File: hex_float.h

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (1578 lines) | stat: -rw-r--r-- 59,141 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SOURCE_UTIL_HEX_FLOAT_H_
#define SOURCE_UTIL_HEX_FLOAT_H_

#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <limits>
#include <sstream>
#include <vector>

#include "source/util/bitutils.h"

#ifndef __GNUC__
#define GCC_VERSION 0
#else
#define GCC_VERSION \
  (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#endif

namespace spvtools {
namespace utils {

class Float8_E4M3 {
 public:
  Float8_E4M3(uint8_t v) : val(v) {}
  Float8_E4M3() = default;
  static bool isNan(const Float8_E4M3& val) { return (val.val & 0x7f) == 0x7f; }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(const Float8_E4M3&) {
    return false;  // E4M3 has no infinity representation
  }
  Float8_E4M3(const Float8_E4M3& other) { val = other.val; }
  uint8_t get_value() const { return val; }

  // Returns the maximum normal value.
  static Float8_E4M3 max() { return Float8_E4M3(0x7e); }
  // Returns the lowest normal value.
  static Float8_E4M3 lowest() { return Float8_E4M3(0x8); }

 private:
  uint8_t val;
};

class Float8_E5M2 {
 public:
  Float8_E5M2(uint8_t v) : val(v) {}
  Float8_E5M2() = default;
  static bool isNan(const Float8_E5M2& val) {
    return ((val.val & 0x7c) == 0x7c) && ((val.val & 0x3) != 0);
  }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(const Float8_E5M2& val) {
    return (val.val & 0x7f) == 0x7c;
  }
  Float8_E5M2(const Float8_E5M2& other) { val = other.val; }
  uint8_t get_value() const { return val; }

  // Returns the maximum normal value.
  static Float8_E5M2 max() { return Float8_E5M2(0x7b); }
  // Returns the lowest normal value.
  static Float8_E5M2 lowest() { return Float8_E5M2(0x4); }

 private:
  uint8_t val;
};

class Float16 {
 public:
  Float16(uint16_t v) : val(v) {}
  Float16() = default;
  static bool isNan(const Float16& val) {
    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
  }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(const Float16& val) {
    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
  }
  Float16(const Float16& other) { val = other.val; }
  uint16_t get_value() const { return val; }

  // Returns the maximum normal value.
  static Float16 max() { return Float16(0x7bff); }
  // Returns the lowest normal value.
  static Float16 lowest() { return Float16(0xfbff); }

 private:
  uint16_t val;
};

class BFloat16 {
 public:
  BFloat16(uint16_t v) : val(v) {}
  BFloat16() = default;
  BFloat16(const BFloat16& other) { val = other.val; }

  // Exponent mask: 0x7F80, Mantissa mask: 0x007F
  static bool isNan(const BFloat16& val) {
    return ((val.val & 0x7F80) == 0x7F80) && ((val.val & 0x007F) != 0);
  }
  static bool isInfinity(const BFloat16& val) {
    return ((val.val & 0x7F80) == 0x7F80) && ((val.val & 0x007F) == 0);
  }

  uint16_t get_value() const { return val; }

  // a sign bit of 0, and an all 1 mantissa.
  static BFloat16 max() { return BFloat16(0x7F7F); }
  // a sign bit of 1, and an all 1 mantissa.
  static BFloat16 lowest() { return BFloat16(0xFF7F); }

 private:
  // 15: Sign
  // 14-7: Exponent
  // 6-0: Mantissa
  uint16_t val;
};

// To specialize this type, you must override uint_type to define
// an unsigned integer that can fit your floating point type.
// You must also add a isNan function that returns true if
// a value is Nan.
template <typename T>
struct FloatProxyTraits {
  using uint_type = void;
};

template <>
struct FloatProxyTraits<float> {
  using uint_type = uint32_t;
  static bool isNan(float f) { return std::isnan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(float f) { return std::isinf(f); }
  // Returns the maximum normal value.
  static float max() { return std::numeric_limits<float>::max(); }
  // Returns the lowest normal value.
  static float lowest() { return std::numeric_limits<float>::lowest(); }
  // Returns the value as the native floating point format.
  static float getAsFloat(const uint_type& t) { return BitwiseCast<float>(t); }
  // Returns the bits from the given floating pointer number.
  static uint_type getBitsFromFloat(const float& t) {
    return BitwiseCast<uint_type>(t);
  }
  // Returns the bitwidth.
  static uint32_t width() { return 32u; }
};

template <>
struct FloatProxyTraits<double> {
  using uint_type = uint64_t;
  static bool isNan(double f) { return std::isnan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(double f) { return std::isinf(f); }
  // Returns the maximum normal value.
  static double max() { return std::numeric_limits<double>::max(); }
  // Returns the lowest normal value.
  static double lowest() { return std::numeric_limits<double>::lowest(); }
  // Returns the value as the native floating point format.
  static double getAsFloat(const uint_type& t) {
    return BitwiseCast<double>(t);
  }
  // Returns the bits from the given floating pointer number.
  static uint_type getBitsFromFloat(const double& t) {
    return BitwiseCast<uint_type>(t);
  }
  // Returns the bitwidth.
  static uint32_t width() { return 64u; }
};

template <>
struct FloatProxyTraits<Float8_E4M3> {
  using uint_type = uint8_t;
  static bool isNan(Float8_E4M3 f) { return Float8_E4M3::isNan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(Float8_E4M3 f) { return Float8_E4M3::isInfinity(f); }
  // Returns the maximum normal value.
  static Float8_E4M3 max() { return Float8_E4M3::max(); }
  // Returns the lowest normal value.
  static Float8_E4M3 lowest() { return Float8_E4M3::lowest(); }
  // Returns the value as the native floating point format.
  static Float8_E4M3 getAsFloat(const uint_type& t) { return Float8_E4M3(t); }
  // Returns the bits from the given floating pointer number.
  static uint_type getBitsFromFloat(const Float8_E4M3& t) {
    return t.get_value();
  }
  // Returns the bitwidth.
  static uint32_t width() { return 8u; }
};

template <>
struct FloatProxyTraits<Float8_E5M2> {
  using uint_type = uint8_t;
  static bool isNan(Float8_E5M2 f) { return Float8_E5M2::isNan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(Float8_E5M2 f) { return Float8_E5M2::isInfinity(f); }
  // Returns the maximum normal value.
  static Float8_E5M2 max() { return Float8_E5M2::max(); }
  // Returns the lowest normal value.
  static Float8_E5M2 lowest() { return Float8_E5M2::lowest(); }
  // Returns the value as the native floating point format.
  static Float8_E5M2 getAsFloat(const uint_type& t) { return Float8_E5M2(t); }
  // Returns the bits from the given floating pointer number.
  static uint_type getBitsFromFloat(const Float8_E5M2& t) {
    return t.get_value();
  }
  // Returns the bitwidth.
  static uint32_t width() { return 8u; }
};

template <>
struct FloatProxyTraits<Float16> {
  using uint_type = uint16_t;
  static bool isNan(Float16 f) { return Float16::isNan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
  // Returns the maximum normal value.
  static Float16 max() { return Float16::max(); }
  // Returns the lowest normal value.
  static Float16 lowest() { return Float16::lowest(); }
  // Returns the value as the native floating point format.
  static Float16 getAsFloat(const uint_type& t) { return Float16(t); }
  // Returns the bits from the given floating pointer number.
  static uint_type getBitsFromFloat(const Float16& t) { return t.get_value(); }
  // Returns the bitwidth.
  static uint32_t width() { return 16u; }
};

template <>
struct FloatProxyTraits<BFloat16> {
  using uint_type = uint16_t;
  static bool isNan(BFloat16 f) { return BFloat16::isNan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(BFloat16 f) { return BFloat16::isInfinity(f); }
  // Returns the maximum normal value.
  static BFloat16 max() { return BFloat16::max(); }
  // Returns the lowest normal value.
  static BFloat16 lowest() { return BFloat16::lowest(); }
  // Returns the value as the native floating point format.
  static BFloat16 getAsFloat(const uint_type& t) { return BFloat16(t); }
  // Returns the bits from the given floating pointer number.
  static uint_type getBitsFromFloat(const BFloat16& t) { return t.get_value(); }
  // Returns the bitwidth.
  static uint32_t width() { return 16u; }
};

// Since copying a floating point number (especially if it is NaN)
// does not guarantee that bits are preserved, this class lets us
// store the type and use it as a float when necessary.
template <typename T>
class FloatProxy {
 public:
  using uint_type = typename FloatProxyTraits<T>::uint_type;

  // Since this is to act similar to the normal floats,
  // do not initialize the data by default.
  FloatProxy() = default;

  // Intentionally non-explicit. This is a proxy type so
  // implicit conversions allow us to use it more transparently.
  FloatProxy(T val) { data_ = FloatProxyTraits<T>::getBitsFromFloat(val); }

  // Intentionally non-explicit. This is a proxy type so
  // implicit conversions allow us to use it more transparently.
  FloatProxy(uint_type val) { data_ = val; }

  // This is helpful to have and is guaranteed not to stomp bits.
  FloatProxy<T> operator-() const {
    return static_cast<uint_type>(data_ ^
                                  (uint_type(0x1) << (sizeof(T) * 8 - 1)));
  }

  // Returns the data as a floating point value.
  T getAsFloat() const { return FloatProxyTraits<T>::getAsFloat(data_); }

  // Returns the raw data.
  uint_type data() const { return data_; }

  // Returns a vector of words suitable for use in an Operand.
  std::vector<uint32_t> GetWords() const {
    std::vector<uint32_t> words;
    if (FloatProxyTraits<T>::width() == 64) {
      FloatProxyTraits<double>::uint_type d = data();
      words.push_back(static_cast<uint32_t>(d));
      words.push_back(static_cast<uint32_t>(d >> 32));
    } else {
      words.push_back(static_cast<uint32_t>(data()));
    }
    return words;
  }

  // Returns true if the value represents any type of NaN.
  bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
  // Returns true if the value represents any type of infinity.
  bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }

  // Returns the maximum normal value.
  static FloatProxy<T> max() {
    return FloatProxy<T>(FloatProxyTraits<T>::max());
  }
  // Returns the lowest normal value.
  static FloatProxy<T> lowest() {
    return FloatProxy<T>(FloatProxyTraits<T>::lowest());
  }

 private:
  uint_type data_;
};

template <typename T>
bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
  return first.data() == second.data();
}

// Reads a FloatProxy value as a normal float from a stream.
template <typename T>
std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
  T float_val = static_cast<T>(0.0);
  is >> float_val;
  value = FloatProxy<T>(float_val);
  return is;
}

// This is an example traits. It is not meant to be used in practice, but will
// be the default for any non-specialized type.
template <typename T>
struct HexFloatTraits {
  // Integer type that can store the bit representation of this hex-float.
  using uint_type = void;
  // Signed integer type that can store the bit representation of this
  // hex-float.
  using int_type = void;
  // The numerical type that this HexFloat represents.
  using underlying_type = void;
  using underlying_typetraits = void;
  // The type needed to construct the underlying type.
  using native_type = void;
  // The number of bits that are actually relevant in the uint_type.
  // This allows us to deal with, for example, 24-bit values in a 32-bit
  // integer.
  static const uint32_t num_used_bits = 0;
  // Number of bits that represent the exponent.
  static const uint32_t num_exponent_bits = 0;
  // Number of bits that represent the fractional part.
  static const uint32_t num_fraction_bits = 0;
  // The bias of the exponent. (How much we need to subtract from the stored
  // value to get the correct value.)
  static const uint32_t exponent_bias = 0;
  static const bool has_infinity = true;
  static const uint32_t NaN_pattern = 0;
};

// Traits for IEEE float.
// 1 sign bit, 8 exponent bits, 23 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<float>> {
  using uint_type = uint32_t;
  using int_type = int32_t;
  using underlying_type = FloatProxy<float>;
  using underlying_typetraits = FloatProxyTraits<float>;
  using native_type = float;
  static const uint_type num_used_bits = 32;
  static const uint_type num_exponent_bits = 8;
  static const uint_type num_fraction_bits = 23;
  static const uint_type exponent_bias = 127;
  static const bool has_infinity = true;
  static const uint_type NaN_pattern = 0x7f80000;
};

// Traits for IEEE double.
// 1 sign bit, 11 exponent bits, 52 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<double>> {
  using uint_type = uint64_t;
  using int_type = int64_t;
  using underlying_type = FloatProxy<double>;
  using underlying_typetraits = FloatProxyTraits<double>;
  using native_type = double;
  static const uint_type num_used_bits = 64;
  static const uint_type num_exponent_bits = 11;
  static const uint_type num_fraction_bits = 52;
  static const uint_type exponent_bias = 1023;
  static const bool has_infinity = true;
  static const uint_type NaN_pattern = 0x7FF0000000000000;
};

// Traits for FP8 E4M3.
// 1 sign bit, 4 exponent bits, 3 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<Float8_E4M3>> {
  using uint_type = uint8_t;
  using int_type = int8_t;
  using underlying_type = FloatProxy<Float8_E4M3>;
  using underlying_typetraits = FloatProxyTraits<Float8_E4M3>;
  using native_type = uint8_t;
  static const uint_type num_used_bits = 8;
  static const uint_type num_exponent_bits = 4;
  static const uint_type num_fraction_bits = 3;
  static const uint_type exponent_bias = 7;
  static const bool has_infinity = false;
  static const uint_type NaN_pattern = 0x7F;
};

// Traits for FP8 E5M2.
// 1 sign bit, 4 exponent bits, 3 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<Float8_E5M2>> {
  using uint_type = uint8_t;
  using int_type = int8_t;
  using underlying_type = FloatProxy<Float8_E5M2>;
  using underlying_typetraits = FloatProxyTraits<Float8_E5M2>;
  using native_type = uint8_t;
  static const uint_type num_used_bits = 8;
  static const uint_type num_exponent_bits = 5;
  static const uint_type num_fraction_bits = 2;
  static const uint_type exponent_bias = 15;
  static const bool has_infinity = true;
  static const uint_type NaN_pattern = 0x7c;
};

// Traits for IEEE half.
// 1 sign bit, 5 exponent bits, 10 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<Float16>> {
  using uint_type = uint16_t;
  using int_type = int16_t;
  using underlying_type = FloatProxy<Float16>;
  using underlying_typetraits = FloatProxyTraits<Float16>;
  using native_type = uint16_t;
  static const uint_type num_used_bits = 16;
  static const uint_type num_exponent_bits = 5;
  static const uint_type num_fraction_bits = 10;
  static const uint_type exponent_bias = 15;
  static const bool has_infinity = true;
  static const uint_type NaN_pattern = 0x7c00;
};

// Traits for BFloat16.
// 1 sign bit, 7 exponent bits, 8 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<BFloat16>> {
  using uint_type = uint16_t;
  using int_type = int16_t;
  using underlying_type = FloatProxy<BFloat16>;
  using underlying_typetraits = FloatProxyTraits<BFloat16>;
  using native_type = uint16_t;
  static const uint_type num_used_bits = 16;
  static const uint_type num_exponent_bits = 8;
  static const uint_type num_fraction_bits = 7;
  static const uint_type exponent_bias = 127;
  static const bool has_infinity = true;
  static const uint_type NaN_pattern = 0x7F80;
};

enum class round_direction {
  kToZero,
  kToNearestEven,
  kToPositiveInfinity,
  kToNegativeInfinity,
  max = kToNegativeInfinity
};

// Template class that houses a floating pointer number.
// It exposes a number of constants based on the provided traits to
// assist in interpreting the bits of the value.
template <typename T, typename Traits = HexFloatTraits<T>>
class HexFloat {
 public:
  using uint_type = typename Traits::uint_type;
  using int_type = typename Traits::int_type;
  using underlying_type = typename Traits::underlying_type;
  using native_type = typename Traits::native_type;
  using traits = Traits;

  explicit HexFloat(T f) : value_(f) {}

  T value() const { return value_; }
  void set_value(T f) { value_ = f; }

  // These are all written like this because it is convenient to have
  // compile-time constants for all of these values.

  // Pass-through values to save typing.
  static const uint32_t num_used_bits = Traits::num_used_bits;
  static const uint32_t exponent_bias = Traits::exponent_bias;
  static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
  static const uint32_t num_fraction_bits = Traits::num_fraction_bits;

  // Number of bits to shift left to set the highest relevant bit.
  static const uint32_t top_bit_left_shift = num_used_bits - 1;
  // How many nibbles (hex characters) the fractional part takes up.
  static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
  // If the fractional part does not fit evenly into a hex character (4-bits)
  // then we have to left-shift to get rid of leading 0s. This is the amount
  // we have to shift (might be 0).
  static const uint32_t num_overflow_bits =
      fraction_nibbles * 4 - num_fraction_bits;

  // The representation of the fraction, not the actual bits. This
  // includes the leading bit that is usually implicit.
  static const uint_type fraction_represent_mask =
      SetBits<uint_type, 0, num_fraction_bits + num_overflow_bits>::get;

  // The topmost bit in the nibble-aligned fraction.
  static const uint_type fraction_top_bit =
      uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);

  // The least significant bit in the exponent, which is also the bit
  // immediately to the left of the significand.
  static const uint_type first_exponent_bit = uint_type(1)
                                              << (num_fraction_bits);

  // The mask for the encoded fraction. It does not include the
  // implicit bit.
  static const uint_type fraction_encode_mask =
      SetBits<uint_type, 0, num_fraction_bits>::get;

  // The bit that is used as a sign.
  static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;

  // The bits that represent the exponent.
  static const uint_type exponent_mask =
      SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;

  // How far left the exponent is shifted.
  static const uint32_t exponent_left_shift = num_fraction_bits;

  // How far from the right edge the fraction is shifted.
  static const uint32_t fraction_right_shift =
      static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;

  // The maximum representable unbiased exponent.
  static const int_type max_exponent =
      (exponent_mask >> num_fraction_bits) - exponent_bias;
  // The minimum representable exponent for normalized numbers.
  static const int_type min_exponent = -static_cast<int_type>(exponent_bias);

  // Returns the bits associated with the value.
  uint_type getBits() const { return value_.data(); }

  // Returns the bits associated with the value, without the leading sign bit.
  uint_type getUnsignedBits() const {
    return static_cast<uint_type>(value_.data() & ~sign_mask);
  }

  // Returns the bits associated with the exponent, shifted to start at the
  // lsb of the type.
  const uint_type getExponentBits() const {
    return static_cast<uint_type>((getBits() & exponent_mask) >>
                                  num_fraction_bits);
  }

  // Returns the exponent in unbiased form. This is the exponent in the
  // human-friendly form.
  const int_type getUnbiasedExponent() const {
    return static_cast<int_type>(getExponentBits() - exponent_bias);
  }

  // Returns just the significand bits from the value.
  const uint_type getSignificandBits() const {
    return getBits() & fraction_encode_mask;
  }

  // If the number was normalized, returns the unbiased exponent.
  // If the number was denormal, normalize the exponent first.
  const int_type getUnbiasedNormalizedExponent() const {
    if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
      return 0;
    }
    int_type exp = getUnbiasedExponent();
    if (exp == min_exponent) {  // We are in denorm land.
      uint_type significand_bits = getSignificandBits();
      while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
        significand_bits = static_cast<uint_type>(significand_bits << 1);
        exp = static_cast<int_type>(exp - 1);
      }
      significand_bits &= fraction_encode_mask;
    }
    return exp;
  }

  // Returns the signficand after it has been normalized.
  const uint_type getNormalizedSignificand() const {
    int_type unbiased_exponent = getUnbiasedNormalizedExponent();
    uint_type significand = getSignificandBits();
    for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
      significand = static_cast<uint_type>(significand << 1);
    }
    significand &= fraction_encode_mask;
    return significand;
  }

  // Returns true if this number represents a negative value.
  bool isNegative() const { return (getBits() & sign_mask) != 0; }

  // Sets this HexFloat from the individual components.
  // Note this assumes EVERY significand is normalized, and has an implicit
  // leading one. This means that the only way that this method will set 0,
  // is if you set a number so denormalized that it underflows.
  // Do not use this method with raw bits extracted from a subnormal number,
  // since subnormals do not have an implicit leading 1 in the significand.
  // The significand is also expected to be in the
  // lowest-most num_fraction_bits of the uint_type.
  // The exponent is expected to be unbiased, meaning an exponent of
  // 0 actually means 0.
  // If underflow_round_up is set, then on underflow, if a number is non-0
  // and would underflow, we round up to the smallest denorm.
  void setFromSignUnbiasedExponentAndNormalizedSignificand(
      bool negative, int_type exponent, uint_type significand,
      bool round_denorm_up) {
    bool significand_is_zero = significand == 0;

    if (exponent <= min_exponent) {
      // If this was denormalized, then we have to shift the bit on, meaning
      // the significand is not zero.
      significand_is_zero = false;
      significand |= first_exponent_bit;
      significand = static_cast<uint_type>(significand >> 1);
    }

    while (exponent < min_exponent) {
      significand = static_cast<uint_type>(significand >> 1);
      ++exponent;
    }

    if (exponent == min_exponent) {
      if (significand == 0 && !significand_is_zero && round_denorm_up) {
        significand = static_cast<uint_type>(0x1);
      }
    }

    uint_type new_value = 0;
    if (negative) {
      new_value = static_cast<uint_type>(new_value | sign_mask);
    }
    exponent = static_cast<int_type>(exponent + exponent_bias);
    assert(exponent >= 0);

    // put it all together
    exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
                                      exponent_mask);
    significand = static_cast<uint_type>(significand & fraction_encode_mask);
    new_value = static_cast<uint_type>(new_value | (exponent | significand));
    value_ = T(new_value);
  }

  // Increments the significand of this number by the given amount.
  // If this would spill the significand into the implicit bit,
  // carry is set to true and the significand is shifted to fit into
  // the correct location, otherwise carry is set to false.
  // All significands and to_increment are assumed to be within the bounds
  // for a valid significand.
  static uint_type incrementSignificand(uint_type significand,
                                        uint_type to_increment, bool* carry) {
    significand = static_cast<uint_type>(significand + to_increment);
    *carry = false;
    if (significand & first_exponent_bit) {
      *carry = true;
      // The implicit 1-bit will have carried, so we should zero-out the
      // top bit and shift back.
      significand = static_cast<uint_type>(significand & ~first_exponent_bit);
      significand = static_cast<uint_type>(significand >> 1);
    }
    return significand;
  }

#if GCC_VERSION == 40801
  // These exist because MSVC throws warnings on negative right-shifts
  // even if they are not going to be executed. Eg:
  // constant_number < 0? 0: constant_number
  // These convert the negative left-shifts into right shifts.
  template <int_type N>
  struct negatable_left_shift {
    static uint_type val(uint_type val) {
      if (N > 0) {
        return static_cast<uint_type>(static_cast<uint64_t>(val) << N);
      } else {
        return static_cast<uint_type>(static_cast<uint64_t>(val) >> N);
      }
    }
  };

  template <int_type N>
  struct negatable_right_shift {
    static uint_type val(uint_type val) {
      if (N > 0) {
        return static_cast<uint_type>(val >> N);
      } else {
        return static_cast<uint_type>(val << N);
      }
    }
  };

#else
  // These exist because MSVC throws warnings on negative right-shifts
  // even if they are not going to be executed. Eg:
  // constant_number < 0? 0: constant_number
  // These convert the negative left-shifts into right shifts.
  template <int_type N, typename enable = void>
  struct negatable_left_shift {
    static uint_type val(uint_type val) {
      return static_cast<uint_type>(static_cast<uint64_t>(val) >> -N);
    }
  };

  template <int_type N>
  struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> {
    static uint_type val(uint_type val) {
      return static_cast<uint_type>(static_cast<uint64_t>(val) << N);
    }
  };

  template <int_type N, typename enable = void>
  struct negatable_right_shift {
    static uint_type val(uint_type val) {
      return static_cast<uint_type>(static_cast<uint64_t>(val) << -N);
    }
  };

  template <int_type N>
  struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> {
    static uint_type val(uint_type val) {
      return static_cast<uint_type>(static_cast<uint64_t>(val) >> N);
    }
  };
#endif

  // Returns the significand, rounded to fit in a significand in
  // other_T. This is shifted so that the most significant
  // bit of the rounded number lines up with the most significant bit
  // of the returned significand.
  template <typename other_T>
  typename other_T::uint_type getRoundedNormalizedSignificand(
      round_direction dir, bool* carry_bit) {
    using other_uint_type = typename other_T::uint_type;
    static const int_type num_throwaway_bits =
        static_cast<int_type>(num_fraction_bits) -
        static_cast<int_type>(other_T::num_fraction_bits);

    static const uint_type last_significant_bit =
        (num_throwaway_bits < 0)
            ? 0
            : negatable_left_shift<num_throwaway_bits>::val(1u);
    static const uint_type first_rounded_bit =
        (num_throwaway_bits < 1)
            ? 0
            : negatable_left_shift<num_throwaway_bits - 1>::val(1u);

    static const uint_type throwaway_mask_bits =
        num_throwaway_bits > 0 ? num_throwaway_bits : 0;
    static const uint_type throwaway_mask =
        SetBits<uint_type, 0, throwaway_mask_bits>::get;

    *carry_bit = false;
    other_uint_type out_val = 0;
    uint_type significand = getNormalizedSignificand();
    // If we are up-casting, then we just have to shift to the right location.
    if (num_throwaway_bits <= 0) {
      out_val = static_cast<other_uint_type>(significand);
      uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
      out_val = static_cast<other_uint_type>(out_val << shift_amount);
      return out_val;
    }

    // If every non-representable bit is 0, then we don't have any casting to
    // do.
    if ((significand & throwaway_mask) == 0) {
      return static_cast<other_uint_type>(
          negatable_right_shift<num_throwaway_bits>::val(significand));
    }

    bool round_away_from_zero = false;
    // We actually have to narrow the significand here, so we have to follow the
    // rounding rules.
    switch (dir) {
      case round_direction::kToZero:
        break;
      case round_direction::kToPositiveInfinity:
        round_away_from_zero = !isNegative();
        break;
      case round_direction::kToNegativeInfinity:
        round_away_from_zero = isNegative();
        break;
      case round_direction::kToNearestEven:
        // Have to round down, round bit is 0
        if ((first_rounded_bit & significand) == 0) {
          break;
        }
        if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
          // If any subsequent bit of the rounded portion is non-0 then we round
          // up.
          round_away_from_zero = true;
          break;
        }
        // We are exactly half-way between 2 numbers, pick even.
        if ((significand & last_significant_bit) != 0) {
          // 1 for our last bit, round up.
          round_away_from_zero = true;
          break;
        }
        break;
    }

    if (round_away_from_zero) {
      return static_cast<other_uint_type>(
          negatable_right_shift<num_throwaway_bits>::val(incrementSignificand(
              significand, last_significant_bit, carry_bit)));
    } else {
      return static_cast<other_uint_type>(
          negatable_right_shift<num_throwaway_bits>::val(significand));
    }
  }

  // Casts this value to another HexFloat. If the cast is widening,
  // then round_dir is ignored. If the cast is narrowing, then
  // the result is rounded in the direction specified.
  // This number will retain Nan and Inf values.
  // It will also saturate to Inf if the number overflows, and
  // underflow to (0 or min depending on rounding) if the number underflows.
  template <typename other_T>
  void castTo(other_T& other, round_direction round_dir) {
    using other_traits = typename other_T::traits;
    using other_underlyingtraits = typename other_traits::underlying_typetraits;

    other = other_T(static_cast<typename other_T::native_type>(0));
    bool negate = isNegative();
    if (getUnsignedBits() == 0) {
      if (negate) {
        other.set_value(-other.value());
      }
      return;
    }
    uint_type significand = getSignificandBits();
    bool carried = false;
    typename other_T::uint_type rounded_significand =
        getRoundedNormalizedSignificand<other_T>(round_dir, &carried);

    int_type exponent = getUnbiasedExponent();
    if (exponent == min_exponent) {
      // If we are denormal, normalize the exponent, so that we can encode
      // easily.
      exponent = static_cast<int_type>(exponent + 1);
      for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
           check_bit = static_cast<uint_type>(check_bit >> 1)) {
        exponent = static_cast<int_type>(exponent - 1);
        if (check_bit & significand) break;
      }
    }

    bool is_nan = T(getBits()).isNan();
    bool is_inf =
        !is_nan &&
        ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
         T(getBits()).isInfinity());

    // If we are Nan or Inf we should pass that through.
    if (is_inf) {
      if (other_traits::has_infinity)
        other.set_value(typename other_T::underlying_type(
            static_cast<typename other_T::uint_type>(
                (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
      else  // if the type doesnt use infinity, set it to max value (E4M3)
        other.set_value(typename other_T::underlying_type(
            static_cast<typename other_T::uint_type>(
                (negate ? other_T::sign_mask : 0) |
                other_underlyingtraits::getBitsFromFloat(
                    other_underlyingtraits::max()))));
      return;
    }
    if (is_nan) {
      typename other_T::uint_type shifted_significand;
      shifted_significand = static_cast<typename other_T::uint_type>(
          negatable_left_shift<
              static_cast<int_type>(other_T::num_fraction_bits) -
              static_cast<int_type>(num_fraction_bits)>::val(significand));

      // We are some sort of Nan. We try to keep the bit-pattern of the Nan
      // as close as possible. If we had to shift off bits so we are 0, then we
      // just set the last bit.
      other.set_value(typename other_T::underlying_type(
          static_cast<typename other_T::uint_type>(
              other_traits::NaN_pattern | (negate ? other_T::sign_mask : 0) |
              other_T::exponent_mask |
              (shifted_significand == 0 ? 0x1 : shifted_significand))));
      return;
    }

    bool round_underflow_up =
        isNegative() ? round_dir == round_direction::kToNegativeInfinity
                     : round_dir == round_direction::kToPositiveInfinity;
    using other_int_type = typename other_T::int_type;
    // setFromSignUnbiasedExponentAndNormalizedSignificand will
    // zero out any underflowing value (but retain the sign).
    other.setFromSignUnbiasedExponentAndNormalizedSignificand(
        negate, static_cast<other_int_type>(exponent), rounded_significand,
        round_underflow_up);
    return;
  }

 private:
  T value_;

  static_assert(num_used_bits ==
                    Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
                "The number of bits do not fit");
  static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
};

// Returns 4 bits represented by the hex character.
inline uint8_t get_nibble_from_character(int character) {
  const char* dec = "0123456789";
  const char* lower = "abcdef";
  const char* upper = "ABCDEF";
  const char* p = nullptr;
  if ((p = strchr(dec, character))) {
    return static_cast<uint8_t>(p - dec);
  } else if ((p = strchr(lower, character))) {
    return static_cast<uint8_t>(p - lower + 0xa);
  } else if ((p = strchr(upper, character))) {
    return static_cast<uint8_t>(p - upper + 0xa);
  }

  assert(false && "This was called with a non-hex character");
  return 0;
}

// Outputs the given HexFloat to the stream.
template <typename T, typename Traits>
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
  using HF = HexFloat<T, Traits>;
  using uint_type = uint64_t;
  using int_type = int64_t;

  static_assert(HF::num_used_bits != 0,
                "num_used_bits must be non-zero for a valid float");
  static_assert(HF::num_exponent_bits != 0,
                "num_exponent_bits must be non-zero for a valid float");
  static_assert(HF::num_fraction_bits != 0,
                "num_fractin_bits must be non-zero for a valid float");

  const uint_type bits = value.value().data();
  const char* const sign = (bits & HF::sign_mask) ? "-" : "";
  const uint_type exponent = static_cast<uint_type>(
      (bits & HF::exponent_mask) >> HF::num_fraction_bits);

  uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
                                              << HF::num_overflow_bits);

  const bool is_zero = exponent == 0 && fraction == 0;
  const bool is_denorm = exponent == 0 && !is_zero;

  // exponent contains the biased exponent we have to convert it back into
  // the normal range.
  int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
  // If the number is all zeros, then we actually have to NOT shift the
  // exponent.
  int_exponent = is_zero ? 0 : int_exponent;

  // If we are denorm, then start shifting, and decreasing the exponent until
  // our leading bit is 1.

  if (is_denorm) {
    while ((fraction & HF::fraction_top_bit) == 0) {
      fraction = static_cast<uint_type>(fraction << 1);
      int_exponent = static_cast<int_type>(int_exponent - 1);
    }
    // Since this is denormalized, we have to consume the leading 1 since it
    // will end up being implicit.
    fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
    fraction &= HF::fraction_represent_mask;
  }

  uint_type fraction_nibbles = HF::fraction_nibbles;
  // We do not have to display any trailing 0s, since this represents the
  // fractional part.
  while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
    // Shift off any trailing values;
    fraction = static_cast<uint_type>(fraction >> 4);
    --fraction_nibbles;
  }

  const auto saved_flags = os.flags();
  const auto saved_fill = os.fill();

  os << sign << "0x" << (is_zero ? '0' : '1');
  if (fraction_nibbles) {
    // Make sure to keep the leading 0s in place, since this is the fractional
    // part.
    os << "." << std::setw(static_cast<int>(fraction_nibbles))
       << std::setfill('0') << std::hex << fraction;
  }
  os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;

  os.flags(saved_flags);
  os.fill(saved_fill);

  return os;
}

// Returns true if negate_value is true and the next character on the
// input stream is a plus or minus sign.  In that case we also set the fail bit
// on the stream and set the value to the zero value for its type.
template <typename T, typename Traits>
inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
                                        HexFloat<T, Traits>& value) {
  if (negate_value) {
    auto next_char = is.peek();
    if (next_char == '-' || next_char == '+') {
      // Fail the parse.  Emulate standard behaviour by setting the value to
      // the zero value, and set the fail bit on the stream.
      value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0});
      is.setstate(std::ios_base::failbit);
      return true;
    }
  }
  return false;
}

// Parses a floating point number from the given stream and stores it into the
// value parameter.
// If negate_value is true then the number may not have a leading minus or
// plus, and if it successfully parses, then the number is negated before
// being stored into the value parameter.
// If the value cannot be correctly parsed or overflows the target floating
// point type, then set the fail bit on the stream.
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
// the error case, but only after all target platforms implement it correctly.
// In particular, the Microsoft C++ runtime appears to be out of spec.
template <typename T, typename Traits>
inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
                                      HexFloat<T, Traits>& value) {
  if (RejectParseDueToLeadingSign(is, negate_value, value)) {
    return is;
  }
  T val;
  is >> val;
  if (negate_value) {
    val = -val;
  }
  value.set_value(val);
  // In the failure case, map -0.0 to 0.0.
  if (is.fail() && value.getUnsignedBits() == 0u) {
    value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0});
  }
  if (val.isInfinity()) {
    // Fail the parse.  Emulate standard behaviour by setting the value to
    // the closest normal value, and set the fail bit on the stream.
    value.set_value((value.isNegative() | negate_value) ? T::lowest()
                                                        : T::max());
    is.setstate(std::ios_base::failbit);
  }
  return is;
}

// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
// This will parse the float as it were a 32-bit floating point number,
// and then round it down to fit into a Float16 value.
// The number is rounded towards zero.
// If negate_value is true then the number may not have a leading minus or
// plus, and if it successfully parses, then the number is negated before
// being stored into the value parameter.
// If the value cannot be correctly parsed or overflows the target floating
// point type, then set the fail bit on the stream.
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
// the error case, but only after all target platforms implement it correctly.
// In particular, the Microsoft C++ runtime appears to be out of spec.
template <>
inline std::istream&
ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
    std::istream& is, bool negate_value,
    HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
  // First parse as a 32-bit float.
  HexFloat<FloatProxy<float>> float_val(0.0f);
  ParseNormalFloat(is, negate_value, float_val);

  // Then convert to 16-bit float, saturating at infinities, and
  // rounding toward zero.
  float_val.castTo(value, round_direction::kToZero);

  // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
  // fail bit and set the lowest or highest value.
  // /!\ We get an error if there is no overflow but the value is infinity.
  // Is it what we want?
  if (Float16::isInfinity(value.value().getAsFloat())) {
    value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
    is.setstate(std::ios_base::failbit);
  }
  return is;
}

// Same flow as Float16
template <>
inline std::istream&
ParseNormalFloat<FloatProxy<BFloat16>, HexFloatTraits<FloatProxy<BFloat16>>>(
    std::istream& is, bool negate_value,
    HexFloat<FloatProxy<BFloat16>, HexFloatTraits<FloatProxy<BFloat16>>>&
        value) {
  HexFloat<FloatProxy<float>> float_val(0.0f);
  ParseNormalFloat(is, negate_value, float_val);

  float_val.castTo(value, round_direction::kToZero);

  if (BFloat16::isInfinity(value.value().getAsFloat())) {
    value.set_value(value.isNegative() ? BFloat16::lowest() : BFloat16::max());
    is.setstate(std::ios_base::failbit);
  }
  return is;
}

// Specialization of ParseNormalFloat for FloatProxy<Float8_E4M3> values.
// This will parse the float as it were a 32-bit floating point number,
// and then round it down to fit into a Float8_E4M3 value.
// The number is rounded towards zero.
// If negate_value is true then the number may not have a leading minus or
// plus, and if it successfully parses, then the number is negated before
// being stored into the value parameter.
// If the value cannot be correctly parsed or overflows the target floating
// point type, then set the fail bit on the stream.
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
// the error case, but only after all target platforms implement it correctly.
// In particular, the Microsoft C++ runtime appears to be out of spec.
template <>
inline std::istream& ParseNormalFloat<FloatProxy<Float8_E4M3>,
                                      HexFloatTraits<FloatProxy<Float8_E4M3>>>(
    std::istream& is, bool negate_value,
    HexFloat<FloatProxy<Float8_E4M3>, HexFloatTraits<FloatProxy<Float8_E4M3>>>&
        value) {
  // First parse as a 32-bit float.
  HexFloat<FloatProxy<float>> float_val(0.0f);
  ParseNormalFloat(is, negate_value, float_val);

  if (float_val.value().getAsFloat() > 448.0f) {
    is.setstate(std::ios_base::failbit);
    value.set_value(Float8_E4M3::max());
    return is;
  } else if (float_val.value().getAsFloat() < -448.0f) {
    is.setstate(std::ios_base::failbit);
    value.set_value(0x80 | Float8_E4M3::max().get_value());
    return is;
  }
  // Then convert to E4M3 float, saturating at infinities, and
  // rounding toward zero.
  float_val.castTo(value, round_direction::kToZero);

  return is;
}
// Specialization of ParseNormalFloat for FloatProxy<Float8_E5M2> values.
// This will parse the float as it were a Float8_E5M2 floating point number,
// and then round it down to fit into a Float16 value.
// The number is rounded towards zero.
// If negate_value is true then the number may not have a leading minus or
// plus, and if it successfully parses, then the number is negated before
// being stored into the value parameter.
// If the value cannot be correctly parsed or overflows the target floating
// point type, then set the fail bit on the stream.
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
// the error case, but only after all target platforms implement it correctly.
// In particular, the Microsoft C++ runtime appears to be out of spec.
template <>
inline std::istream& ParseNormalFloat<FloatProxy<Float8_E5M2>,
                                      HexFloatTraits<FloatProxy<Float8_E5M2>>>(
    std::istream& is, bool negate_value,
    HexFloat<FloatProxy<Float8_E5M2>, HexFloatTraits<FloatProxy<Float8_E5M2>>>&
        value) {
  // First parse as a 32-bit float.
  HexFloat<FloatProxy<float>> float_val(0.0f);
  ParseNormalFloat(is, negate_value, float_val);

  // Then convert to Float8_E5M2 float, saturating at infinities, and
  // rounding toward zero.
  float_val.castTo(value, round_direction::kToZero);

  // Overflow on Float8_E5M2 behaves the same as for 32- and 64-bit: set the
  // fail bit and set the lowest or highest value.
  if (Float8_E5M2::isInfinity(value.value().getAsFloat())) {
    value.set_value(value.isNegative() ? Float8_E5M2::lowest()
                                       : Float8_E5M2::max());
    is.setstate(std::ios_base::failbit);
  }
  return is;
}

namespace detail {

// Returns a new value formed from 'value' by setting 'bit' that is the
// 'n'th most significant bit (where 0 is the most significant bit).
// If 'bit' is zero or 'n' is more than the number of bits in the integer
// type, then return the original value.
template <typename UINT_TYPE>
UINT_TYPE set_nth_most_significant_bit(UINT_TYPE value, UINT_TYPE bit,
                                       UINT_TYPE n) {
  constexpr UINT_TYPE max_position = std::numeric_limits<UINT_TYPE>::digits - 1;
  if ((bit != 0) && (n <= max_position)) {
    return static_cast<UINT_TYPE>(value | (bit << (max_position - n)));
  }
  return value;
}

// Attempts to increment the argument.
// If it does not overflow, then increments the argument and returns true.
// If it would overflow, returns false.
template <typename INT_TYPE>
bool saturated_inc(INT_TYPE& value) {
  if (value == std::numeric_limits<INT_TYPE>::max()) {
    return false;
  }
  value++;
  return true;
}

// Attempts to decrement the argument.
// If it does not underflow, then decrements the argument and returns true.
// If it would overflow, returns false.
template <typename INT_TYPE>
bool saturated_dec(INT_TYPE& value) {
  if (value == std::numeric_limits<INT_TYPE>::min()) {
    return false;
  }
  value--;
  return true;
}
}  // namespace detail

// Reads a HexFloat from the given stream.
// If the float is not encoded as a hex-float then it will be parsed
// as a regular float.
// This may fail if your stream does not support at least one unget.
// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
// This would normally overflow a float and round to
// infinity but this special pattern is the exact representation for a NaN,
// and therefore is actually encoded as the correct NaN. To encode inf,
// either 0x0p+exponent_bias can be specified or any exponent greater than
// exponent_bias.
// Examples using IEEE 32-bit float encoding.
//    0x1.0p+128 (+inf)
//    -0x1.0p-128 (-inf)
//
//    0x1.1p+128 (+Nan)
//    -0x1.1p+128 (-Nan)
//
//    0x1p+129 (+inf)
//    -0x1p+129 (-inf)
template <typename T, typename Traits>
std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
  using HF = HexFloat<T, Traits>;
  using uint_type = typename HF::uint_type;
  using int_type = typename HF::int_type;

  value.set_value(static_cast<typename HF::native_type>(0.f));

  if (is.flags() & std::ios::skipws) {
    // If the user wants to skip whitespace , then we should obey that.
    while (std::isspace(is.peek())) {
      is.get();
    }
  }

  auto next_char = is.peek();
  bool negate_value = false;

  if (next_char != '-' && next_char != '0') {
    return ParseNormalFloat(is, negate_value, value);
  }

  if (next_char == '-') {
    negate_value = true;
    is.get();
    next_char = is.peek();
  }

  if (next_char == '0') {
    is.get();  // We may have to unget this.
    auto maybe_hex_start = is.peek();
    if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
      is.unget();
      return ParseNormalFloat(is, negate_value, value);
    } else {
      is.get();  // Throw away the 'x';
    }
  } else {
    return ParseNormalFloat(is, negate_value, value);
  }

  // This "looks" like a hex-float so treat it as one.
  bool seen_p = false;
  bool seen_dot = false;

  // The mantissa bits, without the most significant 1 bit, and with the
  // the most recently read bits in the least significant positions.
  uint_type fraction = 0;
  // The number of mantissa bits that have been read, including the leading 1
  // bit that is not written into 'fraction'.
  uint_type fraction_index = 0;

  // TODO(dneto): handle overflow and underflow
  int_type exponent = HF::exponent_bias;

  // Strip off leading zeros so we don't have to special-case them later.
  while ((next_char = is.peek()) == '0') {
    is.get();
  }

  // Does the mantissa, as written, have non-zero digits to the left of
  // the decimal point.  Assume no until proven otherwise.
  bool has_integer_part = false;
  bool bits_written = false;  // Stays false until we write a bit.

  // Scan the mantissa hex digits until we see a '.' or the 'p' that
  // starts the exponent.
  while (!seen_p && !seen_dot) {
    // Handle characters that are left of the fractional part.
    if (next_char == '.') {
      seen_dot = true;
    } else if (next_char == 'p') {
      seen_p = true;
    } else if (::isxdigit(next_char)) {
      // We have stripped all leading zeroes and we have not yet seen a ".".
      has_integer_part = true;
      int number = get_nibble_from_character(next_char);
      for (int i = 0; i < 4; ++i, number <<= 1) {
        uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
        if (bits_written) {
          // If we are here the bits represented belong in the fractional
          // part of the float, and we have to adjust the exponent accordingly.
          fraction = detail::set_nth_most_significant_bit(fraction, write_bit,
                                                          fraction_index);
          // Increment the fraction index. If the input has bizarrely many
          // significant digits, then silently drop them.
          detail::saturated_inc(fraction_index);
          if (!detail::saturated_inc(exponent)) {
            // Overflow failure
            is.setstate(std::ios::failbit);
            return is;
          }
        }
        // Since this updated after setting fraction bits, this effectively
        // drops the leading 1 bit.
        bits_written |= write_bit != 0;
      }
    } else {
      // We have not found our exponent yet, so we have to fail.
      is.setstate(std::ios::failbit);
      return is;
    }
    is.get();
    next_char = is.peek();
  }

  // Finished reading the part preceding any '.' or 'p'.

  bits_written = false;
  while (seen_dot && !seen_p) {
    // Handle only fractional parts now.
    if (next_char == 'p') {
      seen_p = true;
    } else if (::isxdigit(next_char)) {
      int number = get_nibble_from_character(next_char);
      for (int i = 0; i < 4; ++i, number <<= 1) {
        uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
        bits_written |= write_bit != 0;
        if ((!has_integer_part) && !bits_written) {
          // Handle modifying the exponent here this way we can handle
          // an arbitrary number of hex values without overflowing our
          // integer.
          if (!detail::saturated_dec(exponent)) {
            // Overflow failure
            is.setstate(std::ios::failbit);
            return is;
          }
        } else {
          fraction = detail::set_nth_most_significant_bit(fraction, write_bit,
                                                          fraction_index);
          // Increment the fraction index. If the input has bizarrely many
          // significant digits, then silently drop them.
          detail::saturated_inc(fraction_index);
        }
      }
    } else {
      // We still have not found our 'p' exponent yet, so this is not a valid
      // hex-float.
      is.setstate(std::ios::failbit);
      return is;
    }
    is.get();
    next_char = is.peek();
  }

  // Finished reading the part preceding 'p'.
  // In hex floats syntax, the binary exponent is required.

  bool seen_exponent_sign = false;
  int8_t exponent_sign = 1;
  bool seen_written_exponent_digits = false;
  // The magnitude of the exponent, as written, or the sentinel value to signal
  // overflow.
  int_type written_exponent = 0;
  // A sentinel value signalling overflow of the magnitude of the written
  // exponent.  We'll assume that -written_exponent_overflow is valid for the
  // type. Later we may add 1 or subtract 1 from the adjusted exponent, so leave
  // room for an extra 1.
  const int_type written_exponent_overflow =
      std::numeric_limits<int_type>::max() - 1;
  while (true) {
    if (!seen_written_exponent_digits &&
        (next_char == '-' || next_char == '+')) {
      if (seen_exponent_sign) {
        is.setstate(std::ios::failbit);
        return is;
      }
      seen_exponent_sign = true;
      exponent_sign = (next_char == '-') ? -1 : 1;
    } else if (::isdigit(next_char)) {
      seen_written_exponent_digits = true;
      // Hex-floats express their exponent as decimal.
      int_type digit =
          static_cast<int_type>(static_cast<int_type>(next_char) - '0');
      if (written_exponent >= (written_exponent_overflow - digit) / 10) {
        // The exponent is very big. Saturate rather than overflow the exponent.
        // signed integer, which would be undefined behaviour.
        written_exponent = written_exponent_overflow;
      } else {
        written_exponent = static_cast<int_type>(
            static_cast<int_type>(written_exponent * 10) + digit);
      }
    } else {
      break;
    }
    is.get();
    next_char = is.peek();
  }
  if (!seen_written_exponent_digits) {
    // Binary exponent had no digits.
    is.setstate(std::ios::failbit);
    return is;
  }

  written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
  // Now fold in the exponent bias into the written exponent, updating exponent.
  // But avoid undefined behaviour that would result from overflowing int_type.
  if (written_exponent >= 0 && exponent >= 0) {
    // Saturate up to written_exponent_overflow.
    if (written_exponent_overflow - exponent > written_exponent) {
      exponent = static_cast<int_type>(written_exponent + exponent);
    } else {
      exponent = written_exponent_overflow;
    }
  } else if (written_exponent < 0 && exponent < 0) {
    // Saturate down to -written_exponent_overflow.
    if (written_exponent_overflow + exponent > -written_exponent) {
      exponent = static_cast<int_type>(written_exponent + exponent);
    } else {
      exponent = static_cast<int_type>(-written_exponent_overflow);
    }
  } else {
    // They're of opposing sign, so it's safe to add.
    exponent = static_cast<int_type>(written_exponent + exponent);
  }

  bool is_zero = (!has_integer_part) && (fraction == 0);
  if ((!has_integer_part) && !is_zero) {
    fraction = static_cast<uint_type>(fraction << 1);
    exponent = static_cast<int_type>(exponent - 1);
  } else if (is_zero) {
    exponent = 0;
  }

  if (exponent <= 0 && !is_zero) {
    fraction = static_cast<uint_type>(fraction >> 1);
    fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
  }

  fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;

  const int_type max_exponent =
      SetBits<uint_type, 0, HF::num_exponent_bits>::get;

  // Handle denorm numbers
  while (exponent < 0 && !is_zero) {
    fraction = static_cast<uint_type>(fraction >> 1);
    exponent = static_cast<int_type>(exponent + 1);

    fraction &= HF::fraction_encode_mask;
    if (fraction == 0) {
      // We have underflowed our fraction. We should clamp to zero.
      is_zero = true;
      exponent = 0;
    }
  }

  // We have overflowed so we should be inf/-inf.
  if (exponent > max_exponent) {
    exponent = max_exponent;
    fraction = 0;
  }

  uint_type output_bits = static_cast<uint_type>(
      static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
  output_bits |= fraction;

  uint_type shifted_exponent = static_cast<uint_type>(
      static_cast<uint_type>(exponent << HF::exponent_left_shift) &
      HF::exponent_mask);
  output_bits |= shifted_exponent;

  T output_float(output_bits);
  value.set_value(output_float);

  return is;
}

// Writes a FloatProxy value to a stream.
// Zero and normal numbers are printed in the usual notation, but with
// enough digits to fully reproduce the value.  Other values (subnormal,
// NaN, and infinity) are printed as a hex float.
template <typename T>
std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
  auto float_val = value.getAsFloat();
  switch (std::fpclassify(float_val)) {
    case FP_ZERO:
    case FP_NORMAL: {
      auto saved_precision = os.precision();
      os.precision(std::numeric_limits<T>::max_digits10);
      os << float_val;
      os.precision(saved_precision);
    } break;
    default:
      os << HexFloat<FloatProxy<T>>(value);
      break;
  }
  return os;
}

template <>
inline std::ostream& operator<<<Float16>(std::ostream& os,
                                         const FloatProxy<Float16>& value) {
  os << HexFloat<FloatProxy<Float16>>(value);
  return os;
}

template <>
inline std::ostream& operator<< <BFloat16>(std::ostream& os,
                                           const FloatProxy<BFloat16>& value) {
  os << HexFloat<FloatProxy<BFloat16>>(value);
  return os;
}

template <>
inline std::ostream& operator<< <Float8_E4M3>(
    std::ostream& os, const FloatProxy<Float8_E4M3>& value) {
  os << HexFloat<FloatProxy<Float8_E4M3>>(value);
  return os;
}

template <>
inline std::ostream& operator<< <Float8_E5M2>(
    std::ostream& os, const FloatProxy<Float8_E5M2>& value) {
  os << HexFloat<FloatProxy<Float8_E5M2>>(value);
  return os;
}

}  // namespace utils
}  // namespace spvtools

#endif  // SOURCE_UTIL_HEX_FLOAT_H_