same for bb2 and bb3. This algorithm will not
// look at the ids defined in bb1. However, calling |AddNewPhiNodes(bb2)|
// first will add a phi node in bb2 for that value. Then a call to
// |AddNewPhiNodes(bb3)| will process that value by processing the phi in bb2.
DominatorAnalysis* dom_tree = context()->GetDominatorAnalysis(function_);
BasicBlock* dominator = dom_tree->ImmediateDominator(bb);
if (dominator == nullptr) {
return true;
}
BasicBlock* current_bb = context()->get_instr_block(original_dominator_[bb]);
while (current_bb != nullptr && current_bb != dominator) {
for (Instruction& inst : *current_bb) {
if (!CreatePhiNodesForInst(bb, inst)) {
return false;
}
}
current_bb = dom_tree->ImmediateDominator(current_bb);
}
return true;
}
void MergeReturnPass::RecordImmediateDominators(Function* function) {
DominatorAnalysis* dom_tree = context()->GetDominatorAnalysis(function);
for (BasicBlock& bb : *function) {
BasicBlock* dominator_bb = dom_tree->ImmediateDominator(&bb);
if (dominator_bb && dominator_bb != cfg()->pseudo_entry_block()) {
original_dominator_[&bb] = dominator_bb->terminator();
} else {
original_dominator_[&bb] = nullptr;
}
}
}
void MergeReturnPass::InsertAfterElement(BasicBlock* element,
BasicBlock* new_element,
std::list<BasicBlock*>* list) {
auto pos = std::find(list->begin(), list->end(), element);
assert(pos != list->end());
++pos;
list->insert(pos, new_element);
}
bool MergeReturnPass::AddSingleCaseSwitchAroundFunction() {
if (!CreateReturnBlock()) {
return false;
}
if (!CreateReturn(final_return_block_)) {
return false;
}
if (context()->AreAnalysesValid(IRContext::kAnalysisCFG)) {
cfg()->RegisterBlock(final_return_block_);
}
if (!CreateSingleCaseSwitch(final_return_block_)) {
return false;
}
return true;
}
BasicBlock* MergeReturnPass::CreateContinueTarget(uint32_t header_label_id) {
std::unique_ptr<Instruction> label(
new Instruction(context(), spv::Op::OpLabel, 0u, TakeNextId(), {}));
// Create the new basic block
std::unique_ptr<BasicBlock> block(new BasicBlock(std::move(label)));
// Insert the new block just before the return block
auto pos = function_->end();
assert(pos != function_->begin());
pos--;
assert(pos != function_->begin());
assert(&*pos == final_return_block_);
auto new_block = &*pos.InsertBefore(std::move(block));
new_block->SetParent(function_);
context()->AnalyzeDefUse(new_block->GetLabelInst());
context()->set_instr_block(new_block->GetLabelInst(), new_block);
InstructionBuilder builder(
context(), new_block,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
builder.AddBranch(header_label_id);
if (context()->AreAnalysesValid(IRContext::kAnalysisCFG)) {
cfg()->RegisterBlock(new_block);
}
return new_block;
}
bool MergeReturnPass::CreateSingleCaseSwitch(BasicBlock* merge_target) {
// Insert the switch before any code is run. We have to split the entry
// block to make sure the OpVariable instructions and DebugFunctionDefinition
// instructions remain in the entry block.
BasicBlock* start_block = &*function_->begin();
auto split_pos = start_block->begin();
while (split_pos->opcode() == spv::Op::OpVariable) {
++split_pos;
}
uint32_t new_block_id = TakeNextId();
if (new_block_id == 0) {
return false;
}
BasicBlock* old_block =
start_block->SplitBasicBlock(context(), new_block_id, split_pos);
// Find DebugFunctionDefinition inst in the old block, and if we can find it,
// move it to the entry block. Since DebugFunctionDefinition is not necessary
// after OpVariable inst, we have to traverse the whole block to find it.
for (auto pos = old_block->begin(); pos != old_block->end(); ++pos) {
if (pos->GetShader100DebugOpcode() ==
NonSemanticShaderDebugInfo100DebugFunctionDefinition) {
start_block->AddInstruction(MakeUnique<Instruction>(*pos));
pos.Erase();
break;
}
}
// Add the switch to the end of the entry block.
InstructionBuilder builder(
context(), start_block,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t const_zero_id = builder.GetUintConstantId(0u);
if (const_zero_id == 0) {
return false;
}
builder.AddSwitch(const_zero_id, old_block->id(), {}, merge_target->id());
if (context()->AreAnalysesValid(IRContext::kAnalysisCFG)) {
cfg()->RegisterBlock(old_block);
cfg()->AddEdges(start_block);
}
return true;
}
bool MergeReturnPass::HasNontrivialUnreachableBlocks(Function* function) {
utils::BitVector reachable_blocks;
cfg()->ForEachBlockInPostOrder(
function->entry().get(),
[&reachable_blocks](BasicBlock* bb) { reachable_blocks.Set(bb->id()); });
for (auto& bb : *function) {
if (reachable_blocks.Get(bb.id())) {
continue;
}
StructuredCFGAnalysis* struct_cfg_analysis =
context()->GetStructuredCFGAnalysis();
if (struct_cfg_analysis->IsContinueBlock(bb.id())) {
// |bb| must be an empty block ending with a branch to the header.
Instruction* inst = &*bb.begin();
if (inst->opcode() != spv::Op::OpBranch) {
return true;
}
if (inst->GetSingleWordInOperand(0) !=
struct_cfg_analysis->ContainingLoop(bb.id())) {
return true;
}
} else if (struct_cfg_analysis->IsMergeBlock(bb.id())) {
// |bb| must be an empty block ending with OpUnreachable.
if (bb.begin()->opcode() != spv::Op::OpUnreachable) {
return true;
}
} else {
return true;
}
}
return false;
}
} // namespace opt
} // namespace spvtools
|