File: tree_iterator.h

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (246 lines) | stat: -rw-r--r-- 8,725 bytes parent folder | download | duplicates (38)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SOURCE_OPT_TREE_ITERATOR_H_
#define SOURCE_OPT_TREE_ITERATOR_H_

#include <stack>
#include <type_traits>
#include <utility>

namespace spvtools {
namespace opt {

// Helper class to iterate over a tree in a depth first order.
// The class assumes the data structure is a tree, tree node type implements a
// forward iterator.
// At each step, the iterator holds the pointer to the current node and state of
// the walk.
// The state is recorded by stacking the iteration position of the node
// children. To move to the next node, the iterator:
//  - Looks at the top of the stack;
//  - Sets the node behind the iterator as the current node;
//  - Increments the iterator if it has more children to visit, pops otherwise;
//  - If the current node has children, the children iterator is pushed into the
//    stack.
template <typename NodeTy>
class TreeDFIterator {
  static_assert(!std::is_pointer<NodeTy>::value &&
                    !std::is_reference<NodeTy>::value,
                "NodeTy should be a class");
  // Type alias to keep track of the const qualifier.
  using NodeIterator =
      typename std::conditional<std::is_const<NodeTy>::value,
                                typename NodeTy::const_iterator,
                                typename NodeTy::iterator>::type;

  // Type alias to keep track of the const qualifier.
  using NodePtr = NodeTy*;

 public:
  // Standard iterator interface.
  using reference = NodeTy&;
  using value_type = NodeTy;

  explicit inline TreeDFIterator(NodePtr top_node) : current_(top_node) {
    if (current_ && current_->begin() != current_->end())
      parent_iterators_.emplace(make_pair(current_, current_->begin()));
  }

  // end() iterator.
  inline TreeDFIterator() : TreeDFIterator(nullptr) {}

  bool operator==(const TreeDFIterator& x) const {
    return current_ == x.current_;
  }

  bool operator!=(const TreeDFIterator& x) const { return !(*this == x); }

  reference operator*() const { return *current_; }

  NodePtr operator->() const { return current_; }

  TreeDFIterator& operator++() {
    MoveToNextNode();
    return *this;
  }

  TreeDFIterator operator++(int) {
    TreeDFIterator tmp = *this;
    ++*this;
    return tmp;
  }

 private:
  // Moves the iterator to the next node in the tree.
  // If we are at the end, do nothing, otherwise
  // if our current node has children, use the children iterator and push the
  // current node into the stack.
  // If we reach the end of the local iterator, pop it.
  inline void MoveToNextNode() {
    if (!current_) return;
    if (parent_iterators_.empty()) {
      current_ = nullptr;
      return;
    }
    std::pair<NodePtr, NodeIterator>& next_it = parent_iterators_.top();
    // Set the new node.
    current_ = *next_it.second;
    // Update the iterator for the next child.
    ++next_it.second;
    // If we finished with node, pop it.
    if (next_it.first->end() == next_it.second) parent_iterators_.pop();
    // If our current node is not a leaf, store the iteration state for later.
    if (current_->begin() != current_->end())
      parent_iterators_.emplace(make_pair(current_, current_->begin()));
  }

  // The current node of the tree.
  NodePtr current_;
  // State of the tree walk: each pair contains the parent node (which has been
  // already visited) and the iterator of the next children to visit.
  // When all the children has been visited, we pop the entry, get the next
  // child and push back the pair if the children iterator is not end().
  std::stack<std::pair<NodePtr, NodeIterator>> parent_iterators_;
};

// Helper class to iterate over a tree in a depth first post-order.
// The class assumes the data structure is a tree, tree node type implements a
// forward iterator.
// At each step, the iterator holds the pointer to the current node and state of
// the walk.
// The state is recorded by stacking the iteration position of the node
// children. To move to the next node, the iterator:
//  - Looks at the top of the stack;
//  - If the children iterator has reach the end, then the node become the
//    current one and we pop the stack;
//  - Otherwise, we save the child and increment the iterator;
//  - We walk the child sub-tree until we find a leaf, stacking all non-leaves
//    states (pair of node pointer and child iterator) as we walk it.
template <typename NodeTy>
class PostOrderTreeDFIterator {
  static_assert(!std::is_pointer<NodeTy>::value &&
                    !std::is_reference<NodeTy>::value,
                "NodeTy should be a class");
  // Type alias to keep track of the const qualifier.
  using NodeIterator =
      typename std::conditional<std::is_const<NodeTy>::value,
                                typename NodeTy::const_iterator,
                                typename NodeTy::iterator>::type;

  // Type alias to keep track of the const qualifier.
  using NodePtr = NodeTy*;

 public:
  // Standard iterator interface.
  using reference = NodeTy&;
  using value_type = NodeTy;

  static inline PostOrderTreeDFIterator begin(NodePtr top_node) {
    return PostOrderTreeDFIterator(top_node);
  }

  static inline PostOrderTreeDFIterator end(NodePtr sentinel_node) {
    return PostOrderTreeDFIterator(sentinel_node, false);
  }

  bool operator==(const PostOrderTreeDFIterator& x) const {
    return current_ == x.current_;
  }

  bool operator!=(const PostOrderTreeDFIterator& x) const {
    return !(*this == x);
  }

  reference operator*() const { return *current_; }

  NodePtr operator->() const { return current_; }

  PostOrderTreeDFIterator& operator++() {
    MoveToNextNode();
    return *this;
  }

  PostOrderTreeDFIterator operator++(int) {
    PostOrderTreeDFIterator tmp = *this;
    ++*this;
    return tmp;
  }

 private:
  explicit inline PostOrderTreeDFIterator(NodePtr top_node)
      : current_(top_node) {
    if (current_) WalkToLeaf();
  }

  // Constructor for the "end()" iterator.
  // |end_sentinel| is the value that acts as end value (can be null). The bool
  // parameters is to distinguish from the start() Ctor.
  inline PostOrderTreeDFIterator(NodePtr sentinel_node, bool)
      : current_(sentinel_node) {}

  // Moves the iterator to the next node in the tree.
  // If we are at the end, do nothing, otherwise
  // if our current node has children, use the children iterator and push the
  // current node into the stack.
  // If we reach the end of the local iterator, pop it.
  inline void MoveToNextNode() {
    if (!current_) return;
    if (parent_iterators_.empty()) {
      current_ = nullptr;
      return;
    }
    std::pair<NodePtr, NodeIterator>& next_it = parent_iterators_.top();
    // If we visited all children, the current node is the top of the stack.
    if (next_it.second == next_it.first->end()) {
      // Set the new node.
      current_ = next_it.first;
      parent_iterators_.pop();
      return;
    }
    // We have more children to visit, set the current node to the first child
    // and dive to leaf.
    current_ = *next_it.second;
    // Update the iterator for the next child (avoid unneeded pop).
    ++next_it.second;
    WalkToLeaf();
  }

  // Moves the iterator to the next node in the tree.
  // If we are at the end, do nothing, otherwise
  // if our current node has children, use the children iterator and push the
  // current node into the stack.
  // If we reach the end of the local iterator, pop it.
  inline void WalkToLeaf() {
    while (current_->begin() != current_->end()) {
      NodeIterator next = ++current_->begin();
      parent_iterators_.emplace(make_pair(current_, next));
      // Set the first child as the new node.
      current_ = *current_->begin();
    }
  }

  // The current node of the tree.
  NodePtr current_;
  // State of the tree walk: each pair contains the parent node and the iterator
  // of the next children to visit.
  // When all the children has been visited, we pop the first entry and the
  // parent node become the current node.
  std::stack<std::pair<NodePtr, NodeIterator>> parent_iterators_;
};

}  // namespace opt
}  // namespace spvtools

#endif  // SOURCE_OPT_TREE_ITERATOR_H_