File: validate_type.cpp

package info (click to toggle)
spirv-tools 2025.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 28,588 kB
  • sloc: cpp: 470,407; javascript: 5,893; python: 3,326; ansic: 488; sh: 450; ruby: 88; makefile: 18; lisp: 9
file content (1053 lines) | stat: -rw-r--r-- 43,043 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
// Copyright (c) 2018 Google LLC.
// Modifications Copyright (C) 2024 Advanced Micro Devices, Inc. All rights
// reserved.
// Copyright (c) 2024 NVIDIA Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Ensures type declarations are unique unless allowed by the specification.

#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"

namespace spvtools {
namespace val {
namespace {

// Validates that type declarations are unique, unless multiple declarations
// of the same data type are allowed by the specification.
// (see section 2.8 Types and Variables)
// Doesn't do anything if SPV_VAL_ignore_type_decl_unique was declared in the
// module.
spv_result_t ValidateUniqueness(ValidationState_t& _, const Instruction* inst) {
  if (_.HasExtension(Extension::kSPV_VALIDATOR_ignore_type_decl_unique))
    return SPV_SUCCESS;

  const auto opcode = inst->opcode();
  if (opcode != spv::Op::OpTypeArray && opcode != spv::Op::OpTypeRuntimeArray &&
      opcode != spv::Op::OpTypeNodePayloadArrayAMDX &&
      opcode != spv::Op::OpTypeStruct && opcode != spv::Op::OpTypePointer &&
      opcode != spv::Op::OpTypeUntypedPointerKHR &&
      !_.RegisterUniqueTypeDeclaration(inst)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Duplicate non-aggregate type declarations are not allowed. "
              "Opcode: "
           << spvOpcodeString(opcode) << " id: " << inst->id();
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeInt(ValidationState_t& _, const Instruction* inst) {
  // Validates that the number of bits specified for an Int type is valid.
  // Scalar integer types can be parameterized only with 32-bits.
  // Int8, Int16, and Int64 capabilities allow using 8-bit, 16-bit, and 64-bit
  // integers, respectively.
  auto num_bits = inst->GetOperandAs<const uint32_t>(1);
  if (num_bits != 32) {
    if (num_bits == 8) {
      if (_.features().declare_int8_type) {
        return SPV_SUCCESS;
      }
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using an 8-bit integer type requires the Int8 capability,"
                " or an extension that explicitly enables 8-bit integers.";
    } else if (num_bits == 16) {
      if (_.features().declare_int16_type) {
        return SPV_SUCCESS;
      }
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using a 16-bit integer type requires the Int16 capability,"
                " or an extension that explicitly enables 16-bit integers.";
    } else if (num_bits == 64) {
      if (_.HasCapability(spv::Capability::Int64)) {
        return SPV_SUCCESS;
      }
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using a 64-bit integer type requires the Int64 capability.";
    } else {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Invalid number of bits (" << num_bits
             << ") used for OpTypeInt.";
    }
  }

  const auto signedness_index = 2;
  const auto signedness = inst->GetOperandAs<uint32_t>(signedness_index);
  if (signedness != 0 && signedness != 1) {
    return _.diag(SPV_ERROR_INVALID_VALUE, inst)
           << "OpTypeInt has invalid signedness:";
  }

  // SPIR-V Spec 2.16.3: Validation Rules for Kernel Capabilities: The
  // Signedness in OpTypeInt must always be 0.
  if (spv::Op::OpTypeInt == inst->opcode() &&
      _.HasCapability(spv::Capability::Kernel) &&
      inst->GetOperandAs<uint32_t>(2) != 0u) {
    return _.diag(SPV_ERROR_INVALID_BINARY, inst)
           << "The Signedness in OpTypeInt "
              "must always be 0 when Kernel "
              "capability is used.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeFloat(ValidationState_t& _, const Instruction* inst) {
  // Validates that the number of bits specified for an Int type is valid.
  // Scalar integer types can be parameterized only with 32-bits.
  // Int8, Int16, and Int64 capabilities allow using 8-bit, 16-bit, and 64-bit
  // integers, respectively.
  auto num_bits = inst->GetOperandAs<const uint32_t>(1);
  const bool has_encoding = inst->operands().size() > 2;
  if (num_bits == 32) {
    return SPV_SUCCESS;
  }
  auto operands = inst->words();

  if (num_bits == 16) {
    // An absence of FP encoding implies IEEE 754. The Float16 and Float16Buffer
    // capabilities only enable IEEE 754 binary 16
    if (has_encoding || _.features().declare_float16_type) {
      return SPV_SUCCESS;
    }
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Using a 16-bit floating point "
           << "type requires the Float16 or Float16Buffer capability,"
              " or an extension that explicitly enables 16-bit floating point.";
  }
  if (num_bits == 8) {
    if (!_.features().declare_float8_type) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using a 8-bit floating point "
             << "type requires the Float8EXT capability.";
    }
    if (!has_encoding) {
      // we don't support fp8 without encoding
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "8-bit floating point type requires an encoding.";
    }
    const spvtools::OperandDesc* desc = nullptr;
    const std::set<spv::FPEncoding> known_encodings{
        spv::FPEncoding::Float8E4M3EXT, spv::FPEncoding::Float8E5M2EXT};
    spv_result_t status = spvtools::LookupOperand(SPV_OPERAND_TYPE_FPENCODING,
                                                  inst->words()[3], &desc);
    if ((status != SPV_SUCCESS) ||
        (known_encodings.find(static_cast<spv::FPEncoding>(desc->value)) ==
         known_encodings.end())) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Unsupported 8-bit floating point encoding ("
             << desc->name().data() << ").";
    }

    return SPV_SUCCESS;
  }
  if (num_bits == 64) {
    if (_.HasCapability(spv::Capability::Float64)) {
      return SPV_SUCCESS;
    }
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Using a 64-bit floating point "
           << "type requires the Float64 capability.";
  }
  return _.diag(SPV_ERROR_INVALID_DATA, inst)
         << "Invalid number of bits (" << num_bits << ") used for OpTypeFloat.";
}

spv_result_t ValidateTypeVector(ValidationState_t& _, const Instruction* inst) {
  const auto component_index = 1;
  const auto component_id = inst->GetOperandAs<uint32_t>(component_index);
  const auto component_type = _.FindDef(component_id);
  if (component_type) {
    bool isPointer = component_type->opcode() == spv::Op::OpTypePointer;
    bool isScalar = spvOpcodeIsScalarType(component_type->opcode());

    if (_.HasCapability(spv::Capability::MaskedGatherScatterINTEL) &&
        !isPointer && !isScalar) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Invalid OpTypeVector Component Type<id> "
             << _.getIdName(component_id)
             << ": Expected a scalar or pointer type when using the "
                "SPV_INTEL_masked_gather_scatter extension.";
    } else if (!_.HasCapability(spv::Capability::MaskedGatherScatterINTEL) &&
               !isScalar) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeVector Component Type <id> " << _.getIdName(component_id)
             << " is not a scalar type.";
    }
  } else {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeVector Component Type <id> " << _.getIdName(component_id)
           << " is not a scalar type.";
  }

  // Validates that the number of components in the vector is valid.
  // Vector types can only be parameterized as having 2, 3, or 4 components.
  // If the Vector16 capability is added, 8 and 16 components are also allowed.
  auto num_components = inst->GetOperandAs<const uint32_t>(2);
  if (num_components == 2 || num_components == 3 || num_components == 4) {
    return SPV_SUCCESS;
  } else if (num_components == 8 || num_components == 16) {
    if (_.HasCapability(spv::Capability::Vector16)) {
      return SPV_SUCCESS;
    }
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Having " << num_components << " components for "
           << spvOpcodeString(inst->opcode())
           << " requires the Vector16 capability";
  } else {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Illegal number of components (" << num_components << ") for "
           << spvOpcodeString(inst->opcode());
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeCooperativeVectorNV(ValidationState_t& _,
                                             const Instruction* inst) {
  const auto component_index = 1;
  const auto component_type_id = inst->GetOperandAs<uint32_t>(component_index);
  const auto component_type = _.FindDef(component_type_id);
  if (!component_type || (spv::Op::OpTypeFloat != component_type->opcode() &&
                          spv::Op::OpTypeInt != component_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeVectorNV Component Type <id> "
           << _.getIdName(component_type_id)
           << " is not a scalar numerical type.";
  }

  const auto num_components_index = 2;
  const auto num_components_id =
      inst->GetOperandAs<uint32_t>(num_components_index);
  const auto num_components = _.FindDef(num_components_id);
  if (!num_components || !spvOpcodeIsConstant(num_components->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeVectorNV component count <id> "
           << _.getIdName(num_components_id)
           << " is not a scalar constant type.";
  }

  // NOTE: Check the initialiser value of the constant
  const auto const_inst = num_components->words();
  const auto const_result_type_index = 1;
  const auto const_result_type = _.FindDef(const_inst[const_result_type_index]);
  if (!const_result_type || spv::Op::OpTypeInt != const_result_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeVectorNV component count <id> "
           << _.getIdName(num_components_id)
           << " is not a constant integer type.";
  }

  int64_t num_components_value;
  if (_.EvalConstantValInt64(num_components_id, &num_components_value)) {
    auto& type_words = const_result_type->words();
    const bool is_signed = type_words[3] > 0;
    if (num_components_value == 0 || (num_components_value < 0 && is_signed)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeCooperativeVectorNV component count <id> "
             << _.getIdName(num_components_id)
             << " default value must be at least 1: found "
             << num_components_value;
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeMatrix(ValidationState_t& _, const Instruction* inst) {
  const auto column_type_index = 1;
  const auto column_type_id = inst->GetOperandAs<uint32_t>(column_type_index);
  const auto column_type = _.FindDef(column_type_id);
  if (!column_type || spv::Op::OpTypeVector != column_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Columns in a matrix must be of type vector.";
  }

  // Trace back once more to find out the type of components in the vector.
  // Operand 1 is the <id> of the type of data in the vector.
  const auto comp_type_id = column_type->GetOperandAs<uint32_t>(1);
  auto comp_type_instruction = _.FindDef(comp_type_id);
  if (comp_type_instruction->opcode() != spv::Op::OpTypeFloat) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Matrix types can only be "
                                                   "parameterized with "
                                                   "floating-point types.";
  }

  // Validates that the matrix has 2,3, or 4 columns.
  auto num_cols = inst->GetOperandAs<const uint32_t>(2);
  if (num_cols != 2 && num_cols != 3 && num_cols != 4) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Matrix types can only be "
                                                   "parameterized as having "
                                                   "only 2, 3, or 4 columns.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeArray(ValidationState_t& _, const Instruction* inst) {
  const auto element_type_index = 1;
  const auto element_type_id = inst->GetOperandAs<uint32_t>(element_type_index);
  const auto element_type = _.FindDef(element_type_id);
  if (!element_type || !spvOpcodeGeneratesType(element_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Element Type <id> " << _.getIdName(element_type_id)
           << " is not a type.";
  }

  if (element_type->opcode() == spv::Op::OpTypeVoid) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Element Type <id> " << _.getIdName(element_type_id)
           << " is a void type.";
  }

  if (_.HasCapability(spv::Capability::Shader)) {
    if (element_type->opcode() == spv::Op::OpTypeStruct &&
        (_.HasDecoration(element_type->id(), spv::Decoration::Block) ||
         _.HasDecoration(element_type->id(), spv::Decoration::BufferBlock))) {
      if (_.HasDecoration(inst->id(), spv::Decoration::ArrayStride)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Array containing a Block or BufferBlock must not be "
                  "decorated with ArrayStride";
      }
    }
  }

  if (spvIsVulkanEnv(_.context()->target_env) &&
      element_type->opcode() == spv::Op::OpTypeRuntimeArray) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << _.VkErrorID(4680) << "OpTypeArray Element Type <id> "
           << _.getIdName(element_type_id) << " is not valid in "
           << spvLogStringForEnv(_.context()->target_env) << " environments.";
  }

  const auto length_index = 2;
  const auto length_id = inst->GetOperandAs<uint32_t>(length_index);
  const auto length = _.FindDef(length_id);
  if (!length || !spvOpcodeIsConstant(length->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Length <id> " << _.getIdName(length_id)
           << " is not a scalar constant type.";
  }

  // NOTE: Check the initialiser value of the constant
  const auto const_inst = length->words();
  const auto const_result_type_index = 1;
  const auto const_result_type = _.FindDef(const_inst[const_result_type_index]);
  if (!const_result_type || spv::Op::OpTypeInt != const_result_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Length <id> " << _.getIdName(length_id)
           << " is not a constant integer type.";
  }

  int64_t length_value;
  if (_.EvalConstantValInt64(length_id, &length_value)) {
    auto& type_words = const_result_type->words();
    const bool is_signed = type_words[3] > 0;
    if (length_value == 0 || (length_value < 0 && is_signed)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeArray Length <id> " << _.getIdName(length_id)
             << " default value must be at least 1: found " << length_value;
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeRuntimeArray(ValidationState_t& _,
                                      const Instruction* inst) {
  const auto element_type_index = 1;
  const auto element_id = inst->GetOperandAs<uint32_t>(element_type_index);
  const auto element_type = _.FindDef(element_id);
  if (!element_type || !spvOpcodeGeneratesType(element_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeRuntimeArray Element Type <id> " << _.getIdName(element_id)
           << " is not a type.";
  }

  if (element_type->opcode() == spv::Op::OpTypeVoid) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeRuntimeArray Element Type <id> " << _.getIdName(element_id)
           << " is a void type.";
  }

  if (_.HasCapability(spv::Capability::Shader)) {
    if (element_type->opcode() == spv::Op::OpTypeStruct &&
        (_.HasDecoration(element_type->id(), spv::Decoration::Block) ||
         _.HasDecoration(element_type->id(), spv::Decoration::BufferBlock))) {
      if (_.HasDecoration(inst->id(), spv::Decoration::ArrayStride)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "Array containing a Block or BufferBlock must not be "
                  "decorated with ArrayStride";
      }
    }
  }

  if (spvIsVulkanEnv(_.context()->target_env) &&
      element_type->opcode() == spv::Op::OpTypeRuntimeArray) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << _.VkErrorID(4680) << "OpTypeRuntimeArray Element Type <id> "
           << _.getIdName(element_id) << " is not valid in "
           << spvLogStringForEnv(_.context()->target_env) << " environments.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeStruct(ValidationState_t& _, const Instruction* inst) {
  const uint32_t struct_id = inst->GetOperandAs<uint32_t>(0);
  for (size_t member_type_index = 1;
       member_type_index < inst->operands().size(); ++member_type_index) {
    auto member_type_id = inst->GetOperandAs<uint32_t>(member_type_index);
    if (member_type_id == inst->id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Structure members may not be self references";
    }

    auto member_type = _.FindDef(member_type_id);
    if (!member_type || !spvOpcodeGeneratesType(member_type->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeStruct Member Type <id> " << _.getIdName(member_type_id)
             << " is not a type.";
    }
    if (member_type->opcode() == spv::Op::OpTypeVoid) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Structures cannot contain a void type.";
    }
    if (spv::Op::OpTypeStruct == member_type->opcode() &&
        _.IsStructTypeWithBuiltInMember(member_type_id)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Structure <id> " << _.getIdName(member_type_id)
             << " contains members with BuiltIn decoration. Therefore this "
             << "structure may not be contained as a member of another "
             << "structure " << "type. Structure <id> "
             << _.getIdName(struct_id) << " contains structure <id> "
             << _.getIdName(member_type_id) << ".";
    }

    if (spvIsVulkanEnv(_.context()->target_env) &&
        member_type->opcode() == spv::Op::OpTypeRuntimeArray) {
      const bool is_last_member =
          member_type_index == inst->operands().size() - 1;
      if (!is_last_member) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(4680) << "In "
               << spvLogStringForEnv(_.context()->target_env)
               << ", OpTypeRuntimeArray must only be used for the last member "
                  "of an OpTypeStruct";
      }

      if (!_.HasDecoration(inst->id(), spv::Decoration::Block) &&
          !_.HasDecoration(inst->id(), spv::Decoration::BufferBlock)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << _.VkErrorID(4680)
               << spvLogStringForEnv(_.context()->target_env)
               << ", OpTypeStruct containing an OpTypeRuntimeArray "
               << "must be decorated with Block or BufferBlock.";
      }
    }
  }

  bool has_nested_blockOrBufferBlock_struct = false;
  // Struct members start at word 2 of OpTypeStruct instruction.
  for (size_t word_i = 2; word_i < inst->words().size(); ++word_i) {
    auto member = inst->word(word_i);
    if (_.ContainsType(
            member,
            [&_](const Instruction* type_inst) {
              if (type_inst->opcode() == spv::Op::OpTypeStruct &&
                  (_.HasDecoration(type_inst->id(), spv::Decoration::Block) ||
                   _.HasDecoration(type_inst->id(),
                                   spv::Decoration::BufferBlock))) {
                return true;
              }
              return false;
            },
            /* traverse_all_types = */ false)) {
      has_nested_blockOrBufferBlock_struct = true;
      break;
    }
  }

  _.SetHasNestedBlockOrBufferBlockStruct(inst->id(),
                                         has_nested_blockOrBufferBlock_struct);
  if (_.GetHasNestedBlockOrBufferBlockStruct(inst->id()) &&
      (_.HasDecoration(inst->id(), spv::Decoration::BufferBlock) ||
       _.HasDecoration(inst->id(), spv::Decoration::Block))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "rules: A Block or BufferBlock cannot be nested within another "
              "Block or BufferBlock. ";
  }

  std::unordered_set<uint32_t> built_in_members;
  for (auto decoration : _.id_decorations(struct_id)) {
    if (decoration.dec_type() == spv::Decoration::BuiltIn &&
        decoration.struct_member_index() != Decoration::kInvalidMember) {
      built_in_members.insert(decoration.struct_member_index());
    }
  }
  int num_struct_members = static_cast<int>(inst->operands().size() - 1);
  int num_builtin_members = static_cast<int>(built_in_members.size());
  if (num_builtin_members > 0 && num_builtin_members != num_struct_members) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "When BuiltIn decoration is applied to a structure-type member, "
           << "all members of that structure type must also be decorated with "
           << "BuiltIn (No allowed mixing of built-in variables and "
           << "non-built-in variables within a single structure). Structure id "
           << struct_id << " does not meet this requirement.";
  }
  if (num_builtin_members > 0) {
    _.RegisterStructTypeWithBuiltInMember(struct_id);
  }

  const auto isOpaqueType = [&_](const Instruction* opaque_inst) {
    auto opcode = opaque_inst->opcode();
    if (_.HasCapability(spv::Capability::BindlessTextureNV) &&
        (opcode == spv::Op::OpTypeImage || opcode == spv::Op::OpTypeSampler ||
         opcode == spv::Op::OpTypeSampledImage)) {
      return false;
    } else if (spvOpcodeIsBaseOpaqueType(opcode)) {
      return true;
    }
    return false;
  };

  if (spvIsVulkanEnv(_.context()->target_env) &&
      !_.options()->before_hlsl_legalization &&
      _.ContainsType(inst->id(), isOpaqueType)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << _.VkErrorID(4667) << "In "
           << spvLogStringForEnv(_.context()->target_env)
           << ", OpTypeStruct must not contain an opaque type.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypePointer(ValidationState_t& _,
                                 const Instruction* inst) {
  auto type_id = inst->GetOperandAs<uint32_t>(2);
  auto type = _.FindDef(type_id);
  if (!type || !spvOpcodeGeneratesType(type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypePointer Type <id> " << _.getIdName(type_id)
           << " is not a type.";
  }
  // See if this points to a storage image.
  const auto storage_class = inst->GetOperandAs<spv::StorageClass>(1);
  if (storage_class == spv::StorageClass::UniformConstant) {
    // Unpack an optional level of arraying.
    if (type->opcode() == spv::Op::OpTypeArray ||
        type->opcode() == spv::Op::OpTypeRuntimeArray) {
      type_id = type->GetOperandAs<uint32_t>(1);
      type = _.FindDef(type_id);
    }
    if (type->opcode() == spv::Op::OpTypeImage) {
      const auto sampled = type->GetOperandAs<uint32_t>(6);
      // 2 indicates this image is known to be be used without a sampler, i.e.
      // a storage image.
      if (sampled == 2) _.RegisterPointerToStorageImage(inst->id());
    }
    if (type->opcode() == spv::Op::OpTypeTensorARM) {
      _.RegisterPointerToTensor(inst->id());
    }
  }

  if (!_.IsValidStorageClass(storage_class)) {
    return _.diag(SPV_ERROR_INVALID_BINARY, inst)
           << _.VkErrorID(4643)
           << "Invalid storage class for target environment";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeFunction(ValidationState_t& _,
                                  const Instruction* inst) {
  const auto return_type_id = inst->GetOperandAs<uint32_t>(1);
  const auto return_type = _.FindDef(return_type_id);
  if (!return_type || !spvOpcodeGeneratesType(return_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeFunction Return Type <id> " << _.getIdName(return_type_id)
           << " is not a type.";
  }
  size_t num_args = 0;
  for (size_t param_type_index = 2; param_type_index < inst->operands().size();
       ++param_type_index, ++num_args) {
    const auto param_id = inst->GetOperandAs<uint32_t>(param_type_index);
    const auto param_type = _.FindDef(param_id);
    if (!param_type || !spvOpcodeGeneratesType(param_type->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeFunction Parameter Type <id> " << _.getIdName(param_id)
             << " is not a type.";
    }

    if (param_type->opcode() == spv::Op::OpTypeVoid) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeFunction Parameter Type <id> " << _.getIdName(param_id)
             << " cannot be OpTypeVoid.";
    }
  }
  const uint32_t num_function_args_limit =
      _.options()->universal_limits_.max_function_args;
  if (num_args > num_function_args_limit) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeFunction may not take more than "
           << num_function_args_limit << " arguments. OpTypeFunction <id> "
           << _.getIdName(inst->GetOperandAs<uint32_t>(0)) << " has "
           << num_args << " arguments.";
  }

  // The only valid uses of OpTypeFunction are in an OpFunction, debugging, or
  // decoration instruction.
  for (auto& pair : inst->uses()) {
    const auto* use = pair.first;
    if (use->opcode() != spv::Op::OpFunction &&
        use->opcode() != spv::Op::OpAsmINTEL &&
        !spvOpcodeIsDebug(use->opcode()) && !use->IsNonSemantic() &&
        !spvOpcodeIsDecoration(use->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, use)
             << "Invalid use of function type result id "
             << _.getIdName(inst->id()) << ".";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeForwardPointer(ValidationState_t& _,
                                        const Instruction* inst) {
  const auto pointer_type_id = inst->GetOperandAs<uint32_t>(0);
  const auto pointer_type_inst = _.FindDef(pointer_type_id);
  if (pointer_type_inst->opcode() != spv::Op::OpTypePointer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Pointer type in OpTypeForwardPointer is not a pointer type.";
  }

  const auto storage_class = inst->GetOperandAs<spv::StorageClass>(1);
  if (storage_class != pointer_type_inst->GetOperandAs<spv::StorageClass>(1)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Storage class in OpTypeForwardPointer does not match the "
           << "pointer definition.";
  }

  const auto pointee_type_id = pointer_type_inst->GetOperandAs<uint32_t>(2);
  const auto pointee_type = _.FindDef(pointee_type_id);
  if (!pointee_type || pointee_type->opcode() != spv::Op::OpTypeStruct) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Forward pointers must point to a structure";
  }

  if (spvIsVulkanEnv(_.context()->target_env)) {
    if (storage_class != spv::StorageClass::PhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(4711)
             << "In Vulkan, OpTypeForwardPointer must have "
             << "a storage class of PhysicalStorageBuffer.";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeCooperativeMatrix(ValidationState_t& _,
                                           const Instruction* inst) {
  const auto component_type_index = 1;
  const auto component_type_id =
      inst->GetOperandAs<uint32_t>(component_type_index);
  const auto component_type = _.FindDef(component_type_id);
  if (!component_type || (spv::Op::OpTypeFloat != component_type->opcode() &&
                          spv::Op::OpTypeInt != component_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrix Component Type <id> "
           << _.getIdName(component_type_id)
           << " is not a scalar numerical type.";
  }

  if (_.IsBfloat16ScalarType(component_type_id)) {
    if (!_.HasCapability(spv::Capability::BFloat16CooperativeMatrixKHR)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeCooperativeMatrix Component Type <id> "
             << _.getIdName(component_type_id)
             << "require BFloat16CooperativeMatrixKHR be declared.";
    }
  }

  if (_.IsFP8ScalarType(component_type_id)) {
    if (!_.HasCapability(spv::Capability::Float8CooperativeMatrixEXT)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeCooperativeMatrix Component Type <id> "
             << _.getIdName(component_type_id)
             << "require Float8CooperativeMatrixEXT be declared.";
    }
  }

  const auto scope_index = 2;
  const auto scope_id = inst->GetOperandAs<uint32_t>(scope_index);
  const auto scope = _.FindDef(scope_id);
  if (!scope || !_.IsIntScalarType(scope->type_id()) ||
      !spvOpcodeIsConstant(scope->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrix Scope <id> " << _.getIdName(scope_id)
           << " is not a constant instruction with scalar integer type.";
  }

  const auto rows_index = 3;
  const auto rows_id = inst->GetOperandAs<uint32_t>(rows_index);
  const auto rows = _.FindDef(rows_id);
  if (!rows || !_.IsIntScalarType(rows->type_id()) ||
      !spvOpcodeIsConstant(rows->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrix Rows <id> " << _.getIdName(rows_id)
           << " is not a constant instruction with scalar integer type.";
  }

  const auto cols_index = 4;
  const auto cols_id = inst->GetOperandAs<uint32_t>(cols_index);
  const auto cols = _.FindDef(cols_id);
  if (!cols || !_.IsIntScalarType(cols->type_id()) ||
      !spvOpcodeIsConstant(cols->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrix Cols <id> " << _.getIdName(cols_id)
           << " is not a constant instruction with scalar integer type.";
  }

  if (inst->opcode() == spv::Op::OpTypeCooperativeMatrixKHR) {
    const auto use_index = 5;
    const auto use_id = inst->GetOperandAs<uint32_t>(use_index);
    const auto use = _.FindDef(use_id);
    if (!use || !_.IsIntScalarType(use->type_id()) ||
        !spvOpcodeIsConstant(use->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeCooperativeMatrixKHR Use <id> " << _.getIdName(use_id)
             << " is not a constant instruction with scalar integer type.";
    }
  }

  uint64_t scope_value;
  if (_.EvalConstantValUint64(scope_id, &scope_value)) {
    if (scope_value == static_cast<uint32_t>(spv::Scope::Workgroup)) {
      for (auto entry_point_id : _.entry_points()) {
        if (!_.EntryPointHasLocalSizeOrId(entry_point_id)) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "OpTypeCooperativeMatrixKHR with ScopeWorkgroup "
                 << "used without specifying LocalSize or LocalSizeId "
                 << "for entry point <id> " << _.getIdName(entry_point_id);
        }
        const auto local_size = _.EntryPointLocalSizeOrId(entry_point_id);
        const auto mode = local_size->GetOperandAs<spv::ExecutionMode>(1);
        if (mode == spv::ExecutionMode::LocalSizeId) {
          uint32_t local_size_ids[3] = {
              local_size->GetOperandAs<uint32_t>(2),
              local_size->GetOperandAs<uint32_t>(3),
              local_size->GetOperandAs<uint32_t>(4),
          };
          for (auto id : local_size_ids) {
            if (_.FindDef(id) > inst) {
              return _.diag(SPV_ERROR_INVALID_ID, inst)
                     << "OpTypeCooperativeMatrixKHR with ScopeWorkgroup "
                     << "used before LocalSizeId constant value <id> "
                     << _.getIdName(id) << " is defined.";
            }
          }
        }
      }
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeUntypedPointerKHR(ValidationState_t& _,
                                           const Instruction* inst) {
  if (spvIsVulkanEnv(_.context()->target_env)) {
    const auto sc = inst->GetOperandAs<spv::StorageClass>(1);
    switch (sc) {
      case spv::StorageClass::Workgroup:
        if (!_.HasCapability(
                spv::Capability::WorkgroupMemoryExplicitLayoutKHR)) {
          return _.diag(SPV_ERROR_INVALID_ID, inst)
                 << "Workgroup storage class untyped pointers in Vulkan "
                    "require WorkgroupMemoryExplicitLayoutKHR be declared";
        }
        break;
      case spv::StorageClass::StorageBuffer:
      case spv::StorageClass::PhysicalStorageBuffer:
      case spv::StorageClass::Uniform:
      case spv::StorageClass::PushConstant:
        break;
      default:
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "In Vulkan, untyped pointers can only be used in an "
                  "explicitly laid out storage class";
    }
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateTensorDim(ValidationState_t& _, const Instruction* inst) {
  const auto dim_index = 1;
  const auto dim_id = inst->GetOperandAs<uint32_t>(dim_index);
  const auto dim = _.FindDef(dim_id);
  if (!dim || !_.IsIntScalarType(dim->type_id()) ||
      _.GetBitWidth(dim->type_id()) != 32) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << spvOpcodeString(inst->opcode()) << " Dim <id> "
           << _.getIdName(dim_id) << " is not a 32-bit integer.";
  }

  constexpr uint32_t max_tensor_dim = 5;

  uint64_t dim_value;
  if (_.EvalConstantValUint64(dim_id, &dim_value)) {
    if (dim_value == 0 || dim_value > max_tensor_dim) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << spvOpcodeString(inst->opcode()) << " Dim <id> "
             << _.getIdName(dim_id) << " must be between 1 and "
             << max_tensor_dim << ".";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeTensorLayoutNV(ValidationState_t& _,
                                        const Instruction* inst) {
  if (auto error = ValidateTensorDim(_, inst)) return error;

  const auto clamp_index = 2;
  const auto clamp_id = inst->GetOperandAs<uint32_t>(clamp_index);
  const auto clamp = _.FindDef(clamp_id);
  if (!clamp || !_.IsIntScalarType(clamp->type_id()) ||
      _.GetBitWidth(clamp->type_id()) != 32) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << spvOpcodeString(inst->opcode()) << " ClampMode <id> "
           << _.getIdName(clamp_id) << " is not a 32-bit integer.";
  }

  uint64_t clamp_value;
  if (_.EvalConstantValUint64(clamp_id, &clamp_value)) {
    if (clamp_value >
        static_cast<uint32_t>(spv::TensorClampMode::RepeatMirrored)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << spvOpcodeString(inst->opcode()) << " ClampMode <id> "
             << _.getIdName(clamp_id) << " must be a valid TensorClampMode.";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeTensorViewNV(ValidationState_t& _,
                                      const Instruction* inst) {
  if (auto error = ValidateTensorDim(_, inst)) return error;

  const auto has_dim_index = 2;
  const auto has_dim_id = inst->GetOperandAs<uint32_t>(has_dim_index);
  const auto has_dim = _.FindDef(has_dim_id);
  if (!has_dim || !_.IsBoolScalarType(has_dim->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << spvOpcodeString(inst->opcode()) << " HasDimensions <id> "
           << _.getIdName(has_dim_id) << " is not a boolean value.";
  }

  uint32_t permutation_mask = 0;
  bool all_constant = true;
  const auto num_dim = inst->operands().size() - 3;
  for (size_t p_index = 3; p_index < inst->operands().size(); ++p_index) {
    auto p_id = inst->GetOperandAs<uint32_t>(p_index);
    const auto p = _.FindDef(p_id);
    if (!p || !_.IsIntScalarType(p->type_id()) ||
        _.GetBitWidth(p->type_id()) != 32) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << spvOpcodeString(inst->opcode()) << " Permutation <id> "
             << _.getIdName(p_id) << " is not a 32-bit integer.";
    }

    uint64_t p_value;
    if (_.EvalConstantValUint64(p_id, &p_value)) {
      if (p_value >= num_dim) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << spvOpcodeString(inst->opcode()) << " Permutation <id> "
               << _.getIdName(p_id) << " must be a valid dimension.";
      }
      permutation_mask |= 1 << p_value;
    } else {
      all_constant = false;
    }
  }
  if (all_constant && permutation_mask != (1U << num_dim) - 1U) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << spvOpcodeString(inst->opcode())
           << " Permutation values don't form a valid permutation.";
  }

  uint64_t dim_value;
  if (_.EvalConstantValUint64(inst->GetOperandAs<uint32_t>(1), &dim_value)) {
    if (dim_value != num_dim) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << spvOpcodeString(inst->opcode())
             << " Incorrect number of permutation values.";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeTensorARM(ValidationState_t& _,
                                   const Instruction* inst) {
  // Element type must be a scalar type
  const auto element_type_index = 1;
  const auto element_type_id = inst->GetOperandAs<uint32_t>(element_type_index);
  const auto element_type = _.FindDef(element_type_id);
  if (!element_type || (!_.IsFloatScalarType(element_type_id) &&
                        !_.IsIntScalarType(element_type_id) &&
                        !_.IsBoolScalarType(element_type_id))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeTensorARM Element Type <id> "
           << _.getIdName(element_type_id) << " is not a scalar type.";
  }

  if (inst->operands().size() < 3) {
    return SPV_SUCCESS;
  }

  // Rank must be constant instruction with scalar integer type
  const auto rank_index = 2;
  const auto rank_id = inst->GetOperandAs<uint32_t>(rank_index);
  const auto rank = _.FindDef(rank_id);
  if (!rank || !spvOpcodeIsConstant(rank->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeTensorARM Rank <id> " << _.getIdName(rank_id)
           << " is not a constant instruction.";
  }
  // Rank must have scalar integer type
  if (!rank || !_.IsIntScalarType(rank->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeTensorARM Rank <id> " << _.getIdName(rank_id)
           << " does not have a scalar integer type.";
  }
  // Rank must be greater than 0
  uint64_t rank_value = 0;
  if (_.EvalConstantValUint64(rank_id, &rank_value) && rank_value == 0) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeTensorARM Rank <id> " << _.getIdName(rank_id)
           << " must define a value greater than 0.";
  }

  if (inst->operands().size() < 4) {
    return SPV_SUCCESS;
  }

  // Shape must be constant instruction
  const auto shape_index = 3;
  const auto shape_id = inst->GetOperandAs<uint32_t>(shape_index);
  const auto shape = _.FindDef(shape_id);
  if (!shape || !spvOpcodeIsConstant(shape->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeTensorARM Shape <id> " << _.getIdName(shape_id)
           << " is not a constant instruction.";
  }

  // Shape must be array of integer of length rank
  if (!_.IsIntArrayType(shape->type_id(), rank_value)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeTensorARM Shape <id> " << _.getIdName(shape_id)
           << " is not an array of integer type whose Length is equal to Rank.";
  }

  // Shape constituents must be greater than 0
  for (size_t i = 2; i < shape->operands().size(); i++) {
    const auto s_id = shape->GetOperandAs<uint32_t>(i);
    uint64_t s_val = 0;
    if (_.EvalConstantValUint64(s_id, &s_val) && s_val == 0) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeTensorARM Shape constituent " << i - 2
             << " is not greater than 0.";
    }
  }

  return SPV_SUCCESS;
}
}  // namespace

spv_result_t TypePass(ValidationState_t& _, const Instruction* inst) {
  if (!spvOpcodeGeneratesType(inst->opcode()) &&
      inst->opcode() != spv::Op::OpTypeForwardPointer) {
    return SPV_SUCCESS;
  }

  if (auto error = ValidateUniqueness(_, inst)) return error;

  switch (inst->opcode()) {
    case spv::Op::OpTypeInt:
      if (auto error = ValidateTypeInt(_, inst)) return error;
      break;
    case spv::Op::OpTypeFloat:
      if (auto error = ValidateTypeFloat(_, inst)) return error;
      break;
    case spv::Op::OpTypeVector:
      if (auto error = ValidateTypeVector(_, inst)) return error;
      break;
    case spv::Op::OpTypeMatrix:
      if (auto error = ValidateTypeMatrix(_, inst)) return error;
      break;
    case spv::Op::OpTypeArray:
      if (auto error = ValidateTypeArray(_, inst)) return error;
      break;
    case spv::Op::OpTypeRuntimeArray:
      if (auto error = ValidateTypeRuntimeArray(_, inst)) return error;
      break;
    case spv::Op::OpTypeStruct:
      if (auto error = ValidateTypeStruct(_, inst)) return error;
      break;
    case spv::Op::OpTypePointer:
      if (auto error = ValidateTypePointer(_, inst)) return error;
      break;
    case spv::Op::OpTypeFunction:
      if (auto error = ValidateTypeFunction(_, inst)) return error;
      break;
    case spv::Op::OpTypeForwardPointer:
      if (auto error = ValidateTypeForwardPointer(_, inst)) return error;
      break;
    case spv::Op::OpTypeCooperativeMatrixNV:
    case spv::Op::OpTypeCooperativeMatrixKHR:
      if (auto error = ValidateTypeCooperativeMatrix(_, inst)) return error;
      break;
    case spv::Op::OpTypeCooperativeVectorNV:
      if (auto error = ValidateTypeCooperativeVectorNV(_, inst)) return error;
      break;
    case spv::Op::OpTypeUntypedPointerKHR:
      if (auto error = ValidateTypeUntypedPointerKHR(_, inst)) return error;
      break;
    case spv::Op::OpTypeTensorLayoutNV:
      if (auto error = ValidateTypeTensorLayoutNV(_, inst)) return error;
      break;
    case spv::Op::OpTypeTensorViewNV:
      if (auto error = ValidateTypeTensorViewNV(_, inst)) return error;
      break;
    case spv::Op::OpTypeTensorARM:
      if (auto error = ValidateTypeTensorARM(_, inst)) return error;
      break;
    default:
      break;
  }

  return SPV_SUCCESS;
}

}  // namespace val
}  // namespace spvtools