File: validate_constants.cpp

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (628 lines) | stat: -rw-r--r-- 26,153 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/opcode.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"

namespace spvtools {
namespace val {
namespace {

spv_result_t ValidateConstantBool(ValidationState_t& _,
                                  const Instruction* inst) {
  auto type = _.FindDef(inst->type_id());
  if (!type || type->opcode() != spv::Op::OpTypeBool) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Op" << spvOpcodeString(inst->opcode()) << " Result Type <id> "
           << _.getIdName(inst->type_id()) << " is not a boolean type.";
  }

  return SPV_SUCCESS;
}

bool isCompositeType(const Instruction* inst) {
  bool is_tensor = inst->opcode() == spv::Op::OpTypeTensorARM;
  bool tensor_is_shaped = inst->words().size() == 5;
  return spvOpcodeIsComposite(inst->opcode()) ||
         (is_tensor && tensor_is_shaped);
}

spv_result_t ValidateConstantComposite(ValidationState_t& _,
                                       const Instruction* inst) {
  std::string opcode_name = std::string("Op") + spvOpcodeString(inst->opcode());

  const auto result_type = _.FindDef(inst->type_id());
  if (!result_type || !isCompositeType(result_type)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << opcode_name << " Result Type <id> "
           << _.getIdName(inst->type_id()) << " is not a composite type.";
  }

  const auto constituent_count = inst->words().size() - 3;
  switch (result_type->opcode()) {
    case spv::Op::OpTypeVector:
    case spv::Op::OpTypeCooperativeVectorNV: {
      uint32_t num_result_components = _.GetDimension(result_type->id());
      bool comp_is_int32 = true, comp_is_const_int32 = true;

      if (result_type->opcode() == spv::Op::OpTypeCooperativeVectorNV) {
        uint32_t comp_count_id = result_type->GetOperandAs<uint32_t>(2);
        std::tie(comp_is_int32, comp_is_const_int32, num_result_components) =
            _.EvalInt32IfConst(comp_count_id);
      }

      if (comp_is_const_int32 && num_result_components != constituent_count) {
        // TODO: Output ID's on diagnostic
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name
               << " Constituent <id> count does not match "
                  "Result Type <id> "
               << _.getIdName(result_type->id()) << "s vector component count.";
      }
      const auto component_type =
          _.FindDef(result_type->GetOperandAs<uint32_t>(1));
      if (!component_type) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Component type is not defined.";
      }
      for (size_t constituent_index = 2;
           constituent_index < inst->operands().size(); constituent_index++) {
        const auto constituent_id =
            inst->GetOperandAs<uint32_t>(constituent_index);
        const auto constituent = _.FindDef(constituent_id);
        if (!constituent ||
            !spvOpcodeIsConstantOrUndef(constituent->opcode())) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " is not a constant or undef.";
        }
        const auto constituent_result_type = _.FindDef(constituent->type_id());
        if (!constituent_result_type ||
            component_type->id() != constituent_result_type->id()) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << "s type does not match Result Type <id> "
                 << _.getIdName(result_type->id()) << "s vector element type.";
        }
      }
    } break;
    case spv::Op::OpTypeMatrix: {
      const auto column_count = result_type->GetOperandAs<uint32_t>(2);
      if (column_count != constituent_count) {
        // TODO: Output ID's on diagnostic
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name
               << " Constituent <id> count does not match "
                  "Result Type <id> "
               << _.getIdName(result_type->id()) << "s matrix column count.";
      }

      const auto column_type = _.FindDef(result_type->words()[2]);
      if (!column_type) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Column type is not defined.";
      }
      const auto component_count = column_type->GetOperandAs<uint32_t>(2);
      const auto component_type =
          _.FindDef(column_type->GetOperandAs<uint32_t>(1));
      if (!component_type) {
        return _.diag(SPV_ERROR_INVALID_ID, column_type)
               << "Component type is not defined.";
      }

      for (size_t constituent_index = 2;
           constituent_index < inst->operands().size(); constituent_index++) {
        const auto constituent_id =
            inst->GetOperandAs<uint32_t>(constituent_index);
        const auto constituent = _.FindDef(constituent_id);
        if (!constituent ||
            !spvOpcodeIsConstantOrUndef(constituent->opcode())) {
          // The message says "... or undef" because the spec does not say
          // undef is a constant.
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " is not a constant or undef.";
        }
        const auto vector = _.FindDef(constituent->type_id());
        if (!vector) {
          return _.diag(SPV_ERROR_INVALID_ID, constituent)
                 << "Result type is not defined.";
        }
        if (column_type->opcode() != vector->opcode()) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " type does not match Result Type <id> "
                 << _.getIdName(result_type->id()) << "s matrix column type.";
        }
        const auto vector_component_type =
            _.FindDef(vector->GetOperandAs<uint32_t>(1));
        if (component_type->id() != vector_component_type->id()) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " component type does not match Result Type <id> "
                 << _.getIdName(result_type->id())
                 << "s matrix column component type.";
        }
        if (component_count != vector->words()[3]) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " vector component count does not match Result Type <id> "
                 << _.getIdName(result_type->id())
                 << "s vector component count.";
        }
      }
    } break;
    case spv::Op::OpTypeArray: {
      auto element_type = _.FindDef(result_type->GetOperandAs<uint32_t>(1));
      if (!element_type) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Element type is not defined.";
      }
      const auto length = _.FindDef(result_type->GetOperandAs<uint32_t>(2));
      if (!length) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Length is not defined.";
      }
      bool is_int32;
      bool is_const;
      uint32_t value;
      std::tie(is_int32, is_const, value) = _.EvalInt32IfConst(length->id());
      if (is_int32 && is_const && value != constituent_count) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name
               << " Constituent count does not match "
                  "Result Type <id> "
               << _.getIdName(result_type->id()) << "s array length.";
      }
      for (size_t constituent_index = 2;
           constituent_index < inst->operands().size(); constituent_index++) {
        const auto constituent_id =
            inst->GetOperandAs<uint32_t>(constituent_index);
        const auto constituent = _.FindDef(constituent_id);
        if (!constituent ||
            !spvOpcodeIsConstantOrUndef(constituent->opcode())) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " is not a constant or undef.";
        }
        const auto constituent_type = _.FindDef(constituent->type_id());
        if (!constituent_type) {
          return _.diag(SPV_ERROR_INVALID_ID, constituent)
                 << "Result type is not defined.";
        }
        if (element_type->id() != constituent_type->id()) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << "s type does not match Result Type <id> "
                 << _.getIdName(result_type->id()) << "s array element type.";
        }
      }
    } break;
    case spv::Op::OpTypeStruct: {
      const auto member_count = result_type->words().size() - 2;
      if (member_count != constituent_count) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name << " Constituent <id> "
               << _.getIdName(inst->type_id())
               << " count does not match Result Type <id> "
               << _.getIdName(result_type->id()) << "s struct member count.";
      }
      for (uint32_t constituent_index = 2, member_index = 1;
           constituent_index < inst->operands().size();
           constituent_index++, member_index++) {
        const auto constituent_id =
            inst->GetOperandAs<uint32_t>(constituent_index);
        const auto constituent = _.FindDef(constituent_id);
        if (!constituent ||
            !spvOpcodeIsConstantOrUndef(constituent->opcode())) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " is not a constant or undef.";
        }
        const auto constituent_type = _.FindDef(constituent->type_id());
        if (!constituent_type) {
          return _.diag(SPV_ERROR_INVALID_ID, constituent)
                 << "Result type is not defined.";
        }

        const auto member_type_id =
            result_type->GetOperandAs<uint32_t>(member_index);
        const auto member_type = _.FindDef(member_type_id);
        if (!member_type || member_type->id() != constituent_type->id()) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " type does not match the Result Type <id> "
                 << _.getIdName(result_type->id()) << "s member type.";
        }
      }
    } break;
    case spv::Op::OpTypeCooperativeMatrixKHR:
    case spv::Op::OpTypeCooperativeMatrixNV: {
      if (1 != constituent_count) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name << " Constituent <id> "
               << _.getIdName(inst->type_id()) << " count must be one.";
      }
      const auto constituent_id = inst->GetOperandAs<uint32_t>(2);
      const auto constituent = _.FindDef(constituent_id);
      if (!constituent || !spvOpcodeIsConstantOrUndef(constituent->opcode())) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name << " Constituent <id> "
               << _.getIdName(constituent_id) << " is not a constant or undef.";
      }
      const auto constituent_type = _.FindDef(constituent->type_id());
      if (!constituent_type) {
        return _.diag(SPV_ERROR_INVALID_ID, constituent)
               << "Result type is not defined.";
      }

      const auto component_type_id = result_type->GetOperandAs<uint32_t>(1);
      const auto component_type = _.FindDef(component_type_id);
      if (!component_type || component_type->id() != constituent_type->id()) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name << " Constituent <id> "
               << _.getIdName(constituent_id)
               << " type does not match the Result Type <id> "
               << _.getIdName(result_type->id()) << "s component type.";
      }
    } break;
    case spv::Op::OpTypeTensorARM: {
      auto inst_element_type =
          _.FindDef(result_type->GetOperandAs<uint32_t>(1));
      if (!inst_element_type) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Element type is not defined.";
      }
      const auto inst_rank = _.FindDef(result_type->GetOperandAs<uint32_t>(2));
      if (!inst_rank) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Rank is not defined.";
      }
      const auto inst_shape = _.FindDef(result_type->GetOperandAs<uint32_t>(3));
      if (!inst_shape) {
        return _.diag(SPV_ERROR_INVALID_ID, result_type)
               << "Shape is not defined.";
      }

      uint64_t rank = 0;
      _.EvalConstantValUint64(inst_rank->id(), &rank);

      uint64_t outermost_shape = 0;
      if (_.EvalConstantValUint64(inst_shape->GetOperandAs<uint32_t>(2),
                                  &outermost_shape) &&
          (outermost_shape != constituent_count)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << opcode_name
               << " Constituent count does not match "
                  "the shape of Result Type <id> "
               << _.getIdName(result_type->id())
               << " along its outermost dimension, " << "expected "
               << outermost_shape << " but got " << constituent_count << ".";
      }

      for (size_t constituent_index = 2;
           constituent_index < inst->operands().size(); constituent_index++) {
        const auto constituent_id =
            inst->GetOperandAs<uint32_t>(constituent_index);
        const auto constituent = _.FindDef(constituent_id);
        if (!constituent ||
            !spvOpcodeIsConstantOrUndef(constituent->opcode())) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << opcode_name << " Constituent <id> "
                 << _.getIdName(constituent_id)
                 << " is not a constant or undef.";
        }
        const auto constituent_type = _.FindDef(constituent->type_id());
        if (!constituent_type) {
          return _.diag(SPV_ERROR_INVALID_ID, constituent)
                 << "Type of Constituent " << constituent_index - 2
                 << " is not defined.";
        }

        if (rank == 0) {
          // The rank of the returned tensor constant is not known.
          // Skip rank-dependent validation.
          continue;
        }

        if (rank == 1) {
          if (inst_element_type->id() != constituent_type->id()) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << opcode_name << " Constituent <id> "
                   << _.getIdName(constituent_id)
                   << " type does not match the element type of the tensor ("
                   << _.getIdName(result_type->id()) << ").";
          }
        } else {
          if (constituent_type->opcode() != spv::Op::OpTypeTensorARM) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << opcode_name << " Constituent <id> "
                   << _.getIdName(constituent_id)
                   << " must be an OpTypeTensorARM.";
          }
          auto inst_constituent_element_type =
              _.FindDef(constituent_type->GetOperandAs<uint32_t>(1));
          if (!inst_constituent_element_type ||
              inst_constituent_element_type->id() != inst_element_type->id()) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << opcode_name << " Constituent <id> "
                   << _.getIdName(constituent_id)
                   << " must have the same Element Type as Result Type <id> "
                   << _.getIdName(result_type->id()) << ".";
          }
          auto inst_constituent_rank =
              _.FindDef(constituent_type->GetOperandAs<uint32_t>(2));
          uint64_t constituent_rank;
          if (inst_constituent_rank &&
              _.EvalConstantValUint64(inst_constituent_rank->id(),
                                      &constituent_rank) &&
              (constituent_rank != rank - 1)) {
            return _.diag(SPV_ERROR_INVALID_ID, inst)
                   << opcode_name << " Constituent <id> "
                   << _.getIdName(constituent_id)
                   << " must have a Rank that is 1 less than the Rank of "
                      "Result Type <id> "
                   << _.getIdName(result_type->id()) << ", expected "
                   << rank - 1 << " but got " << constituent_rank << ".";
          }

          auto inst_constituent_shape =
              _.FindDef(constituent_type->GetOperandAs<uint32_t>(3));
          if (!inst_constituent_shape) {
            return _.diag(SPV_ERROR_INVALID_ID, result_type)
                   << "Shape of Constituent " << constituent_index - 2
                   << " is not defined.";
          }
          for (size_t constituent_shape_index = 2;
               constituent_shape_index <
               inst_constituent_shape->operands().size();
               constituent_shape_index++) {
            size_t shape_index = constituent_shape_index + 1;
            uint64_t constituent_shape = 0, shape = 1;
            if (_.EvalConstantValUint64(
                    inst_constituent_shape->GetOperandAs<uint32_t>(
                        constituent_shape_index),
                    &constituent_shape) &&
                _.EvalConstantValUint64(
                    inst_shape->GetOperandAs<uint32_t>(shape_index), &shape) &&
                (constituent_shape != shape)) {
              return _.diag(SPV_ERROR_INVALID_ID, inst)
                     << opcode_name << " Constituent <id> "
                     << _.getIdName(constituent_id)
                     << " must have a Shape that matches that of Result Type "
                        "<id> "
                     << _.getIdName(result_type->id())
                     << " along all inner dimensions of Result Type, expected "
                     << shape << " for dimension "
                     << constituent_shape_index - 2
                     << " of Constituent but got " << constituent_shape << ".";
            }
          }
        }
      }
    } break;
    default:
      break;
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateConstantSampler(ValidationState_t& _,
                                     const Instruction* inst) {
  const auto result_type = _.FindDef(inst->type_id());
  if (!result_type || result_type->opcode() != spv::Op::OpTypeSampler) {
    return _.diag(SPV_ERROR_INVALID_ID, result_type)
           << "OpConstantSampler Result Type <id> "
           << _.getIdName(inst->type_id()) << " is not a sampler type.";
  }

  return SPV_SUCCESS;
}

// True if instruction defines a type that can have a null value, as defined by
// the SPIR-V spec.  Tracks composite-type components through module to check
// nullability transitively.
bool IsTypeNullable(const std::vector<uint32_t>& instruction,
                    const ValidationState_t& _) {
  uint16_t opcode;
  uint16_t word_count;
  spvOpcodeSplit(instruction[0], &word_count, &opcode);
  switch (static_cast<spv::Op>(opcode)) {
    case spv::Op::OpTypeBool:
    case spv::Op::OpTypeInt:
    case spv::Op::OpTypeFloat:
    case spv::Op::OpTypeEvent:
    case spv::Op::OpTypeDeviceEvent:
    case spv::Op::OpTypeReserveId:
    case spv::Op::OpTypeQueue:
      return true;
    case spv::Op::OpTypeArray:
    case spv::Op::OpTypeMatrix:
    case spv::Op::OpTypeCooperativeMatrixNV:
    case spv::Op::OpTypeCooperativeMatrixKHR:
    case spv::Op::OpTypeCooperativeVectorNV:
    case spv::Op::OpTypeVector: {
      auto base_type = _.FindDef(instruction[2]);
      return base_type && IsTypeNullable(base_type->words(), _);
    }
    case spv::Op::OpTypeStruct: {
      for (size_t elementIndex = 2; elementIndex < instruction.size();
           ++elementIndex) {
        auto element = _.FindDef(instruction[elementIndex]);
        if (!element || !IsTypeNullable(element->words(), _)) return false;
      }
      return true;
    }
    case spv::Op::OpTypeUntypedPointerKHR:
    case spv::Op::OpTypePointer:
      if (spv::StorageClass(instruction[2]) ==
          spv::StorageClass::PhysicalStorageBuffer) {
        return false;
      }
      return true;
    case spv::Op::OpTypeTensorARM: {
      auto elem_type = _.FindDef(instruction[2]);
      return (instruction.size() > 4) && elem_type &&
             IsTypeNullable(elem_type->words(), _);
    }
    default:
      return false;
  }
}

spv_result_t ValidateConstantNull(ValidationState_t& _,
                                  const Instruction* inst) {
  const auto result_type = _.FindDef(inst->type_id());
  if (!result_type || !IsTypeNullable(result_type->words(), _)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpConstantNull Result Type <id> " << _.getIdName(inst->type_id())
           << " cannot have a null value.";
  }

  return SPV_SUCCESS;
}

// Validates that OpSpecConstant specializes to either int or float type.
spv_result_t ValidateSpecConstant(ValidationState_t& _,
                                  const Instruction* inst) {
  // Operand 0 is the <id> of the type that we're specializing to.
  auto type_id = inst->GetOperandAs<const uint32_t>(0);
  auto type_instruction = _.FindDef(type_id);
  auto type_opcode = type_instruction->opcode();
  if (type_opcode != spv::Op::OpTypeInt &&
      type_opcode != spv::Op::OpTypeFloat) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Specialization constant "
                                                   "must be an integer or "
                                                   "floating-point number.";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateSpecConstantOp(ValidationState_t& _,
                                    const Instruction* inst) {
  const auto op = inst->GetOperandAs<spv::Op>(2);

  // The binary parser already ensures that the op is valid for *some*
  // environment.  Here we check restrictions.
  switch (op) {
    case spv::Op::OpQuantizeToF16:
      if (!_.HasCapability(spv::Capability::Shader)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Specialization constant operation " << spvOpcodeString(op)
               << " requires Shader capability";
      }
      break;

    case spv::Op::OpUConvert:
      if (!_.features().uconvert_spec_constant_op &&
          !_.HasCapability(spv::Capability::Kernel)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Prior to SPIR-V 1.4, specialization constant operation "
                  "UConvert requires Kernel capability or extension "
                  "SPV_AMD_gpu_shader_int16";
      }
      break;

    case spv::Op::OpConvertFToS:
    case spv::Op::OpConvertSToF:
    case spv::Op::OpConvertFToU:
    case spv::Op::OpConvertUToF:
    case spv::Op::OpConvertPtrToU:
    case spv::Op::OpConvertUToPtr:
    case spv::Op::OpGenericCastToPtr:
    case spv::Op::OpPtrCastToGeneric:
    case spv::Op::OpBitcast:
    case spv::Op::OpFNegate:
    case spv::Op::OpFAdd:
    case spv::Op::OpFSub:
    case spv::Op::OpFMul:
    case spv::Op::OpFDiv:
    case spv::Op::OpFRem:
    case spv::Op::OpFMod:
    case spv::Op::OpAccessChain:
    case spv::Op::OpInBoundsAccessChain:
    case spv::Op::OpPtrAccessChain:
    case spv::Op::OpInBoundsPtrAccessChain:
      if (!_.HasCapability(spv::Capability::Kernel)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Specialization constant operation " << spvOpcodeString(op)
               << " requires Kernel capability";
      }
      break;

    default:
      break;
  }

  // TODO(dneto): Validate result type and arguments to the various operations.
  return SPV_SUCCESS;
}

}  // namespace

spv_result_t ConstantPass(ValidationState_t& _, const Instruction* inst) {
  switch (inst->opcode()) {
    case spv::Op::OpConstantTrue:
    case spv::Op::OpConstantFalse:
    case spv::Op::OpSpecConstantTrue:
    case spv::Op::OpSpecConstantFalse:
      if (auto error = ValidateConstantBool(_, inst)) return error;
      break;
    case spv::Op::OpConstantComposite:
    case spv::Op::OpSpecConstantComposite:
      if (auto error = ValidateConstantComposite(_, inst)) return error;
      break;
    case spv::Op::OpConstantSampler:
      if (auto error = ValidateConstantSampler(_, inst)) return error;
      break;
    case spv::Op::OpConstantNull:
      if (auto error = ValidateConstantNull(_, inst)) return error;
      break;
    case spv::Op::OpSpecConstant:
      if (auto error = ValidateSpecConstant(_, inst)) return error;
      break;
    case spv::Op::OpSpecConstantOp:
      if (auto error = ValidateSpecConstantOp(_, inst)) return error;
      break;
    default:
      break;
  }

  // Generally disallow creating 8- or 16-bit constants unless the full
  // capabilities are present.
  if (spvOpcodeIsConstant(inst->opcode()) &&
      _.HasCapability(spv::Capability::Shader) &&
      !_.IsPointerType(inst->type_id()) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Cannot form constants of 8- or 16-bit types";
  }

  return SPV_SUCCESS;
}

}  // namespace val
}  // namespace spvtools