1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/* testQRgrid.c */
#include "../FrontMtx.h"
#include "../../Drand.h"
#include "../../timings.h"
/*--------------------------------------------------------------------*/
void mkNDlinsysQR ( int n1, int n2, int n3, int type, int nrhs,
int seed, int msglvl, FILE *msgFile, ETree **pfrontETree,
IVL **psymbfacIVL, InpMtx **pmtxA, DenseMtx **pmtxX,
DenseMtx **pmtxB) ;
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
---------------------------------------------------
test the QR factor method for a FrontMtx object
on an n1 x n2 x n3 grid
(1) generate an overdetermined system AX = B
(2) factor the matrix
(3) solve the systems
created -- 97apr11, dkw
modified -- 98may28, cca
---------------------------------------------------
*/
{
ChvManager *chvmanager ;
DenseMtx *mtxB, *mtxX, *mtxZ ;
double cputotal, factorops ;
double cpus[9] ;
double nops, t1, t2 ;
ETree *frontETree ;
FILE *msgFile ;
FrontMtx *frontmtx ;
InpMtx *mtxA ;
int msglvl, neqns, nrhs, n1, n2, n3, seed, type ;
IVL *symbfacIVL ;
SubMtxManager *mtxmanager ;
if ( argc != 9 ) {
fprintf(stdout,
"\n\n usage : %s msglvl msgFile n1 n2 n3 seed nrhs "
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n n1 -- # of points in the first direction"
"\n n2 -- # of points in the second direction"
"\n n3 -- # of points in the third direction"
"\n seed -- random number seed"
"\n nrhs -- # of right hand sides"
"\n type -- type of linear system"
"\n 1 -- real"
"\n 2 -- complex"
"\n", argv[0]) ;
return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
return(-1) ;
}
n1 = atoi(argv[3]) ;
n2 = atoi(argv[4]) ;
n3 = atoi(argv[5]) ;
seed = atoi(argv[6]) ;
nrhs = atoi(argv[7]) ;
type = atoi(argv[8]) ;
fprintf(msgFile,
"\n %s "
"\n msglvl -- %d"
"\n msgFile -- %s"
"\n n1 -- %d"
"\n n2 -- %d"
"\n n3 -- %d"
"\n seed -- %d"
"\n nrhs -- %d"
"\n type -- %d"
"\n",
argv[0], msglvl, argv[2], n1, n2, n3, seed, nrhs, type) ;
fflush(msgFile) ;
neqns = n1*n2*n3 ;
if ( type != SPOOLES_REAL && type != SPOOLES_COMPLEX ) {
fprintf(stderr, "\n fatal error, type must be real or complex") ;
exit(-1) ;
}
/*
------------------------------------------
generate the A X = B overdetermined system
------------------------------------------
*/
mkNDlinsysQR(n1, n2, n3, type, nrhs, seed, msglvl, msgFile,
&frontETree, &symbfacIVL, &mtxA, &mtxX, &mtxB) ;
/*
------------------------------
initialize the FrontMtx object
------------------------------
*/
MARKTIME(t1) ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
frontmtx = FrontMtx_new() ;
if ( type == SPOOLES_REAL ) {
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type,
SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK,
0, NULL, mtxmanager, msglvl, msgFile) ;
} else if ( type == SPOOLES_COMPLEX ) {
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type,
SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK,
0, NULL, mtxmanager, msglvl, msgFile) ;
}
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : FrontMtx initialized", t2 - t1) ;
fflush(msgFile) ;
/*
-----------------
factor the matrix
-----------------
*/
DVzero(6, cpus) ;
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 0) ;
factorops = 0.0 ;
MARKTIME(t1) ;
FrontMtx_QR_factor(frontmtx, mtxA, chvmanager,
cpus, &factorops, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n after QR_factor() call, facops = %8.2f",factorops) ;
fprintf(msgFile, "\n CPU %8.3f : FrontMtx_QR_factor, %8.3f mflops",
t2 - t1, 1.e-6*factorops/(t2-t1)) ;
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
fprintf(msgFile, "\n"
"\n setup factorization %8.3f %6.2f"
"\n setup fronts %8.3f %6.2f"
"\n factor fronts %8.3f %6.2f"
"\n store factor %8.3f %6.2f"
"\n store update %8.3f %6.2f"
"\n miscellaneous %8.3f %6.2f"
"\n total time %8.3f",
cpus[0], 100.*cpus[0]/cputotal,
cpus[1], 100.*cpus[1]/cputotal,
cpus[2], 100.*cpus[2]/cputotal,
cpus[3], 100.*cpus[3]/cputotal,
cpus[4], 100.*cpus[4]/cputotal,
cpus[5], 100.*cpus[5]/cputotal, cputotal) ;
}
/*
------------------------------
post-process the factor matrix
------------------------------
*/
MARKTIME(t1) ;
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : post-process the matrix", t2 - t1)
;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n front factor matrix after post-processing") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
fprintf(msgFile, "\n\n after post-processing") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
----------------
solve the system
----------------
*/
mtxZ = DenseMtx_new() ;
DenseMtx_init(mtxZ, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxZ) ;
if ( type == SPOOLES_REAL ) {
nops = frontmtx->nentD + 2*frontmtx->nentU ;
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
nops += 2*frontmtx->nentL ;
} else {
nops += 2*frontmtx->nentU ;
}
} else if ( type == SPOOLES_COMPLEX ) {
nops = 8*frontmtx->nentD + 8*frontmtx->nentU ;
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
nops += 8*frontmtx->nentL ;
} else {
nops += 8*frontmtx->nentU ;
}
}
nops *= nrhs ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n rhs") ;
DenseMtx_writeForHumanEye(mtxB, msgFile) ;
fflush(stdout) ;
}
DVzero(6, cpus) ;
MARKTIME(t1) ;
FrontMtx_QR_solve(frontmtx, mtxA, mtxZ, mtxB, mtxmanager,
cpus, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : solve the system, %.3f mflops",
t2 - t1, 1.e-6*nops/(t2 - t1)) ;
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
fprintf(msgFile,
"\n CPU %%"
"\n A^TB matrix-matrix multiply %8.3f %6.2f"
"\n set up solves %8.3f %6.2f"
"\n load rhs and store solution %8.3f %6.2f"
"\n forward solve %8.3f %6.2f"
"\n diagonal solve %8.3f %6.2f"
"\n backward solve %8.3f %6.2f"
"\n total solve time %8.3f %6.2f"
"\n total QR solve time %8.3f",
cpus[6], 100.*cpus[6]/cputotal,
cpus[0], 100.*cpus[0]/cputotal,
cpus[1], 100.*cpus[1]/cputotal,
cpus[2], 100.*cpus[2]/cputotal,
cpus[3], 100.*cpus[3]/cputotal,
cpus[4], 100.*cpus[4]/cputotal,
cpus[5], 100.*cpus[5]/cputotal, cputotal) ;
}
if ( msglvl > 3 ) {
fprintf(msgFile, "\n\n computed solution") ;
DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
fflush(stdout) ;
}
/*
-----------------
compute the error
-----------------
*/
DenseMtx_sub(mtxZ, mtxX) ;
fprintf(msgFile, "\n\n maxabs error = %12.4e",
DenseMtx_maxabs(mtxZ)) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n error") ;
DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
fflush(stdout) ;
}
fprintf(msgFile, "\n\n after solve") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
------------------------
free the working storage
------------------------
*/
InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxZ) ;
DenseMtx_free(mtxB) ;
FrontMtx_free(frontmtx) ;
IVL_free(symbfacIVL) ;
ETree_free(frontETree) ;
SubMtxManager_free(mtxmanager) ;
ChvManager_free(chvmanager) ;
fprintf(msgFile, "\n") ;
fclose(msgFile) ;
return(1) ; }
/*--------------------------------------------------------------------*/
|