File: struct_packing_pass.cpp

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (482 lines) | stat: -rw-r--r-- 18,626 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Copyright (c) 2024 Epic Games, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "struct_packing_pass.h"

#include <algorithm>

#include "source/opt/instruction.h"
#include "source/opt/ir_context.h"

namespace spvtools {
namespace opt {

/*
Std140 packing rules from the original GLSL 140 specification (see
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_uniform_buffer_object.txt)

When using the "std140" storage layout, structures will be laid out in
buffer storage with its members stored in monotonically increasing order
based on their location in the declaration. A structure and each
structure member have a base offset and a base alignment, from which an
aligned offset is computed by rounding the base offset up to a multiple of
the base alignment. The base offset of the first member of a structure is
taken from the aligned offset of the structure itself. The base offset of
all other structure members is derived by taking the offset of the last
basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members
of a top-level uniform block are laid out in buffer storage by treating
the uniform block as a structure with a base offset of zero.

(1) If the member is a scalar consuming <N> basic machine units, the
    base alignment is <N>.

(2) If the member is a two- or four-component vector with components
    consuming <N> basic machine units, the base alignment is 2<N> or
    4<N>, respectively.

(3) If the member is a three-component vector with components consuming
    <N> basic machine units, the base alignment is 4<N>.

(4) If the member is an array of scalars or vectors, the base alignment
    and array stride are set to match the base alignment of a single
    array element, according to rules (1), (2), and (3), and rounded up
    to the base alignment of a vec4. The array may have padding at the
    end; the base offset of the member following the array is rounded up
    to the next multiple of the base alignment.

(5) If the member is a column-major matrix with <C> columns and <R>
    rows, the matrix is stored identically to an array of <C> column
    vectors with <R> components each, according to rule (4).

(6) If the member is an array of <S> column-major matrices with <C>
    columns and <R> rows, the matrix is stored identically to a row of
    <S>*<C> column vectors with <R> components each, according to rule
    (4).

(7) If the member is a row-major matrix with <C> columns and <R> rows,
    the matrix is stored identically to an array of <R> row vectors
    with <C> components each, according to rule (4).

(8) If the member is an array of <S> row-major matrices with <C> columns
    and <R> rows, the matrix is stored identically to a row of <S>*<R>
    row vectors with <C> components each, according to rule (4).

(9) If the member is a structure, the base alignment of the structure is
    <N>, where <N> is the largest base alignment value of any of its
    members, and rounded up to the base alignment of a vec4. The
    individual members of this sub-structure are then assigned offsets
    by applying this set of rules recursively, where the base offset of
    the first member of the sub-structure is equal to the aligned offset
    of the structure. The structure may have padding at the end; the
    base offset of the member following the sub-structure is rounded up
    to the next multiple of the base alignment of the structure.

(10) If the member is an array of <S> structures, the <S> elements of
    the array are laid out in order, according to rule (9).
*/

static bool isPackingVec4Padded(StructPackingPass::PackingRules rules) {
  switch (rules) {
    case StructPackingPass::PackingRules::Std140:
    case StructPackingPass::PackingRules::Std140EnhancedLayout:
    case StructPackingPass::PackingRules::HlslCbuffer:
    case StructPackingPass::PackingRules::HlslCbufferPackOffset:
      return true;
    default:
      return false;
  }
}

static bool isPackingScalar(StructPackingPass::PackingRules rules) {
  switch (rules) {
    case StructPackingPass::PackingRules::Scalar:
    case StructPackingPass::PackingRules::ScalarEnhancedLayout:
      return true;
    default:
      return false;
  }
}

static bool isPackingHlsl(StructPackingPass::PackingRules rules) {
  switch (rules) {
    case StructPackingPass::PackingRules::HlslCbuffer:
    case StructPackingPass::PackingRules::HlslCbufferPackOffset:
      return true;
    default:
      return false;
  }
}

static uint32_t getPackedBaseSize(const analysis::Type& type) {
  switch (type.kind()) {
    case analysis::Type::kBool:
      return 1;
    case analysis::Type::kInteger:
      return type.AsInteger()->width() / 8;
    case analysis::Type::kFloat:
      return type.AsFloat()->width() / 8;
    case analysis::Type::kVector:
      return getPackedBaseSize(*type.AsVector()->element_type());
    case analysis::Type::kMatrix:
      return getPackedBaseSize(*type.AsMatrix()->element_type());
    default:
      break;  // we only expect bool, int, float, vec, and mat here
  }
  assert(0 && "Unrecognized type to get base size");
  return 0;
}

static uint32_t getScalarElementCount(const analysis::Type& type) {
  switch (type.kind()) {
    case analysis::Type::kVector:
      return type.AsVector()->element_count();
    case analysis::Type::kMatrix:
      return getScalarElementCount(*type.AsMatrix()->element_type());
    case analysis::Type::kStruct:
      assert(0 && "getScalarElementCount() does not recognized struct types");
      return 0;
    default:
      return 1;
  }
}

// Aligns the specified value to a multiple of alignment, whereas the
// alignment must be a power-of-two.
static uint32_t alignPow2(uint32_t value, uint32_t alignment) {
  return (value + alignment - 1) & ~(alignment - 1);
}

void StructPackingPass::buildConstantsMap() {
  constantsMap_.clear();
  for (Instruction* instr : context()->module()->GetConstants()) {
    constantsMap_[instr->result_id()] = instr;
  }
}

uint32_t StructPackingPass::getPackedAlignment(
    const analysis::Type& type) const {
  switch (type.kind()) {
    case analysis::Type::kArray: {
      // Get alignment of base type and round up to minimum alignment
      const uint32_t minAlignment = isPackingVec4Padded(packingRules_) ? 16 : 1;
      return std::max<uint32_t>(
          minAlignment, getPackedAlignment(*type.AsArray()->element_type()));
    }
    case analysis::Type::kStruct: {
      // Rule 9. Struct alignment is maximum alignmnet of its members
      uint32_t alignment = 1;

      for (const analysis::Type* elementType :
           type.AsStruct()->element_types()) {
        alignment =
            std::max<uint32_t>(alignment, getPackedAlignment(*elementType));
      }

      if (isPackingVec4Padded(packingRules_))
        alignment = std::max<uint32_t>(alignment, 16u);

      return alignment;
    }
    default: {
      const uint32_t baseAlignment = getPackedBaseSize(type);

      // Scalar block layout always uses alignment for the most basic component
      if (isPackingScalar(packingRules_)) return baseAlignment;

      if (const analysis::Matrix* matrixType = type.AsMatrix()) {
        // Rule 5/7
        if (isPackingVec4Padded(packingRules_) ||
            matrixType->element_count() == 3)
          return baseAlignment * 4;
        else
          return baseAlignment * matrixType->element_count();
      } else if (const analysis::Vector* vectorType = type.AsVector()) {
        // Rule 1
        if (vectorType->element_count() == 1) return baseAlignment;

        // Rule 2
        if (vectorType->element_count() == 2 ||
            vectorType->element_count() == 4)
          return baseAlignment * vectorType->element_count();

        // Rule 3
        if (vectorType->element_count() == 3) return baseAlignment * 4;
      } else {
        // Rule 1
        return baseAlignment;
      }
    }
  }
  assert(0 && "Unrecognized type to get packed alignment");
  return 0;
}

static uint32_t getPadAlignment(const analysis::Type& type,
                                uint32_t packedAlignment) {
  // The next member following a struct member is aligned to the base alignment
  // of a previous struct member.
  return type.kind() == analysis::Type::kStruct ? packedAlignment : 1;
}

uint32_t StructPackingPass::getPackedSize(const analysis::Type& type) const {
  switch (type.kind()) {
    case analysis::Type::kArray: {
      if (const analysis::Array* arrayType = type.AsArray()) {
        uint32_t size =
            getPackedArrayStride(*arrayType) * getArrayLength(*arrayType);

        // For arrays of vector and matrices in HLSL, the last element has a
        // size depending on its vector/matrix size to allow packing other
        // vectors in the last element.
        const analysis::Type* arraySubType = arrayType->element_type();
        if (isPackingHlsl(packingRules_) &&
            arraySubType->kind() != analysis::Type::kStruct) {
          size -= (4 - getScalarElementCount(*arraySubType)) *
                  getPackedBaseSize(*arraySubType);
        }
        return size;
      }
      break;
    }
    case analysis::Type::kStruct: {
      uint32_t size = 0;
      uint32_t padAlignment = 1;
      for (const analysis::Type* memberType :
           type.AsStruct()->element_types()) {
        const uint32_t packedAlignment = getPackedAlignment(*memberType);
        const uint32_t alignment =
            std::max<uint32_t>(packedAlignment, padAlignment);
        padAlignment = getPadAlignment(*memberType, packedAlignment);
        size = alignPow2(size, alignment);
        size += getPackedSize(*memberType);
      }
      return size;
    }
    default: {
      const uint32_t baseAlignment = getPackedBaseSize(type);
      if (isPackingScalar(packingRules_)) {
        return getScalarElementCount(type) * baseAlignment;
      } else {
        uint32_t size = 0;
        if (const analysis::Matrix* matrixType = type.AsMatrix()) {
          const analysis::Vector* matrixSubType =
              matrixType->element_type()->AsVector();
          assert(matrixSubType != nullptr &&
                 "Matrix sub-type is expected to be a vector type");
          if (isPackingVec4Padded(packingRules_) ||
              matrixType->element_count() == 3)
            size = matrixSubType->element_count() * baseAlignment * 4;
          else
            size = matrixSubType->element_count() * baseAlignment *
                   matrixType->element_count();

          // For matrices in HLSL, the last element has a size depending on its
          // vector size to allow packing other vectors in the last element.
          if (isPackingHlsl(packingRules_)) {
            size -= (4 - matrixSubType->element_count()) *
                    getPackedBaseSize(*matrixSubType);
          }
        } else if (const analysis::Vector* vectorType = type.AsVector()) {
          size = vectorType->element_count() * baseAlignment;
        } else {
          size = baseAlignment;
        }
        return size;
      }
    }
  }
  assert(0 && "Unrecognized type to get packed size");
  return 0;
}

uint32_t StructPackingPass::getPackedArrayStride(
    const analysis::Array& arrayType) const {
  // Array stride is equal to aligned size of element type
  const uint32_t elementSize = getPackedSize(*arrayType.element_type());
  const uint32_t alignment = getPackedAlignment(arrayType);
  return alignPow2(elementSize, alignment);
}

uint32_t StructPackingPass::getArrayLength(
    const analysis::Array& arrayType) const {
  return getConstantInt(arrayType.LengthId());
}

uint32_t StructPackingPass::getConstantInt(spv::Id id) const {
  auto it = constantsMap_.find(id);
  assert(it != constantsMap_.end() &&
         "Failed to map SPIR-V instruction ID to constant value");
  [[maybe_unused]] const analysis::Type* constType =
      context()->get_type_mgr()->GetType(it->second->type_id());
  assert(constType != nullptr &&
         "Failed to map SPIR-V instruction result type to definition");
  assert(constType->kind() == analysis::Type::kInteger &&
         "Failed to map SPIR-V instruction result type to integer type");
  return it->second->GetOperand(2).words[0];
}

StructPackingPass::PackingRules StructPackingPass::ParsePackingRuleFromString(
    const std::string& s) {
  if (s == "std140") return PackingRules::Std140;
  if (s == "std140EnhancedLayout") return PackingRules::Std140EnhancedLayout;
  if (s == "std430") return PackingRules::Std430;
  if (s == "std430EnhancedLayout") return PackingRules::Std430EnhancedLayout;
  if (s == "hlslCbuffer") return PackingRules::HlslCbuffer;
  if (s == "hlslCbufferPackOffset") return PackingRules::HlslCbufferPackOffset;
  if (s == "scalar") return PackingRules::Scalar;
  if (s == "scalarEnhancedLayout") return PackingRules::ScalarEnhancedLayout;
  return PackingRules::Undefined;
}

StructPackingPass::StructPackingPass(const char* structToPack,
                                     PackingRules rules)
    : structToPack_{structToPack != nullptr ? structToPack : ""},
      packingRules_{rules} {}

Pass::Status StructPackingPass::Process() {
  if (packingRules_ == PackingRules::Undefined) {
    if (consumer()) {
      consumer()(SPV_MSG_ERROR, "", {0, 0, 0},
                 "Cannot pack struct with undefined rule");
    }
    return Status::Failure;
  }

  // Build Id-to-instruction map for easier access
  buildConstantsMap();

  // Find structure of interest
  const uint32_t structIdToPack = findStructIdByName(structToPack_.c_str());

  const Instruction* structDef =
      context()->get_def_use_mgr()->GetDef(structIdToPack);
  if (structDef == nullptr || structDef->opcode() != spv::Op::OpTypeStruct) {
    if (consumer()) {
      const std::string message =
          "Failed to find struct with name " + structToPack_;
      consumer()(SPV_MSG_ERROR, "", {0, 0, 0}, message.c_str());
    }
    return Status::Failure;
  }

  // Find all struct member types
  std::vector<const analysis::Type*> structMemberTypes =
      findStructMemberTypes(*structDef);

  return assignStructMemberOffsets(structIdToPack, structMemberTypes);
}

uint32_t StructPackingPass::findStructIdByName(const char* structName) const {
  for (Instruction& instr : context()->module()->debugs2()) {
    if (instr.opcode() == spv::Op::OpName &&
        instr.GetOperand(1).AsString() == structName) {
      return instr.GetOperand(0).AsId();
    }
  }
  return 0;
}

std::vector<const analysis::Type*> StructPackingPass::findStructMemberTypes(
    const Instruction& structDef) const {
  // Found struct type to pack, now collect all types of its members
  assert(structDef.NumOperands() > 0 &&
         "Number of operands in OpTypeStruct instruction must not be zero");
  const uint32_t numMembers = structDef.NumOperands() - 1;
  std::vector<const analysis::Type*> structMemberTypes;
  structMemberTypes.resize(numMembers);
  for (uint32_t i = 0; i < numMembers; ++i) {
    const spv::Id memberTypeId = structDef.GetOperand(1 + i).AsId();
    if (const analysis::Type* memberType =
            context()->get_type_mgr()->GetType(memberTypeId)) {
      structMemberTypes[i] = memberType;
    }
  }
  return structMemberTypes;
}

Pass::Status StructPackingPass::assignStructMemberOffsets(
    uint32_t structIdToPack,
    const std::vector<const analysis::Type*>& structMemberTypes) {
  // Returns true if the specified instruction is a OpMemberDecorate for the
  // struct we're looking for with an offset decoration
  auto isMemberOffsetDecoration =
      [structIdToPack](const Instruction& instr) -> bool {
    return instr.opcode() == spv::Op::OpMemberDecorate &&
           instr.GetOperand(0).AsId() == structIdToPack &&
           static_cast<spv::Decoration>(instr.GetOperand(2).words[0]) ==
               spv::Decoration::Offset;
  };

  bool modified = false;

  // Find and re-assign all member offset decorations
  for (auto it = context()->module()->annotation_begin(),
            itEnd = context()->module()->annotation_end();
       it != itEnd; ++it) {
    if (isMemberOffsetDecoration(*it)) {
      // Found first member decoration with offset, we expect all other
      // offsets right after the first one
      uint32_t prevMemberIndex = 0;
      uint32_t currentOffset = 0;
      uint32_t padAlignment = 1;
      do {
        const uint32_t memberIndex = it->GetOperand(1).words[0];
        if (memberIndex < prevMemberIndex) {
          // Failure: we expect all members to appear in consecutive order
          return Status::Failure;
        }

        // Apply alignment rules to current offset
        const analysis::Type& memberType = *structMemberTypes[memberIndex];
        uint32_t packedAlignment = getPackedAlignment(memberType);
        uint32_t packedSize = getPackedSize(memberType);

        if (isPackingHlsl(packingRules_)) {
          // If a member crosses vec4 boundaries, alignment is size of vec4
          if (currentOffset / 16 != (currentOffset + packedSize - 1) / 16)
            packedAlignment = std::max<uint32_t>(packedAlignment, 16u);
        }

        const uint32_t alignment =
            std::max<uint32_t>(packedAlignment, padAlignment);
        currentOffset = alignPow2(currentOffset, alignment);
        padAlignment = getPadAlignment(memberType, packedAlignment);

        // Override packed offset in instruction
        if (it->GetOperand(3).words[0] < currentOffset) {
          // Failure: packing resulted in higher offset for member than
          // previously generated
          return Status::Failure;
        }

        it->GetOperand(3).words[0] = currentOffset;
        modified = true;

        // Move to next member
        ++it;
        prevMemberIndex = memberIndex;
        currentOffset += packedSize;
      } while (it != itEnd && isMemberOffsetDecoration(*it));

      // We're done with all decorations for the struct of interest
      break;
    }
  }

  return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}

}  // namespace opt
}  // namespace spvtools