File: proto.tex

package info (click to toggle)
spooles 2.2-16
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,760 kB
  • sloc: ansic: 146,836; sh: 7,571; csh: 3,615; makefile: 1,970; perl: 74
file content (1336 lines) | stat: -rw-r--r-- 56,393 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
\par
\section{Prototypes and descriptions of {\tt FrontMtx} methods}
\label{section:FrontMtx:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt FrontMtx} object.
\par
\subsection{Basic methods}
\label{subsection:FrontMtx:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
FrontMtx * FrontMtx_new ( void ) ;
\end{verbatim}
\index{FrontMtx_new@{\tt FrontMtx\_new()}}
This method simply allocates storage for the {\tt FrontMtx} structure 
and then sets the default fields by a call to 
{\tt FrontMtx\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_setDefaultFields ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_setDefaultFields@{\tt FrontMtx\_setDefaultFields()}}
The structure's fields are set to default values:
{\tt nfront}, {\tt neqns}, {\tt nentD}, {\tt nentL}, {\tt nentU}  and
{\tt nlocks} are set to zero.
Five scalars are set to their default values,
\begin{center}
\begin{tabular}{lcl}
{\tt type}         & = &  {\tt SPOOLES\_REAL} \\
{\tt symmetryflag} & = &  {\tt SPOOLES\_SYMMETRIC} \\
{\tt sparsityflag} & = &  {\tt FRONTMTX\_DENSE\_FRONTS} \\
{\tt pivotingflag} & = &  {\tt SPOOLES\_NO\_PIVOTING} \\
{\tt dataMode}     & = &  {\tt FRONTMTX\_1D\_MODE}
\end{tabular}
\end{center}
and the structure's pointers are set to {\tt NULL}.
% {\tt tree},
% {\tt frontETree},
% {\tt symbfacIVL},
% {\tt frontsizesIV},
% {\tt rowadjIVL},
% {\tt coladjIVL},
% {\tt lowerblockIVL},
% {\tt upperblockIVL},
% {\tt p\_mtxDJJ},
% {\tt p\_mtxUJJ},
% {\tt p\_mtxUJN},
% {\tt p\_mtxLJJ},
% {\tt p\_mtxLNJ},
% {\tt lowerhash},
% {\tt upperhash} and
% {\tt lock}
% are set to {\tt NULL} .
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_clearData ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_clearData@{\tt FrontMtx\_clearData()}}
This method clears the object and free's any owned data
by invoking the {\tt \_clearData()} methods for its internal
{\tt IV} and {\tt IVL} objects, ({\it not} including
the {\tt frontETree} and {\tt symbfacIVL} objects that are not
owned by this {\tt FrontMtx} object).
If the {\tt lock} pointer is not {\tt NULL}, the lock is destroyed
via a call to {\tt Lock\_free()} and its storage is then
free'd.
There is a concluding call to {\tt FrontMtx\_setDefaultFields()}.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_free ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_free@{\tt FrontMtx\_free()}}
This method releases any storage by a call to 
{\tt FrontMtx\_clearData()} and then free the space for {\tt frontmtx}.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Instance methods}
\label{subsection:FrontMtx:proto:instance}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_nfront ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_nfront@{\tt FrontMtx\_nfront()}}
This method returns the number of fronts in the matrix.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_neqns ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_neqns@{\tt FrontMtx\_neqns()}}
This method returns the number of equations in the matrix.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * FrontMtx_frontTree ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_frontTree@{\tt FrontMtx\_frontTree()}}
This method returns the {\tt Tree} object for the fronts.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_initialFrontDimensions ( FrontMtx *frontmtx, int J,
                          int *pnD, int *pnL, int *pnU, int *pnbytes ) ;
\end{verbatim}
\index{FrontMtx_initialFrontDimensions@{\tt FrontMtx\_initialFrontDimensions()}}
This method fills the four pointer arguments with the number of 
internal rows and columns, number of rows in the lower block,
number of columns in the upper block, and number of bytes for a
{\tt Chv} object to hold the front.
in front {\tt J}.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
or if any of the four pointer arguments are NULL,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_frontSize ( FrontMtx *frontmtx, int J ) ;
\end{verbatim}
\index{FrontMtx_frontSize@{\tt FrontMtx\_frontSize()}}
This method returns the number of internal rows and columns
in front {\tt J}.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt frontsizesIV} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_setFrontSize ( FrontMtx *frontmtx, int J, int size ) ;
\end{verbatim}
\index{FrontMtx_setFrontsize@{\tt FrontMtx\_setFrontSize()}}
This method sets the number of internal rows and columns
in front {\tt J} to be {\tt size}.
This method is used during factorizations with pivoting enabled
since we cannot tell ahead of time how many rows and columns in a
front will be eliminated.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt frontsizesIV} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
or if ${\tt size} < 0$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_columnIndices ( FrontMtx *frontmtx, int J,
                              int *pncol, int **pindices ) ;
\end{verbatim}
\index{FrontMtx_columnIndices@{\tt FrontMtx\_columnIndices()}}
This method fills {\tt *pncol} with the number of columns
and {\tt *pindices} with a pointer to the column indices for front
{\tt J}.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt pncol} or {\tt pindices} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_rowIndices ( FrontMtx *frontmtx, int J,
                           int *pnrow, int **pindices ) ;
\end{verbatim}
\index{FrontMtx_rowIndices@{\tt FrontMtx\_rowIndices()}}
This method fills {\tt *pnrow} with the number of rows
and {\tt *pindices} with a pointer to the row indices for front
{\tt J}.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt pnrow} or {\tt pindices} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
SubMtx * FrontMtx_diagMtx ( FrontMtx *frontmtx, int J ) ;
\end{verbatim}
\index{FrontMtx_diagMtx@{\tt FrontMtx\_diagMtx()}}
This method returns a pointer to the object that contains
submatrix $D_{J,J}$.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
SubMtx * FrontMtx_upperMtx ( FrontMtx *frontmtx, int J, int K ) ;
\end{verbatim}
\index{FrontMtx_upperMtx@{\tt FrontMtx\_upperMtx()}}
This method returns a pointer to the object that contains
submatrix $U_{J,K}$.
If $K = nfront$, then the object containing $U_{J,\bnd{J}}$ is
returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
or if {\tt K} is not in {\tt [0,nfront]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
SubMtx * FrontMtx_lowerMtx ( FrontMtx *frontmtx, int K, int J ) ;
\end{verbatim}
\index{FrontMtx_lowerMtx@{\tt FrontMtx\_lowerMtx()}}
This method returns a pointer to the object that contains
submatrix $L_{K,J}$.
If $K = nfront$, then the object containing $L_{\bnd{J},J}$ is
returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
or if {\tt K} is not in {\tt [0,nfront]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_lowerAdjFronts ( FrontMtx *frontmtx, int J, 
                               int *pnadj, int **padj ) ;
\end{verbatim}
\index{FrontMtx_lowerAdjFronts@{\tt FrontMtx\_lowerAdjFronts()}}
This method fills {\tt *pnadj} with the number of fronts adjacent to 
{\tt J} in $L$ and fills {\tt *padj} with a pointer to the first
entry of a vector containing the ids of the adjacent fronts.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt pnadj} or {\tt ppadj} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_upperAdjFronts ( FrontMtx *frontmtx, int J, 
                               int *pnadj, int **padj ) ;
\end{verbatim}
\index{FrontMtx_upperAdjFronts@{\tt FrontMtx\_upperAdjFronts()}}
This method fills {\tt *pnadj} with the number of fronts adjacent to 
{\tt J} in $U$ and fills {\tt *padj} with a pointer to the first
entry of a vector containing the ids of the adjacent fronts.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt pnadj} or {\tt ppadj} is {\tt NULL},
or if {\tt J} is not in {\tt [0,nfront)},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_nLowerBlocks ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_nLowerBlocks@{\tt FrontMtx\_nLowerBlocks()}}
This method returns the number of nonzero $L_{K,J}$ submatrices.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_nUpperBlocks ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_nUpperBlocks@{\tt FrontMtx\_nUpperBlocks()}}
This method returns the number of nonzero $U_{J,K}$ submatrices.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IVL * FrontMtx_upperBlockIVL ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_upperBlockIVL@{\tt FrontMtx\_upperBlockIVL()}}
This method returns a pointer to the {\tt IVL} object that holds
the upper blocks.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IVL * FrontMtx_lowerBlockIVL ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_lowerBlockIVL@{\tt FrontMtx\_lowerBlockIVL()}}
This method returns a pointer to the {\tt IVL} object that holds
the lower blocks.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Initialization methods}
\label{subsection:FrontMtx:proto:initialization}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_init ( FrontMtx *frontmtx, ETree *frontETree, 
          IVL *symbfacIVL, int type, int symmetryflag, int sparsityflag,
          int pivotingflag, int lockflag, int myid, IV *ownersIV, 
          SubMtxManager *manager, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_init@{\tt FrontMtx\_init()}}
This method initializes the object, allocating and initializing the 
internal objects as necessary.
See the previous section on data structures for the meanings of the
{\tt type}, {\tt symmetryflag}, {\tt sparsityflag} and 
{\tt pivotingflag} parameters.
The {\tt lockflag} parameter has the following meaning.
\begin{itemize}
\item {\tt 0} --- the {\tt Lock} object is not allocated 
                  or initialized.
\item {\tt 1} --- the {\tt Lock} object is allocated and initialized 
                  to synchronize only threads in this process.
\item {\tt 2} --- the {\tt Lock} object is allocated and initialized 
                  to synchronize threads in this and other processes.
\end{itemize}
If {\tt lockflag} is not {\tt 0}, the lock is allocated and
initialized.
\par
This method allocates as much storage as possible.
When pivoting is not enabled and dense fronts are stored 
the structure of the factor matrix is fixed and given by the 
{\tt frontETree} object.
The diagonal $D_{J,J}$, 
upper triangular $U_{J,J}$ and $U_{J,\bnd{J}}$ matrices,
and lower triangular $L_{J,J}$ and $L_{\bnd{J},J}$ matrices
are allocated.
\par
The {\tt myid} and {\tt ownersIV} parameters are used in
a distributed environment where we specify which process
owns each front. When we can preallocate data structures
(when there is no pivoting and dense fronts are stored) we
need each process to determine what parts of the data it
can allocate and set up. In a serial or multithreaded 
environment, use {\tt ownersIV = NULL}.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt frontETree} or {\tt symbfacIVL} is {\tt NULL},
or if {\tt type}, {\tt symmetryflag}, {\tt sparsityflag} 
or {\tt pivotingflag} are not valid,
or if {\tt lockflag} is not {\tt 0}, {\tt 1} or {\tt 2},
or if {\tt ownersIV} is not {\tt NULL} and {\tt myid < 0},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Utility Factorization methods}
\label{subsection:FrontMtx:proto:utility-factor}
\par
The following methods are called by all the factor methods
--- serial, multithreaded and MPI.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_initializeFront ( FrontMtx *frontmtx, Chv *frontJ, int J ) ;
\end{verbatim}
\index{FrontMtx_initializeFront@{\tt FrontMtx\_initializeFront()}}
This method is called to initialize a front.
The number of internal rows and columns is found from the front
{\tt ETree} object and the row and column indices are obtained 
from the symbolic factorization {\tt IVL} object.
The front {\tt Chv} object is initialized via a call to 
{\tt Chv\_init()}, and the column indices and row indices (when
nonsymemtric) are copied.
Finally the front's entries are zeroed via a call to 
{\tt Chv\_zero()}.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
char FrontMtx_factorVisit ( FrontMtx *frontmtx, Pencil *pencil, int J,
   int myid, int owners[], Chv *fronts[], int lookahead, double tau,
   double droptol, char status[], IP *heads[], IV *pivotsizesIV, DV *workDV, 
   int parent[], ChvList *aggList, ChvList *postList, ChvManager *chvmanager, 
   int stats[], double cpus[], int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_factorVisit@{\tt FrontMtx\_factorVisit()}}
This method is called during the serial, multithreaded and MPI
factorizations when front {\tt J} is visited during the bottom-up
traversal of the tree.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv * FrontMtx_setupFront ( FrontMtx *frontmtx, Pencil *pencil, int J,
                         int myid, int owners[], ChvManager *chvmanager,
                         double cpus[], int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_setupFront@{\tt FrontMtx\_setupFront()}}
This method is called by {\tt FrontMtx\_visitFront()} to initialize
the front's {\tt Chv} object and load original entries if applicable.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IP ** FrontMtx_factorSetup ( FrontMtx *frontmtx, IV *frontOwnersIV,
                             int myid, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_factorSetup@{\tt FrontMtx\_factorSetup()}}
This method is called by the serial, multithreaded and MPI
factorizations methods to initialize a data structure that contains
the front-to-front updates that this thread or processor will perform.
The data structure is a vector of pointers to {\tt IP} objects that
holds the heads of list of updates for each front.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int * FrontMtx_nactiveChild ( FrontMtx *frontmtx, char *status, int myid ) ;
\end{verbatim}
\index{FrontMtx_nactiveChild@{\tt FrontMtx\_nactiveChild()}}
This method is called by the multithreaded and MPI factorizations
to create an integer vector that contains the number of active
children of each front with respect to this thread or processor.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt status} is {\tt NULL},
or if ${\tt myid} < 0$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Ideq * FrontMtx_setUpDequeue ( FrontMtx *frontmtx, int owners[], int myid, 
                               char status[], IP *heads[], char activeFlag,
                               char inactiveFlag, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_nactiveChild@{\tt FrontMtx\_nactiveChild()}}
This method is called by the multithreaded and MPI factorizations
to create and return an integer dequeue object to schedule the bottom-up
traversal of the front tree.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt owners} or {\tt status} is {\tt NULL},
or if ${\tt myid} < 0$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_loadActiveLeaves ( FrontMtx *frontmtx, char status[],
                                 char activeFlag, Ideq *dequeue ) ;
\end{verbatim}
\index{FrontMtx_loadActiveLeaves@{\tt FrontMtx\_loadActiveLeaves()}}
This method is called by the multithreaded and MPI factor and solve
methods to load the dequeue with the active leaves in the front
tree with respect to the thread or processor.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
ChvList * FrontMtx_postList ( FrontMtx *frontmtx, IV *frontOwnersIV,
                              int lockflag ) ;
\end{verbatim}
\index{FrontMtx_postList@{\tt FrontMtx\_postList()}}
This method is called by the multithreaded and MPI factor 
methods to create and return a list object to hold postponed
chevrons and help synchronize the factorization.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
ChvList * FrontMtx_aggregateList ( FrontMtx *frontmtx,
                                   IV *frontOwnersIV, int lockflag ) ;
\end{verbatim}
\index{FrontMtx_aggregateList@{\tt FrontMtx\_aggregateList()}}
This method is called by the multithreaded factor 
methods to create and return a list object to hold aggregate
fronts and help synchronize the factorization.
There is an analogous {\tt FrontMtx\_MPI\_aggregateList()} method
for the MPI environment.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt frontOwnersIV} is {\tt NULL},
or if {\tt lockflag} is invalid,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_loadEntries ( Chv *frontJ, DPencil *pencil, 
                            int msglvl, FILE *msgFile) ;
\end{verbatim}
\index{FrontMtx_loadEntries@{\tt FrontMtx\_loadEntries()}}
This method is called to load the original entries into a front.
\par \noindent {\it Error checking:}
If {\tt frontJ} is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_update ( FrontMtx *frontmtx, Chv *frontJ, IP *heads[], 
                       char status[], DV *tempDV, int msglvl, FILE *msgFile) ;
\end{verbatim}
\index{FrontMtx_update@{\tt FrontMtx\_update()}}
This method is called to update the current front stored in {\tt frontJ}
from all descendent fronts.
(For the multithreaded and MPI factorizations, updates come from
all owned descendent fronts.)
The {\tt heads[]} vector maintains the linked list of completed 
fronts that still have ancestors to update.
The {\tt tempDV} object is used as working storage by the {\tt Chv}
update methods, its size is automatically resized.
When pivoting is disabled, the maximum size of the {\tt tempDV}
object is three times the maximum number of internal rows and columns
in a front.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv * FrontMtx_assemblePostponedData ( FrontMtx *frontmtx, Chv *frontJ, 
           ChvList *postponedlist, ChvManager *chvmanager, int *pndelay) ;
\end{verbatim}
\index{FrontMtx_assemblePostponedData@{\tt FrontMtx\_assemblePostponedData()}}
This method is called to assemble any postponed data 
from its children fronts into the current front.
{\tt frontJ} contains the updates from the descendents.
Any postponed data is found in the list in {\tt postponedlist}.
If this list is empty, a new front is created to hold the aggregate
updates and the postponed data, and 
the {\tt chvmanager} object receives the aggregate and postponed {\tt
Chv} objects.
The number of delayed rows and columns is returned in {\tt *pndelay}
--- this is used during the factorization of the front that
follows immediately.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
FrontMtx_storePostponedData ( FrontMtx *frontmtx, Chv *frontJ, 
    int npost, int K, ChvList *postponedlist, ChvManager *chvmanager ) ;
\end{verbatim}
\index{FrontMtx_storePostponedData@{\tt FrontMtx\_storePostponedData()}}
This method is used to store any postponed rows and columns from
the current front {\tt frontJ} into a {\tt Chv} object obtained
from the {\tt chvmanager} object and place it into the list of
postponed objects for {\tt K}, its parent, found in the {\tt
postponedlist} object.
The {\tt frontJ} object is unchanged by this method.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
FrontMtx_storeFront ( FrontMtx *frontmtx, Chv *frontJ, IV *pivotsizesIV,
                      double droptol, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_storeFront@{\tt FrontMtx\_storeFront()}}
This method is used to store the eliminated rows and columns of the
current front {\tt frontJ} into the factor matrix storage.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Serial Factorization method}
\label{subsection:FrontMtx:proto:factor}
There are two factorization methods: the first is for factoring
a matrix $A$ stored in a {\tt DInpMtx} object, the second factors
a linear combination $A + \sigma B$ stored in a {\tt DPencil} object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv * FrontMtx_factorInpMtx ( FrontMtx *frontmtx, InpMtx *inpmtx, double tau, 
                   double droptol, ChvManager *chvmanager, int *perror, 
                   double cpus[], int stats[],  int msglvl, FILE *msgFile ) ;
Chv * FrontMtx_factorPencil ( FrontMtx *frontmtx, Pencil *pencil, double tau, 
                   double droptol, ChvManager *chvmanager, int *perror, 
                   double cpus[], int stats[],  int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_factorInpMtx@{\tt FrontMtx\_factorInpMtx()}}
\index{FrontMtx_factorPencil@{\tt FrontMtx\_factorPencil()}}
These two serial factorization methods factor a matrix $A$ 
(stored in {\tt inpmtx}) or
a matrix pencil $A + \sigma B$ (stored in {\tt pencil}).
The {\tt tau} parameter is used when pivoting is enabled, each
entry in $U$ and $L$ (when nonsymmetric) will have magnitude less
than or equal to {\tt tau}.
The {\tt droptol} parameter is used when the fronts are stored in
a sparse format, each entry in $U$ and $L$ (when nonsymmetric) 
will have magnitude greater than or equal to {\tt droptol}.
\par
The return value is a pointer to the first element in a list of
{\tt Chv} objects that contain the rows and columns that were
not able to be eliminated.
In all present cases, this should be {\tt NULL}; we have left this
return value as a hook to future factorizations via stages.
The {\tt perror} parameter is an address that is filled with an
error code on return.
If the factorization has completed, then {\tt *perror} is a
negative number.
If {\tt *perror} is in the range {\tt [0,nfront)}, then an error
has been detected at front {\tt *perror}.
On return, the {\tt cpus[]} vector is filled with the following
information.
\begin{itemize}
\item
{\tt cpus[0]} --- time spent initializing the fronts.
\item
{\tt cpus[1]} --- time spent loading the original entries.
\item
{\tt cpus[2]} --- time spent accumulating updates from descendents.
\item
{\tt cpus[3]} --- time spent assembling postponed data.
\item
{\tt cpus[4]} --- time spent to factor the fronts.
\item
{\tt cpus[5]} --- time spent to extract postponed data.
\item
{\tt cpus[6]} --- time spent to store the factor entries.
\item
{\tt cpus[7]} --- miscellaneous time.
\item
{\tt cpus[8]} --- total time in the method.
\end{itemize}
On return, the {\tt stats[]} vector is filled with the following
information.
\begin{itemize}
\item
{\tt stats[0]} --- number of pivots.
\item
{\tt stats[1]} --- number of pivot tests.
\item
{\tt stats[2]} --- number of delayed rows and columns.
\item
{\tt stats[3]} --- number of entries in $D$.
\item
{\tt stats[4]} --- number of entries in $L$.
\item
{\tt stats[5]} --- number of entries in $U$.
\end{itemize}
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt pencil}, {\tt cpus} or {\tt stats} 
is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{QR factorization utility methods}
\label{subsection:FrontMtx:proto:utilityQR}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_QR_setup ( FrontMtx *frontmtx, InpMtx *mtxA, IVL **prowsIVL,
                         int **pfirstnz, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_setup@{\tt FrontMtx\_QR\_setup()}}
This method sets up the {\tt rowsIVL} and {\tt firstnz[]} data
structures.
The address of {\tt rowsIVL} is placed in {\tt *prowsIVL}
and the address of {\tt firstnz} is placed in {\tt *pfirstnz}.
List {\tt J} of {\tt rowsIVL} contains the rows of $A$ that will be
assembled into front {\tt J}.
The leading column with a nonzero entry in row {\tt j} is found in
{\tt firstnz[j]}.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt mtxA}, {\tt prowsIVL} or {\tt pfirstnz} 
is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_QR_factorVisit ( FrontMtx *frontmtx, int J, InpMtx *mtxA, 
     IVL *rowsIVL, int firstnz[], ChvList *updList, ChvManager *chvmanager,
     char status[], int colmap[], DV *workDV, double cpus[], 
     double *pfacops, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_factorVisit@{\tt FrontMtx\_QR\_factorVisit()}}
This method visits front {\tt J} during the $QR$ factorization.
The number of operations to reduce the staircase matrix to upper
trapezoidal or triangular form is incremented in {\tt *pfacops}.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt mtxA}, {\tt rowsIVL}, {\tt firstnz},
{\tt updlist}, {\tt chvmanager}, {\tt status}, {\tt colmap},
{\tt workDV}, {\tt cpus} or {\tt pfacops} is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
A2 * FrontMtx_QR_assembleFront ( FrontMtx *frontmtx, int J, InpMtx *mtxA, 
             IVL *rowsIVL, int firstnz[], int colmap[], Chv *firstchild,
             DV *workDV, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_assembleFront@{\tt FrontMtx\_QR\_assembleFront()}}
This method creates an {\tt A2} object to hold the front,
assembles any original rows of $A$ and any update
matrices from the children into the front,
and then returns the front.
The rows and update matrices are assembled into staircase form,
so no subsequent permutations of the rows is necessary.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt mtxA}, {\tt rowsIVL}, {\tt firstnz},
{\tt colmap} or {\tt workDV} is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_QR_storeFront ( FrontMtx *frontmtx, int J, A2 *frontJ,
                              int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_storeFront@{\tt FrontMtx\_QR\_storeFront()}}
This method takes as input {\tt frontJ}, the front in trapezoidal
or triangular form.
It scales the strict upper triangle or trapezoid by the diagonal
entries, then squares the diagonal entries.
(This transforms $R^TR$ into $(U^T + I)D(I+U)$
or $R^HR$ into $(U^H + I)D(I+U)$ for our solves.)
It then stores the entries into the factor matrix.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt frontJ} is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv * FrontMtx_QR_storeUpdate ( FrontMtx *frontmtx, int J, A2 *frontJ,
                                ChvManager *chvmanager, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_storeUpdate@{\tt FrontMtx\_QR\_storeUpdate()}}
This method takes as input {\tt frontJ}, the front in trapezoidal
or triangular form.
It extracts the update matrix, stores the entries in a {\tt Chv} object,
and returns the {\tt Chv} object.
entries, then squares the diagonal entries.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt frontJ} or {\tt chvmanager} is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Serial $QR$ Factorization method}
\label{subsection:FrontMtx:proto:factorQR}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_QR_factor ( FrontMtx *frontmtx, InpMtx *mtxA, 
                          ChvManager *chvmanager, double cpus[], 
                          double *pfacops,  int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_factor@{\tt FrontMtx\_QR\_factor()}}
This method computes the
$(U^T+I)D(I+U)$ factorization of $A^TA$ if $A$ is real
or
$(U^H+I)D(I+U)$ factorization of $A^HA$ if $A$ is complex.
The {\tt chvmanager} object manages the working storage.
On return, the {\tt cpus[]} vector is filled as follows.
\begin{itemize}
\item 
{\tt cpus[0]} -- setup time, time to compute the {\tt rowsIVL} 
and {\tt firstnz[]} objects
\item 
{\tt cpus[1]} -- time to initialize and load the staircase matrices
\item 
{\tt cpus[2]} -- time to factor the matrices
\item 
{\tt cpus[3]} -- time to scale and store the factor entries
\item 
{\tt cpus[4]} -- time to store the update entries
\item 
{\tt cpus[5]} -- miscellaneous time
\item 
{\tt cpus[6]} -- total time
\end{itemize}
On return, {\tt *pfacops} contains the number of floating point
operations done by the factorization.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt frontJ} or {\tt chvmanager} is {\tt NULL},
or if {\tt msglvl > 0} and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Postprocessing methods}
\label{subsection:FrontMtx:proto:postprocess}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_postProcess ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_postProcess@{\tt FrontMtx\_postProcess()}}
This method does post-processing chores after the factorization is
complete.
If pivoting was enabled, the method
permutes the row and column adjacency objects,
permutes the lower and upper matrices,
and updates the block adjacency objects.
The chevron submatrices $L_{\bnd{J},J}$ and $U_{J,\bnd{J}}$
are split into $L_{K,J}$ and $U_{J,K}$ 
where $K \cap \bnd{J} \ne \emptyset$.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt msglvl} > 0 and {\tt msgFile} is {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_permuteUpperAdj ( FrontMtx *frontmtx, 
                                int msglvl, FILE *msgFile ) ;
void FrontMtx_permuteLowerAdj ( FrontMtx *frontmtx, 
                                int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_permuteUpperAdj@{\tt FrontMtx\_permuteUpperAdj()}}
\index{FrontMtx_permuteLowerAdj@{\tt FrontMtx\_permuteLowerAdj()}}
These methods are called during the postprocessing step, 
where they permute the upper and lower adjacency structures so that
vertices in $\bnd{J}$ are in ascending order with respect to the
indices in $K \cup \bnd{K}$, where $K$ is the parent of $J$.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt msglvl} > 0 and {\tt msgFile} is {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_permuteUpperMatrices ( FrontMtx *frontmtx, 
                                     int msglvl, FILE *msgFile ) ;
void FrontMtx_permuteLowerMatrices ( FrontMtx *frontmtx, 
                                     int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_permuteUpperMatrices@{\tt FrontMtx\_permuteUpperMatrices()}}
\index{FrontMtx_permuteLowerMatrices@{\tt FrontMtx\_permuteLowerMatrices()}}
These methods are called during the postprocessing step, 
where they permute the upper $U_{J,\bnd{J}}$ and lower $L_{\bnd{J},J}$
submatrices so that
the columns in $U_{J,\bnd{J}}$ and rows in $L_{\bnd{J},J}$
are in ascending order with the columns and rows of the final
matrix.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt msglvl} > 0 and {\tt msgFile} is {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_splitUpperMatrices ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ;
void FrontMtx_splitLowerMatrices ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_splitUpperMatrices@{\tt FrontMtx\_splitUpperMatrices()}}
\index{FrontMtx_splitLowerMatrices@{\tt FrontMtx\_splitLowerMatrices()}}
These methods are called during the postprocessing step, 
where they split the chevron submatrices $L_{\bnd{J},J}$ 
and $U_{J,\bnd{J}}$ into $L_{K,J}$ and $U_{J,K}$ 
where $K \cap \bnd{J} \ne \emptyset$.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL},
or if {\tt msglvl} > 0 and {\tt msgFile} is {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Utility Solve methods}
\label{subsection:FrontMtx:proto:utility-solve}
\par
The following methods are called by all the solve methods
--- serial, multithreaded and MPI.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
SubMtx ** FrontMtx_loadRightHandSide ( FrontMtx *frontmtx, DenseMtx *mtxB, 
                      int owners[], int myid, SubMtxManager *mtxmanager,
                      int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_loadRightHandSide@{\tt FrontMtx\_loadRightHandSide()}}
This method creates and returns a vector of pointers to {\tt
SubMtx} objects that hold pointers to the right hand side
submatrices owned by the thread or processor.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_forwardVisit ( FrontMtx *frontmtx, int J, int nrhs, 
   int *owners, int myid, SubMtxManager *mtxmanager, SubMtxList *aggList,
   SubMtx *p_mtx[], char frontIsDone[], IP *heads[], SubMtx *p_agg[],
   char status[], int msglvl, FILE *msgFile) ;
\end{verbatim}
\index{FrontMtx_forwardVisit@{\tt FrontMtx\_forwardVisit()}}
This method is used to visit front {\tt J} during the forward solve,
$(U^T + I)Y = B$, $(U^H + I)Y = B$ or $(L + I)Y = B$.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_diagonalVisit ( FrontMtx *frontmtx, int J, int owners[],
   int myid, SubMtx *p_mtx[], char frontIsDone[], SubMtx *p_agg[],
   int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_diagonalVisit@{\tt FrontMtx\_diagonalVisit()}}
This method is used to visit front {\tt J} during the diagonal solve,
$DZ = Y$.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_backwardVisit ( FrontMtx *frontmtx, int J, int nrhs,
   int *owners, int myid, SubMtxManager *mtxmanager, SubMtxList *aggList,
   SubMtx *p_mtx[], char frontIsDone[], IP *heads[], SubMtx *p_agg[],
   char status[], int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_backwardVisit@{\tt FrontMtx\_backwardVisit()}}
This method is used to visit front {\tt J} during the backward solve,
$(U + I)Y = B$.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_storeSolution ( FrontMtx *frontmtx, int owners[], int myid, 
                              SubMtxManager *mtxmanager, SubMtx *p_mtx[],
                              DenseMtx *mtxX, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_storeSolution@{\tt FrontMtx\_storeSolution()}}
This method stores the solution in the {\tt solmtx} dense matrix object.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IP ** FrontMtx_forwardSetup ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_forwardSetup@{\tt FrontMtx\_forwardSetup()}}
This method is used to set up a data structure of {\tt IP} objects
that hold the updates of the form
$Y_J := Y_J - U_{I,J}^T X_I$,
$Y_J := Y_J - U_{I,J}^H X_I$ or
$Y_J := Y_J - L_{J,I} X_I$
that will be performed by this thread or processor.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IP ** FrontMtx_backwardSetup ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_backwardSetup@{\tt FrontMtx\_backwardSetup()}}
This method is used to set up a data structure of {\tt IP} objects
that hold the updates of the form
$Z_J := Z_J - U_{J,K} X_K$
that will be performed by this thread or processor.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_loadActiveRoots ( FrontMtx *frontmtx, char status[],
                                char activeFlag, Ideq *dequeue ) ;
\end{verbatim}
\index{FrontMtx_loadActiveRoots@{\tt FrontMtx\_loadActiveRoots()}}
This method loads the active roots for a thread or a processor into
the dequeue for the backward solve.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Serial Solve method}
\label{subsection:FrontMtx:proto:solve-serial}
\par
\begin{enumerate}
%=======================================================================
\item
\begin{verbatim}
void FrontMtx_solve ( FrontMtx *frontmtx, DenseMtx *mtxX, DenseMtx *mtxB, 
         SubMtxManager *mtxmanager, double cpus[], int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_solve@{\tt FrontMtx\_solve()}}
This method is used to solve one of three linear systems of equations
---
$(U^T + I)D(I + U) X = B$,
$(U^H + I)D(I + U) X = B$ or
$(L + I)D(I + U) X = B$.
Entries of $B$ are {\it read} from {\tt mtxB} and 
entries of $X$ are written to {\tt mtxX}.
Therefore, {\tt mtxX} and {\tt mtxB} can be the same object.
(Note, this does not hold true for an MPI factorization with pivoting.)
The {\tt mtxmanager} object manages the working storage using the solve.
On return the {\tt cpus[]} vector is filled with the following.
\begin{itemize}
\item
{\tt cpus[0]} --- set up the solves
\item
{\tt cpus[1]} --- fetch right hand side and store solution
\item
{\tt cpus[2]} --- forward solve
\item
{\tt cpus[3]} --- diagonal solve
\item
{\tt cpus[4]} --- backward solve
\item
{\tt cpus[5]} --- total time in the method.
\end{itemize}
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt mtxB} or {\tt cpus} 
is {\tt NULL},
or if {\tt msglvl} > 0 and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%=======================================================================
\end{enumerate}
\par
\subsection{Serial $QR$ Solve method}
\label{subsection:FrontMtx:proto:QRsolve-serial}
\par
\begin{enumerate}
%=======================================================================
\item
\begin{verbatim}
void FrontMtx_QR_solve ( FrontMtx *frontmtx, InpMtx *mtxA, DenseMtx *mtxX, 
                         DenseMtx *mtxB, SubMtxManager *mtxmanager,
                         double cpus[], int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_QR_solve@{\tt FrontMtx\_QR\_solve()}}
This method is used to minimize $\|B - AX\|_F$, where
$A$ is stored in {\tt mtxA},
$B$ is stored in {\tt mtxB},
and $X$ will be stored in {\tt mtxX}.
The {\tt frontmtx} object contains a
$(U^T+I)D(I+U)$ factorization of $A^TA$ if $A$ is real
or
$(U^H+I)D(I+U)$ factorization of $A^HA$ if $A$ is complex.
We solve the seminormal equations
$(U^T+I)D(I+U)X = A^TB$ or $(U^H+I)D(I+U)X = A^HB$
for $X$.
The {\tt mtxmanager} object manages the working storage 
used in the solves.
On return the {\tt cpus[]} vector is filled with the following.
\begin{itemize}
\item
{\tt cpus[0]} --- set up the solves
\item
{\tt cpus[1]} --- fetch right hand side and store solution
\item
{\tt cpus[2]} --- forward solve
\item
{\tt cpus[3]} --- diagonal solve
\item
{\tt cpus[4]} --- backward solve
\item
{\tt cpus[5]} --- total time in the solve method.
\item
{\tt cpus[6]} --- time to compute $A^TB$ or $A^HB$.
\item
{\tt cpus[7]} --- total time.
\end{itemize}
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt mtxA}, {\tt mtxX}, {\tt mtxB} or {\tt cpus} 
is {\tt NULL},
or if {\tt msglvl} > 0 and {\tt msgFile} is {\tt NULL},
an error message is printed and the program exits.
%=======================================================================
\end{enumerate}
\par
\subsection{Utility methods}
\label{subsection:FrontMtx:proto:utility}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * FrontMtx_colmapIV ( FrontMtx *frontmtx ) ;
IV * FrontMtx_rowmapIV ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_colmapIV@{\tt FrontMtx\_colmapIV()}}
\index{FrontMtx_rowmapIV@{\tt FrontMtx\_rowmapIV()}}
These methods construct and return an {\tt IV} object that map the
rows and columns to the fronts that contains them.
\par \noindent {\it Error checking:}
None presently.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * FrontMtx_ownedRowsIV ( FrontMtx *frontmtx, int myid, IV *ownersIV,
                            int msglvl, FILE *msgFile ) ;
IV * FrontMtx_ownedColumnsIV ( FrontMtx *frontmtx, int myid, IV *ownersIV,
                            int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{FrontMtx_ownedColumns@{\tt FrontMtx\_ownedColumns()}}
\index{FrontMtx_ownedRows@{\tt FrontMtx\_ownedRows()}}
These methods construct and return {\tt IV} objects that 
contain the ids of the rows and columns that belong to fronts that
are owned by processor {\tt myid}.
If {\tt ownersIV} is {\tt NULL}, an {\tt IV} object is returned
that contains {\tt \{0,1,2,3, ..., nfront-1\}}.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IVL * FrontMtx_makeUpperBlockIVL ( FrontMtx *frontmtx, IV *colmapIV ) ;
IVL * FrontMtx_makeLowerBlockIVL ( FrontMtx *frontmtx, IV *rowmapIV ) ;
\end{verbatim}
\index{FrontMtx_makeUpperBlockIVL@{\tt FrontMtx\_makeUpperBlockIVL()}}
\index{FrontMtx_makeLowerBlockIVL@{\tt FrontMtx\_makeLowerBlockIVL()}}
These methods construct and return {\tt IVL} objects that 
contain the submatrix structure of the lower and upper factors.
The {\tt IV} objects map the rows and columns of the matrix to the
fronts in the factor matrix that contain them.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt colmapIV} or {\tt rowmapIV} are {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void FrontMtx_inertia ( FrontMtx *frontmtx, int *pnneg, int *pnzero, int *pnpos ) ;
\end{verbatim}
\index{FrontMtx_inertia@{\tt FrontMtx\_inertia()}}
This method determines the inertia of a symmetric matrix
based on the $(U^T + I)D(I + U)$ factorization.
The number of negative eigenvalues is returned in {\tt *pnneg},
the number of zero eigenvalues is returned in {\tt *pnzero},
and the number of positive eigenvalues is returned in {\tt *pnpos}.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt pnneg}, {\tt pnzero} 
or {\tt pnpos} is {\tt NULL}, 
or if ${\tt symmetryflag} \ne 0$
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_nSolveOps ( FrontMtx *frontmtx ) ;
\end{verbatim}
\index{FrontMtx_nSolveOps@{\tt FrontMtx\_nSolveOps()}}
This method computes and return the number of floating point
operations for a solve with a single right hand side.
\par \noindent {\it Error checking:}
If {\tt frontmtx} is {\tt NULL}, 
or if {\tt type} or {\tt symmetryflag} are invalid,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{IO methods}
\label{subsection:FrontMtx:proto:IO}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_readFromFile ( FrontMtx *frontmtx, char *fn ) ;
\end{verbatim}
\index{FrontMtx_readFromFile@{\tt FrontMtx\_readFromFile()}}
\par
This method reads a {\tt FrontMtx object} from a file.
It tries to open the file and if it is successful, 
it then calls {\tt FrontMtx\_readFromFormattedFile()} or
{\tt FrontMtx\_readFromBinaryFile()}, 
closes the file
and returns the value returned from the called routine.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fn} are {\tt NULL}, 
or if {\tt fn} is not of the form
{\tt *.frontmtxf} (for a formatted file) 
or {\tt *.frontmtxb} (for a binary file),
an error message is printed and the method returns zero.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_readFromFormattedFile ( FrontMtx *frontmtx, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_readFromFormattedFile@{\tt FrontMtx\_readFromFormattedFile()}}
\par
This method reads a {\tt FrontMtx} object from a formatted file.
If there are no errors in reading the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fscanf}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fp} are {\tt NULL} 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_readFromBinaryFile ( FrontMtx *frontmtx, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_readFromBinaryFile@{\tt FrontMtx\_readFromBinaryFile()}}
This method reads a {\tt FrontMtx} object from a binary file.
If there are no errors in reading the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fread}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_writeToFile ( FrontMtx *frontmtx, char *fn ) ;
\end{verbatim}
\index{FrontMtx_writeToFile@{\tt FrontMtx\_writeToFile()}}
\par
This method writes a {\tt FrontMtx object} to a file.
It tries to open the file and if it is successful,
it then calls {\tt FrontMtx\_writeFromFormattedFile()} or
{\tt FrontMtx\_writeFromBinaryFile()},
closes the file
and returns the value returned from the called routine.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fn} are {\tt NULL},
or if {\tt fn} is not of the form
{\tt *.frontmtxf} (for a formatted file)
or {\tt *.frontmtxb} (for a binary file),
an error message is printed and the method returns zero.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_writeToFormattedFile ( FrontMtx *frontmtx, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_writeToFormattedFile@{\tt FrontMtx\_writeToFormattedFile()}}
\par
This method writes a {\tt FrontMtx} object to a formatted file.
If there are no errors in writing the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fprintf}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_writeToBinaryFile ( FrontMtx *frontmtx, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_writeToBinaryFile@{\tt FrontMtx\_writeToBinaryFile()}}
\par
This method writes a {\tt FrontMtx} object to a binary file.
If there are no errors in writing the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fwrite}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_writeForHumanEye ( FrontMtx *frontmtx, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_writeForHumanEye@{\tt FrontMtx\_writeForHumanEye()}}
\par
This method writes a {\tt FrontMtx} object to a file in a human
readable format.
The method {\tt FrontMtx\_writeStats()} is called to write out the
header and statistics.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_writeStats ( FrontMtx *frontmtx, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_writeStats@{\tt FrontMtx\_writeStats()}}
\par
The header and statistics are written to a file.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt frontmtx} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int FrontMtx_writeForMatlab ( FrontMtx *frontmtx, char *Lname, char *Dname,
                              char *Uname, FILE *fp ) ;
\end{verbatim}
\index{FrontMtx_writeForMatlab@{\tt FrontMtx\_writeForMatlab()}}
\par
This method writes out the factor matrix entries in a
Matlab-readable form.
{\tt Lname} is a string for the lower triangular matrix,
{\tt Dname} is a string for the diagonal matrix,
and {\tt Uname} is a string for the upper triangular matrix.
\par \noindent {\it Error checking:}
If {\tt frontmtx}, {\tt Lname}, {\tt Dname}, {\tt Uname} 
or {\tt fp} are {\tt NULL},
 an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\end{enumerate}
\par