File: scalar_analysis_simplification.cpp

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (538 lines) | stat: -rw-r--r-- 20,214 bytes parent folder | download | duplicates (17)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <functional>
#include <map>
#include <memory>
#include <set>
#include <utility>
#include <vector>

#include "source/opt/scalar_analysis.h"

// Simplifies scalar analysis DAGs.
//
// 1. Given a node passed to SimplifyExpression we first simplify the graph by
// calling SimplifyPolynomial. This groups like nodes following basic arithmetic
// rules, so multiple adds of the same load instruction could be grouped into a
// single multiply of that instruction. SimplifyPolynomial will traverse the DAG
// and build up an accumulator buffer for each class of instruction it finds.
// For example take the loop:
// for (i=0, i<N; i++) { i+B+23+4+B+C; }
// In this example the expression "i+B+23+4+B+C" has four classes of
// instruction, induction variable i, the two value unknowns B and C, and the
// constants. The accumulator buffer is then used to rebuild the graph using
// the accumulation of each type. This example would then be folded into
// i+2*B+C+27.
//
// This new graph contains a single add node (or if only one type found then
// just that node) with each of the like terms (or multiplication node) as a
// child.
//
// 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take
// RecurrentAddExpressions which are with respect to the same loop and fold them
// into a single new RecurrentAddExpression with respect to that same loop. An
// expression can have multiple RecurrentAddExpression's with respect to
// different loops in the case of nested loops. These expressions cannot be
// folded further. For example:
//
// for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k)
//
// The 'j' and 'k' are RecurrentAddExpression with respect to the second loop
// and 'i' to the first. If 'j' and 'k' are used in an expression together then
// they will be folded into a new RecurrentAddExpression with respect to the
// second loop in that expression.
//
//
// 3. If the DAG now only contains a single RecurrentAddExpression we can now
// perform a final optimization SimplifyRecurrentAddExpression. This will
// transform the entire DAG into a RecurrentAddExpression. Additions to the
// RecurrentAddExpression are added to the offset field and multiplications to
// the coefficient.
//

namespace spvtools {
namespace opt {

// Implementation of the functions which are used to simplify the graph. Graphs
// of unknowns, multiplies, additions, and constants can be turned into a linear
// add node with each term as a child. For instance a large graph built from, X
// + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the
// children X*3, -Y*2, and the constant 3. Graphs containing a recurrent
// expression will be simplified to represent the entire graph around a single
// recurrent expression. So for an induction variable (i=0, i++) if you add 1 to
// i in an expression we can rewrite the graph of that expression to be a single
// recurrent expression of (i=1,i++).
class SENodeSimplifyImpl {
 public:
  SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis,
                     SENode* node_to_simplify)
      : analysis_(*analysis),
        node_(node_to_simplify),
        constant_accumulator_(0) {}

  // Return the result of the simplification.
  SENode* Simplify();

 private:
  // Recursively descend through the graph to build up the accumulator objects
  // which are used to flatten the graph. |child| is the node currently being
  // traversed and the |negation| flag is used to signify that this operation
  // was preceded by a unary negative operation and as such the result should be
  // negated.
  void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child,
                                        bool negation);

  // Given a |multiply| node add to the accumulators for the term type within
  // the |multiply| expression. Will return true if the accumulators could be
  // calculated successfully. If the |multiply| is in any form other than
  // unknown*constant then we return false. |negation| signifies that the
  // operation was preceded by a unary negative.
  bool AccumulatorsFromMultiply(SENode* multiply, bool negation);

  SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent,
                                     int64_t coefficient_update) const;

  // If the graph contains a recurrent expression, ie, an expression with the
  // loop iterations as a term in the expression, then the whole expression
  // can be rewritten to be a recurrent expression.
  SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node);

  // Simplify the whole graph by linking like terms together in a single flat
  // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a
  // ValueUnknown node (i.e, a load) or a recurrent expression.
  SENode* SimplifyPolynomial();

  // Each recurrent expression is an expression with respect to a specific loop.
  // If we have two different recurrent terms with respect to the same loop in a
  // single expression then we can fold those terms into a single new term.
  // For instance:
  //
  // induction i = 0, i++
  // temp = i*10
  // array[i+temp]
  //
  // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can
  // become Rec(0,11).
  SENode* FoldRecurrentAddExpressions(SENode*);

  // We can eliminate recurrent expressions which have a coefficient of zero by
  // replacing them with their offset value. We are able to do this because a
  // recurrent expression represents the equation coefficient*iterations +
  // offset.
  SENode* EliminateZeroCoefficientRecurrents(SENode* node);

  // A reference the analysis which requested the simplification.
  ScalarEvolutionAnalysis& analysis_;

  // The node being simplified.
  SENode* node_;

  // An accumulator of the net result of all the constant operations performed
  // in a graph.
  int64_t constant_accumulator_;

  // An accumulator for each of the non constant terms in the graph.
  std::map<SENode*, int64_t> accumulators_;
};

// From a |multiply| build up the accumulator objects.
bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply,
                                                  bool negation) {
  if (multiply->GetChildren().size() != 2 ||
      multiply->GetType() != SENode::Multiply)
    return false;

  SENode* operand_1 = multiply->GetChild(0);
  SENode* operand_2 = multiply->GetChild(1);

  SENode* value_unknown = nullptr;
  SENode* constant = nullptr;

  // Work out which operand is the unknown value.
  if (operand_1->GetType() == SENode::ValueUnknown ||
      operand_1->GetType() == SENode::RecurrentAddExpr)
    value_unknown = operand_1;
  else if (operand_2->GetType() == SENode::ValueUnknown ||
           operand_2->GetType() == SENode::RecurrentAddExpr)
    value_unknown = operand_2;

  // Work out which operand is the constant coefficient.
  if (operand_1->GetType() == SENode::Constant)
    constant = operand_1;
  else if (operand_2->GetType() == SENode::Constant)
    constant = operand_2;

  // If the expression is not a variable multiplied by a constant coefficient,
  // exit out.
  if (!(value_unknown && constant)) {
    return false;
  }

  int64_t sign = negation ? -1 : 1;

  auto iterator = accumulators_.find(value_unknown);
  int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign;
  // Add the result of the multiplication to the accumulators.
  if (iterator != accumulators_.end()) {
    (*iterator).second += new_value;
  } else {
    accumulators_.insert({value_unknown, new_value});
  }

  return true;
}

SENode* SENodeSimplifyImpl::Simplify() {
  // We only handle graphs with an addition, multiplication, or negation, at the
  // root.
  if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply &&
      node_->GetType() != SENode::Negative)
    return node_;

  SENode* simplified_polynomial = SimplifyPolynomial();

  SERecurrentNode* recurrent_expr = nullptr;
  node_ = simplified_polynomial;

  // Fold recurrent expressions which are with respect to the same loop into a
  // single recurrent expression.
  simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial);

  simplified_polynomial =
      EliminateZeroCoefficientRecurrents(simplified_polynomial);

  // Traverse the immediate children of the new node to find the recurrent
  // expression. If there is more than one there is nothing further we can do.
  for (SENode* child : simplified_polynomial->GetChildren()) {
    if (child->GetType() == SENode::RecurrentAddExpr) {
      recurrent_expr = child->AsSERecurrentNode();
    }
  }

  // We need to count the number of unique recurrent expressions in the DAG to
  // ensure there is only one.
  for (auto child_iterator = simplified_polynomial->graph_begin();
       child_iterator != simplified_polynomial->graph_end(); ++child_iterator) {
    if (child_iterator->GetType() == SENode::RecurrentAddExpr &&
        recurrent_expr != child_iterator->AsSERecurrentNode()) {
      return simplified_polynomial;
    }
  }

  if (recurrent_expr) {
    return SimplifyRecurrentAddExpression(recurrent_expr);
  }

  return simplified_polynomial;
}

// Traverse the graph to build up the accumulator objects.
void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node,
                                                          SENode* child,
                                                          bool negation) {
  int32_t sign = negation ? -1 : 1;

  if (child->GetType() == SENode::Constant) {
    // Collect all the constants and add them together.
    constant_accumulator_ +=
        child->AsSEConstantNode()->FoldToSingleValue() * sign;

  } else if (child->GetType() == SENode::ValueUnknown ||
             child->GetType() == SENode::RecurrentAddExpr) {
    // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X
    // and create a new node of count*X after. X can either be a ValueUnknown or
    // a RecurrentAddExpr. The count for each X is stored in the accumulators_
    // map.

    auto iterator = accumulators_.find(child);
    // If we've encountered this term before add to the accumulator for it.
    if (iterator == accumulators_.end())
      accumulators_.insert({child, sign});
    else
      iterator->second += sign;

  } else if (child->GetType() == SENode::Multiply) {
    if (!AccumulatorsFromMultiply(child, negation)) {
      new_node->AddChild(child);
    }

  } else if (child->GetType() == SENode::Add) {
    for (SENode* next_child : *child) {
      GatherAccumulatorsFromChildNodes(new_node, next_child, negation);
    }

  } else if (child->GetType() == SENode::Negative) {
    SENode* negated_node = child->GetChild(0);
    GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation);
  } else {
    // If we can't work out how to fold the expression just add it back into
    // the graph.
    new_node->AddChild(child);
  }
}

SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient(
    SERecurrentNode* recurrent, int64_t coefficient_update) const {
  std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode(
      recurrent->GetParentAnalysis(), recurrent->GetLoop())};

  SENode* new_coefficient = analysis_.CreateMultiplyNode(
      recurrent->GetCoefficient(),
      analysis_.CreateConstant(coefficient_update));

  // See if the node can be simplified.
  SENode* simplified = analysis_.SimplifyExpression(new_coefficient);
  if (simplified->GetType() != SENode::CanNotCompute)
    new_coefficient = simplified;

  if (coefficient_update < 0) {
    new_recurrent_node->AddOffset(
        analysis_.CreateNegation(recurrent->GetOffset()));
  } else {
    new_recurrent_node->AddOffset(recurrent->GetOffset());
  }

  new_recurrent_node->AddCoefficient(new_coefficient);

  return analysis_.GetCachedOrAdd(std::move(new_recurrent_node))
      ->AsSERecurrentNode();
}

// Simplify all the terms in the polynomial function.
SENode* SENodeSimplifyImpl::SimplifyPolynomial() {
  std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())};

  // Traverse the graph and gather the accumulators from it.
  GatherAccumulatorsFromChildNodes(new_add.get(), node_, false);

  // Fold all the constants into a single constant node.
  if (constant_accumulator_ != 0) {
    new_add->AddChild(analysis_.CreateConstant(constant_accumulator_));
  }

  for (auto& pair : accumulators_) {
    SENode* term = pair.first;
    int64_t count = pair.second;

    // We can eliminate the term completely.
    if (count == 0) continue;

    if (count == 1) {
      new_add->AddChild(term);
    } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) {
      // If the count is -1 we can just add a negative version of that node,
      // unless it is a recurrent expression as we would rather the negative
      // goes on the recurrent expressions children. This makes it easier to
      // work with in other places.
      new_add->AddChild(analysis_.CreateNegation(term));
    } else {
      // Output value unknown terms as count*term and output recurrent
      // expression terms as rec(offset, coefficient + count) offset and
      // coefficient are the same as in the original expression.
      if (term->GetType() == SENode::ValueUnknown) {
        SENode* count_as_constant = analysis_.CreateConstant(count);
        new_add->AddChild(
            analysis_.CreateMultiplyNode(count_as_constant, term));
      } else {
        assert(term->GetType() == SENode::RecurrentAddExpr &&
               "We only handle value unknowns or recurrent expressions");

        // Create a new recurrent expression by adding the count to the
        // coefficient of the old one.
        new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count));
      }
    }
  }

  // If there is only one term in the addition left just return that term.
  if (new_add->GetChildren().size() == 1) {
    return new_add->GetChild(0);
  }

  // If there are no terms left in the addition just return 0.
  if (new_add->GetChildren().size() == 0) {
    return analysis_.CreateConstant(0);
  }

  return analysis_.GetCachedOrAdd(std::move(new_add));
}

SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) {
  std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)};

  // A mapping of loops to the list of recurrent expressions which are with
  // respect to those loops.
  std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>>
      loops_to_recurrent{};

  bool has_multiple_same_loop_recurrent_terms = false;

  for (SENode* child : *root) {
    bool negation = false;

    if (child->GetType() == SENode::Negative) {
      child = child->GetChild(0);
      negation = true;
    }

    if (child->GetType() == SENode::RecurrentAddExpr) {
      const Loop* loop = child->AsSERecurrentNode()->GetLoop();

      SERecurrentNode* rec = child->AsSERecurrentNode();
      if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) {
        loops_to_recurrent[loop] = {std::make_pair(rec, negation)};
      } else {
        loops_to_recurrent[loop].push_back(std::make_pair(rec, negation));
        has_multiple_same_loop_recurrent_terms = true;
      }
    } else {
      new_node->AddChild(child);
    }
  }

  if (!has_multiple_same_loop_recurrent_terms) return root;

  for (auto pair : loops_to_recurrent) {
    std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions =
        pair.second;
    const Loop* loop = pair.first;

    std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)};
    std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)};

    for (auto node_pair : recurrent_expressions) {
      SERecurrentNode* node = node_pair.first;
      bool negative = node_pair.second;

      if (!negative) {
        new_coefficient->AddChild(node->GetCoefficient());
        new_offset->AddChild(node->GetOffset());
      } else {
        new_coefficient->AddChild(
            analysis_.CreateNegation(node->GetCoefficient()));
        new_offset->AddChild(analysis_.CreateNegation(node->GetOffset()));
      }
    }

    std::unique_ptr<SERecurrentNode> new_recurrent{
        new SERecurrentNode(&analysis_, loop)};

    SENode* new_coefficient_simplified =
        analysis_.SimplifyExpression(new_coefficient.get());

    SENode* new_offset_simplified =
        analysis_.SimplifyExpression(new_offset.get());

    if (new_coefficient_simplified->GetType() == SENode::Constant &&
        new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() ==
            0) {
      return new_offset_simplified;
    }

    new_recurrent->AddCoefficient(new_coefficient_simplified);
    new_recurrent->AddOffset(new_offset_simplified);

    new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent)));
  }

  // If we only have one child in the add just return that.
  if (new_node->GetChildren().size() == 1) {
    return new_node->GetChild(0);
  }

  return analysis_.GetCachedOrAdd(std::move(new_node));
}

SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) {
  if (node->GetType() != SENode::Add) return node;

  bool has_change = false;

  std::vector<SENode*> new_children{};
  for (SENode* child : *node) {
    if (child->GetType() == SENode::RecurrentAddExpr) {
      SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient();
      // If coefficient is zero then we can eliminate the recurrent expression
      // entirely and just return the offset as the recurrent expression is
      // representing the equation coefficient*iterations + offset.
      if (coefficient->GetType() == SENode::Constant &&
          coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) {
        new_children.push_back(child->AsSERecurrentNode()->GetOffset());
        has_change = true;
      } else {
        new_children.push_back(child);
      }
    } else {
      new_children.push_back(child);
    }
  }

  if (!has_change) return node;

  std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())};

  for (SENode* child : new_children) {
    new_add->AddChild(child);
  }

  return analysis_.GetCachedOrAdd(std::move(new_add));
}

SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression(
    SERecurrentNode* recurrent_expr) {
  const std::vector<SENode*>& children = node_->GetChildren();

  std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode(
      recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())};

  // Create and simplify the new offset node.
  std::unique_ptr<SENode> new_offset{
      new SEAddNode(recurrent_expr->GetParentAnalysis())};
  new_offset->AddChild(recurrent_expr->GetOffset());

  for (SENode* child : children) {
    if (child->GetType() != SENode::RecurrentAddExpr) {
      new_offset->AddChild(child);
    }
  }

  // Simplify the new offset.
  SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get());

  // If the child can be simplified, add the simplified form otherwise, add it
  // via the usual caching mechanism.
  if (simplified_child->GetType() != SENode::CanNotCompute) {
    recurrent_node->AddOffset(simplified_child);
  } else {
    recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset)));
  }

  recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient());

  return analysis_.GetCachedOrAdd(std::move(recurrent_node));
}

/*
 * Scalar Analysis simplification public methods.
 */

SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) {
  SENodeSimplifyImpl impl{this, node};

  return impl.Simplify();
}

}  // namespace opt
}  // namespace spvtools