1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file implements the SSA rewriting algorithm proposed in
//
// Simple and Efficient Construction of Static Single Assignment Form.
// Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
// In: Jhala R., De Bosschere K. (eds)
// Compiler Construction. CC 2013.
// Lecture Notes in Computer Science, vol 7791.
// Springer, Berlin, Heidelberg
//
// https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
//
// In contrast to common eager algorithms based on dominance and dominance
// frontier information, this algorithm works backwards from load operations.
//
// When a target variable is loaded, it queries the variable's reaching
// definition. If the reaching definition is unknown at the current location,
// it searches backwards in the CFG, inserting Phi instructions at join points
// in the CFG along the way until it finds the desired store instruction.
//
// The algorithm avoids repeated lookups using memoization.
//
// For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
// this algorithm is proven to produce minimal SSA. That is, it inserts the
// minimal number of Phi instructions required to ensure the SSA property, but
// some Phi instructions may be dead
// (https://en.wikipedia.org/wiki/Static_single_assignment_form).
#include "source/opt/ssa_rewrite_pass.h"
#include <memory>
#include <sstream>
#include "source/opcode.h"
#include "source/opt/cfg.h"
#include "source/opt/mem_pass.h"
#include "source/opt/types.h"
// Debug logging (0: Off, 1-N: Verbosity level). Replace this with the
// implementation done for
// https://github.com/KhronosGroup/SPIRV-Tools/issues/1351
// #define SSA_REWRITE_DEBUGGING_LEVEL 3
#ifdef SSA_REWRITE_DEBUGGING_LEVEL
#include <ostream>
#else
#define SSA_REWRITE_DEBUGGING_LEVEL 0
#endif
namespace spvtools {
namespace opt {
namespace {
constexpr uint32_t kStoreValIdInIdx = 1;
constexpr uint32_t kVariableInitIdInIdx = 1;
} // namespace
std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const {
std::ostringstream str;
str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id()
<< "](";
if (phi_args_.size() > 0) {
uint32_t arg_ix = 0;
for (uint32_t pred_label : cfg->preds(bb_->id())) {
uint32_t arg_id = phi_args_[arg_ix++];
str << "[%" << arg_id << ", bb(%" << pred_label << ")] ";
}
}
str << ")";
if (copy_of_ != 0) {
str << " [COPY OF " << copy_of_ << "]";
}
str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]");
return str.str();
}
SSARewriter::PhiCandidate* SSARewriter::CreatePhiCandidate(uint32_t var_id,
BasicBlock* bb) {
uint32_t phi_result_id = pass_->context()->TakeNextId();
if (phi_result_id == 0) {
return nullptr;
}
auto result = phi_candidates_.emplace(
phi_result_id, PhiCandidate(var_id, phi_result_id, bb));
PhiCandidate* phi_candidate = &result.first->second;
return phi_candidate;
}
void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove,
uint32_t repl_id) {
for (uint32_t user_id : phi_to_remove.users()) {
PhiCandidate* user_phi = GetPhiCandidate(user_id);
BasicBlock* bb = pass_->context()->get_instr_block(user_id);
if (user_phi) {
// If the user is a Phi candidate, replace all arguments that refer to
// |phi_to_remove.result_id()| with |repl_id|.
for (uint32_t& arg : user_phi->phi_args()) {
if (arg == phi_to_remove.result_id()) {
arg = repl_id;
}
}
} else if (bb->id() == user_id) {
// The phi candidate is the definition of the variable at basic block
// |bb|. We must change this to the replacement.
WriteVariable(phi_to_remove.var_id(), bb, repl_id);
} else {
// For regular loads, traverse the |load_replacement_| table looking for
// instances of |phi_to_remove|.
for (auto& it : load_replacement_) {
if (it.second == phi_to_remove.result_id()) {
it.second = repl_id;
}
}
}
}
}
uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) {
uint32_t same_id = 0;
for (uint32_t arg_id : phi_candidate->phi_args()) {
if (arg_id == same_id || arg_id == phi_candidate->result_id()) {
// This is a self-reference operand or a reference to the same value ID.
continue;
}
if (same_id != 0) {
// This Phi candidate merges at least two values. Therefore, it is not
// trivial.
assert(phi_candidate->copy_of() == 0 &&
"Phi candidate transitioning from copy to non-copy.");
return phi_candidate->result_id();
}
same_id = arg_id;
}
// The previous logic has determined that this Phi candidate |phi_candidate|
// is trivial. It is essentially the copy operation phi_candidate->phi_result
// = Phi(same, same, same, ...). Since it is not necessary, we can re-route
// all the users of |phi_candidate->phi_result| to all its users, and remove
// |phi_candidate|.
// Mark the Phi candidate as a trivial copy of |same_id|, so it won't be
// generated.
phi_candidate->MarkCopyOf(same_id);
assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments");
// Since |phi_candidate| always produces |same_id|, replace all the users of
// |phi_candidate| with |same_id|.
ReplacePhiUsersWith(*phi_candidate, same_id);
return same_id;
}
uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) {
assert(phi_candidate->phi_args().size() == 0 &&
"Phi candidate already has arguments");
bool found_0_arg = false;
for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
BasicBlock* pred_bb = pass_->cfg()->block(pred);
// If |pred_bb| is not sealed, use %0 to indicate that
// |phi_candidate| needs to be completed after the whole CFG has
// been processed.
//
// Note that we cannot call GetReachingDef() in these cases
// because this would generate an empty Phi candidate in
// |pred_bb|. When |pred_bb| is later processed, a new definition
// for |phi_candidate->var_id_| will be lost because
// |phi_candidate| will still be reached by the empty Phi.
//
// Consider:
//
// BB %23:
// %38 = Phi[%i](%int_0[%1], %39[%25])
//
// ...
//
// BB %25: [Starts unsealed]
// %39 = Phi[%i]()
// %34 = ...
// OpStore %i %34 -> Currdef(%i) at %25 is %34
// OpBranch %23
//
// When we first create the Phi in %38, we add an operandless Phi in
// %39 to hold the unknown reaching def for %i.
//
// But then, when we go to complete %39 at the end. The reaching def
// for %i in %25's predecessor is %38 itself. So we miss the fact
// that %25 has a def for %i that should be used.
//
// By making the argument %0, we make |phi_candidate| incomplete,
// which will cause it to be completed after the whole CFG has
// been scanned.
uint32_t arg_id = IsBlockSealed(pred_bb)
? GetReachingDef(phi_candidate->var_id(), pred_bb)
: 0;
phi_candidate->phi_args().push_back(arg_id);
if (arg_id == 0) {
found_0_arg = true;
} else {
// If this argument is another Phi candidate, add |phi_candidate| to the
// list of users for the defining Phi.
PhiCandidate* defining_phi = GetPhiCandidate(arg_id);
if (defining_phi && defining_phi != phi_candidate) {
defining_phi->AddUser(phi_candidate->result_id());
}
}
}
// If we could not fill-in all the arguments of this Phi, mark it incomplete
// so it gets completed after the whole CFG has been processed.
if (found_0_arg) {
phi_candidate->MarkIncomplete();
incomplete_phis_.push(phi_candidate);
return phi_candidate->result_id();
}
// Try to remove |phi_candidate|, if it's trivial.
uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate);
if (repl_id == phi_candidate->result_id()) {
// |phi_candidate| is complete and not trivial. Add it to the
// list of Phi candidates to generate.
phi_candidate->MarkComplete();
phis_to_generate_.push_back(phi_candidate);
}
return repl_id;
}
uint32_t SSARewriter::GetValueAtBlock(uint32_t var_id, BasicBlock* bb) {
assert(bb != nullptr);
const auto& bb_it = defs_at_block_.find(bb);
if (bb_it != defs_at_block_.end()) {
const auto& current_defs = bb_it->second;
const auto& var_it = current_defs.find(var_id);
if (var_it != current_defs.end()) {
return var_it->second;
}
}
return 0;
}
uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) {
// If |var_id| has a definition in |bb|, return it.
uint32_t val_id = GetValueAtBlock(var_id, bb);
if (val_id != 0) return val_id;
// Otherwise, look up the value for |var_id| in |bb|'s predecessors.
auto& predecessors = pass_->cfg()->preds(bb->id());
if (predecessors.size() == 1) {
// If |bb| has exactly one predecessor, we look for |var_id|'s definition
// there.
val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0]));
} else if (predecessors.size() > 1) {
// If there is more than one predecessor, this is a join block which may
// require a Phi instruction. This will act as |var_id|'s current
// definition to break potential cycles.
PhiCandidate* phi_candidate = CreatePhiCandidate(var_id, bb);
if (phi_candidate == nullptr) return 0;
// Set the value for |bb| to avoid an infinite recursion.
WriteVariable(var_id, bb, phi_candidate->result_id());
val_id = AddPhiOperands(phi_candidate);
}
// If we could not find a store for this variable in the path from the root
// of the CFG, the variable is not defined, so we use undef.
if (val_id == 0) {
val_id = pass_->GetUndefVal(var_id);
if (val_id == 0) {
return 0;
}
}
WriteVariable(var_id, bb, val_id);
return val_id;
}
void SSARewriter::SealBlock(BasicBlock* bb) {
auto result = sealed_blocks_.insert(bb);
(void)result;
assert(result.second == true &&
"Tried to seal the same basic block more than once.");
}
void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) {
auto opcode = inst->opcode();
assert((opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) &&
"Expecting a store or a variable definition instruction.");
uint32_t var_id = 0;
uint32_t val_id = 0;
if (opcode == spv::Op::OpStore) {
(void)pass_->GetPtr(inst, &var_id);
val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx);
} else if (inst->NumInOperands() >= 2) {
var_id = inst->result_id();
val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx);
}
if (pass_->IsTargetVar(var_id)) {
WriteVariable(var_id, bb, val_id);
pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
inst, var_id, val_id, inst);
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': "
<< inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
<< "\n";
#endif
}
}
bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) {
// Get the pointer that we are using to load from.
uint32_t var_id = 0;
(void)pass_->GetPtr(inst, &var_id);
// Get the immediate reaching definition for |var_id|.
//
// In the presence of variable pointers, the reaching definition may be
// another pointer. For example, the following fragment:
//
// %2 = OpVariable %_ptr_Input_float Input
// %11 = OpVariable %_ptr_Function__ptr_Input_float Function
// OpStore %11 %2
// %12 = OpLoad %_ptr_Input_float %11
// %13 = OpLoad %float %12
//
// corresponds to the pseudo-code:
//
// layout(location = 0) in flat float *%2
// float %13;
// float *%12;
// float **%11;
// *%11 = %2;
// %12 = *%11;
// %13 = *%12;
//
// which ultimately, should correspond to:
//
// %13 = *%2;
//
// During rewriting, the pointer %12 is found to be replaceable by %2 (i.e.,
// load_replacement_[12] is 2). However, when processing the load
// %13 = *%12, the type of %12's reaching definition is another float
// pointer (%2), instead of a float value.
//
// When this happens, we need to continue looking up the reaching definition
// chain until we get to a float value or a non-target var (i.e. a variable
// that cannot be SSA replaced, like %2 in this case since it is a function
// argument).
analysis::DefUseManager* def_use_mgr = pass_->context()->get_def_use_mgr();
analysis::TypeManager* type_mgr = pass_->context()->get_type_mgr();
analysis::Type* load_type = type_mgr->GetType(inst->type_id());
uint32_t val_id = 0;
bool found_reaching_def = false;
while (!found_reaching_def) {
if (!pass_->IsTargetVar(var_id)) {
// If the variable we are loading from is not an SSA target (globals,
// function parameters), do nothing.
return true;
}
val_id = GetReachingDef(var_id, bb);
if (val_id == 0) {
return false;
}
// If the reaching definition is a pointer type different than the type of
// the instruction we are analyzing, then it must be a reference to another
// pointer (otherwise, this would be invalid SPIRV). We continue
// de-referencing it by making |val_id| be |var_id|.
//
// NOTE: if there is no reaching definition instruction, it means |val_id|
// is an undef.
Instruction* reaching_def_inst = def_use_mgr->GetDef(val_id);
if (reaching_def_inst &&
!type_mgr->GetType(reaching_def_inst->type_id())->IsSame(load_type)) {
var_id = val_id;
} else {
found_reaching_def = true;
}
}
// Schedule a replacement for the result of this load instruction with
// |val_id|. After all the rewriting decisions are made, every use of
// this load will be replaced with |val_id|.
uint32_t load_id = inst->result_id();
assert(load_replacement_.count(load_id) == 0);
load_replacement_[load_id] = val_id;
PhiCandidate* defining_phi = GetPhiCandidate(val_id);
if (defining_phi) {
defining_phi->AddUser(load_id);
}
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
std::cerr << "\tFound load: "
<< inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
<< " (replacement for %" << load_id << " is %" << val_id << ")\n";
#endif
return true;
}
void SSARewriter::PrintPhiCandidates() const {
std::cerr << "\nPhi candidates:\n";
for (const auto& phi_it : phi_candidates_) {
std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": "
<< phi_it.second.PrettyPrint(pass_->cfg()) << "\n";
}
std::cerr << "\n";
}
void SSARewriter::PrintReplacementTable() const {
std::cerr << "\nLoad replacement table\n";
for (const auto& it : load_replacement_) {
std::cerr << "\t%" << it.first << " -> %" << it.second << "\n";
}
std::cerr << "\n";
}
bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) {
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n";
std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
<< "\n";
#endif
for (auto& inst : *bb) {
auto opcode = inst.opcode();
if (opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) {
ProcessStore(&inst, bb);
} else if (inst.opcode() == spv::Op::OpLoad) {
if (!ProcessLoad(&inst, bb)) {
return false;
}
}
}
// Seal |bb|. This means that all the stores in it have been scanned and
// it's ready to feed them into its successors.
SealBlock(bb);
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
PrintPhiCandidates();
PrintReplacementTable();
std::cerr << "\n\n";
#endif
return true;
}
uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) {
uint32_t val_id = repl.second;
auto it = load_replacement_.find(val_id);
while (it != load_replacement_.end()) {
val_id = it->second;
it = load_replacement_.find(val_id);
}
return val_id;
}
uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate,
uint32_t ix) {
assert(phi_candidate->IsReady() &&
"Tried to get the final argument from an incomplete/trivial Phi");
uint32_t arg_id = phi_candidate->phi_args()[ix];
while (arg_id != 0) {
PhiCandidate* phi_user = GetPhiCandidate(arg_id);
if (phi_user == nullptr || phi_user->IsReady()) {
// If the argument is not a Phi or it's a Phi candidate ready to be
// emitted, return it.
return arg_id;
}
arg_id = phi_user->copy_of();
}
assert(false &&
"No Phi candidates in the copy-of chain are ready to be generated");
return 0;
}
bool SSARewriter::ApplyReplacements() {
bool modified = false;
#if SSA_REWRITE_DEBUGGING_LEVEL > 2
std::cerr << "\n\nApplying replacement decisions to IR\n\n";
PrintPhiCandidates();
PrintReplacementTable();
std::cerr << "\n\n";
#endif
// Add Phi instructions from completed Phi candidates.
std::vector<Instruction*> generated_phis;
for (const PhiCandidate* phi_candidate : phis_to_generate_) {
#if SSA_REWRITE_DEBUGGING_LEVEL > 2
std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg())
<< "\n";
#endif
assert(phi_candidate->is_complete() &&
"Tried to instantiate a Phi instruction from an incomplete Phi "
"candidate");
auto* local_var = pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id());
// Build the vector of operands for the new OpPhi instruction.
uint32_t type_id = pass_->GetPointeeTypeId(local_var);
std::vector<Operand> phi_operands;
uint32_t arg_ix = 0;
std::unordered_map<uint32_t, uint32_t> already_seen;
for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) {
uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++);
if (already_seen.count(pred_label) == 0) {
phi_operands.push_back(
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}});
phi_operands.push_back(
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}});
already_seen[pred_label] = op_val_id;
} else {
// It is possible that there are two edges from the same parent block.
// Since the OpPhi can have only one entry for each parent, we have to
// make sure the two edges are consistent with each other.
assert(already_seen[pred_label] == op_val_id &&
"Inconsistent value for duplicate edges.");
}
}
// Generate a new OpPhi instruction and insert it in its basic
// block.
std::unique_ptr<Instruction> phi_inst(
new Instruction(pass_->context(), spv::Op::OpPhi, type_id,
phi_candidate->result_id(), phi_operands));
generated_phis.push_back(phi_inst.get());
pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst);
pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb());
auto insert_it = phi_candidate->bb()->begin();
insert_it = insert_it.InsertBefore(std::move(phi_inst));
pass_->context()->get_decoration_mgr()->CloneDecorations(
phi_candidate->var_id(), phi_candidate->result_id(),
{spv::Decoration::RelaxedPrecision});
// Add DebugValue for the new OpPhi instruction.
insert_it->SetDebugScope(local_var->GetDebugScope());
pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
&*insert_it, phi_candidate->var_id(), phi_candidate->result_id(),
&*insert_it);
modified = true;
}
// Scan uses for all inserted Phi instructions. Do this separately from the
// registration of the Phi instruction itself to avoid trying to analyze
// uses of Phi instructions that have not been registered yet.
for (Instruction* phi_inst : generated_phis) {
pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst);
}
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
std::cerr << "\n\nReplacing the result of load instructions with the "
"corresponding SSA id\n\n";
#endif
// Apply replacements from the load replacement table.
for (auto& repl : load_replacement_) {
uint32_t load_id = repl.first;
uint32_t val_id = GetReplacement(repl);
Instruction* load_inst =
pass_->context()->get_def_use_mgr()->GetDef(load_id);
#if SSA_REWRITE_DEBUGGING_LEVEL > 2
std::cerr << "\t"
<< load_inst->PrettyPrint(
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
<< " (%" << load_id << " -> %" << val_id << ")\n";
#endif
// Remove the load instruction and replace all the uses of this load's
// result with |val_id|. Kill any names or decorates using the load's
// result before replacing to prevent incorrect replacement in those
// instructions.
pass_->context()->KillNamesAndDecorates(load_id);
pass_->context()->ReplaceAllUsesWith(load_id, val_id);
pass_->context()->KillInst(load_inst);
modified = true;
}
return modified;
}
void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) {
assert(phi_candidate->phi_args().size() > 0 &&
"Phi candidate should have arguments");
uint32_t ix = 0;
for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
BasicBlock* pred_bb = pass_->cfg()->block(pred);
uint32_t& arg_id = phi_candidate->phi_args()[ix++];
if (arg_id == 0) {
// If |pred_bb| is still not sealed, it means it's unreachable. In this
// case, we just use Undef as an argument.
arg_id = IsBlockSealed(pred_bb)
? GetReachingDef(phi_candidate->var_id(), pred_bb)
: pass_->GetUndefVal(phi_candidate->var_id());
}
}
// This candidate is now completed.
phi_candidate->MarkComplete();
// If |phi_candidate| is not trivial, add it to the list of Phis to
// generate.
if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) {
// If we could not remove |phi_candidate|, it means that it is complete
// and not trivial. Add it to the list of Phis to generate.
assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial.");
phis_to_generate_.push_back(phi_candidate);
}
}
void SSARewriter::FinalizePhiCandidates() {
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
std::cerr << "Finalizing Phi candidates:\n\n";
PrintPhiCandidates();
std::cerr << "\n";
#endif
// Now, complete the collected candidates.
while (incomplete_phis_.size() > 0) {
PhiCandidate* phi_candidate = incomplete_phis_.front();
incomplete_phis_.pop();
FinalizePhiCandidate(phi_candidate);
}
}
Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) {
#if SSA_REWRITE_DEBUGGING_LEVEL > 0
std::cerr << "Function before SSA rewrite:\n"
<< fp->PrettyPrint(0) << "\n\n\n";
#endif
// Collect variables that can be converted into SSA IDs.
pass_->CollectTargetVars(fp);
// Generate all the SSA replacements and Phi candidates. This will
// generate incomplete and trivial Phis.
bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder(
fp->entry().get(), [this](BasicBlock* bb) {
if (!GenerateSSAReplacements(bb)) {
return false;
}
return true;
});
if (!succeeded) {
return Pass::Status::Failure;
}
// Remove trivial Phis and add arguments to incomplete Phis.
FinalizePhiCandidates();
// Finally, apply all the replacements in the IR.
bool modified = ApplyReplacements();
#if SSA_REWRITE_DEBUGGING_LEVEL > 0
std::cerr << "\n\n\nFunction after SSA rewrite:\n"
<< fp->PrettyPrint(0) << "\n";
#endif
return modified ? Pass::Status::SuccessWithChange
: Pass::Status::SuccessWithoutChange;
}
Pass::Status SSARewritePass::Process() {
Status status = Status::SuccessWithoutChange;
for (auto& fn : *get_module()) {
if (fn.IsDeclaration()) {
continue;
}
status =
CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn));
// Kill DebugDeclares for target variables.
for (auto var_id : seen_target_vars_) {
context()->get_debug_info_mgr()->KillDebugDeclares(var_id);
}
if (status == Status::Failure) {
break;
}
}
return status;
}
} // namespace opt
} // namespace spvtools
|