File: solve.tex

package info (click to toggle)
spooles 2.2-16
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,760 kB
  • sloc: ansic: 146,836; sh: 7,571; csh: 3,615; makefile: 1,970; perl: 74
file content (417 lines) | stat: -rw-r--r-- 10,222 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
\section{{\tt DChvMtx}: Double Precision Chevron Matrix Object}
\par
Let $A$ be an $n \times n$ matrix to be factored.
We are going to allow both row and column permutations as the
factorization proceeds, and our pivot blocks may be larger 
than $1 \times 1$ pivots.
After the first step we have
$$
A = A_0 
=
P_0 
\left \lbrack \begin{array}{cc}
I   & 0 \\
{\hat L}_0 & I
\end{array} \right \rbrack
\left \lbrack \begin{array}{cc}
I   & 0 \\
0   & {\hat A}_1
\end{array} \right \rbrack
\left \lbrack \begin{array}{cc}
{\hat D}_0 & {\hat U}_0 \\
 0  & I
\end{array} \right \rbrack
Q_0
= P_0 \ L_0 \ A_1 \ U_0 \ Q_0 
$$
where $P_0$ is the row permutation matrix,
${\hat D}_0$ is the pivot block,
$\displaystyle L_0 =
\left \lbrack \begin{array}{cc}
I   & 0 \\
{\hat L}_0 & I
\end{array} \right \rbrack
$,
$\displaystyle A_1 =
\left \lbrack \begin{array}{cc}
I   & 0 \\
0   & {\hat A}_1
\end{array} \right \rbrack
$,
$\displaystyle U_0 =
\left \lbrack \begin{array}{cc}
{\hat D}_0 & {\hat U}_0 \\
 0  & I
\end{array} \right \rbrack
$ and
$Q_0$ is the column permutation matrix.
Now $A_1$ can be factored in the same manner,
$$
A_1 
=
P_1 
\left \lbrack \begin{array}{cc}
I   & 0 \\
{\hat L}_1 & I
\end{array} \right \rbrack
\left \lbrack \begin{array}{cc}
I   & 0 \\
0   & {\hat A}_2
\end{array} \right \rbrack
\left \lbrack \begin{array}{cc}
{\hat D}_1 & {\hat U}_1 \\
 0  & I
\end{array} \right \rbrack
Q_1
= P_1 \ L_1 \ A_2 \ U_1 \ Q_1
$$
so we can expand $A_0$ to find
$A = P_0 \ L_0 \ P_1 \ L_1 \ A_2 \ U_1 \ Q_1 \ U_0 \ Q_0$.
Eventually the factorization proceeds to completion and we have
$$
A = (P_0 \ L_0 \ P_1 \ L_1 \ \cdots \ P_k \ L_k)
    (U_K \ Q_k \ \cdots \ U_1 \ Q_1 \ U_0\ Q_0)
$$
Note, $L_0, L_1, \ldots, L_k$ are all lower triangular,
for it is the row permutation matrices that are responsible.
Note that ${\tilde L}_i = P_i L_i$ is not a lower triangular
matrix, but one can solve a linear system involving ${\tilde L}_i$
without any difficulty.
A similar statement holds for ${\tilde U}_i = U_i Q_i$,
except we have the presence of a block pivot ${\hat D}_i$.
\par
The key to understanding how we factor and solve linear systems
using the {\tt DChvMtx} object is that the permutation matrices
$P_i$ and $Q_i$ are held implicitly in 
${\tilde L}_i$ 
and 
${\tilde U}_i$, 
and we solve any linear system with
${\tilde L}_i$ 
and 
${\tilde U}_i$ correctly,
even though they are not triangular.
We can write $A$ as
$$
A =
{\tilde L}_0 \ 
{\tilde L}_1 \ 
\cdots \ 
{\tilde L}_k \ 
{\tilde U}_k \ 
\cdots \ 
{\tilde U}_1 \ 
{\tilde U}_0
$$
and thus $A y = b$ by solving a sequence of linear systems
${\tilde L}_0 \ x^0 = b$,
${\tilde L}_1 \ x^1 = x^0$,
$\cdots$,
${\tilde L}_k \ x^k = x^{k-1}$,
${\tilde U}_k \ y^k = x^k$,
${\tilde U}_{k-1} \ y^{k-1} = y^k$,
$\cdots$,
${\tilde U}_1 \ y^1 = y^2$,
${\tilde U}_0 \ y = y^1$.
% Here is a crucial point:
% solving a linear system with ${\tilde L}_i$ requires 
% information about the row permutation at the $i$-th step,
% but does not require any knowledge about the column permutation
% at that or any other step.
% A similar point holds for systems with ${\tilde U}_i$.
\par
Let us clarify the process with an example.
At the first step we permute a $3 \times 3$ matrix so that the
$a_{1,2}$ element is the pivot. 
\begin{eqnarray*}
A & = & 
\left \lbrack \begin{array}{ccc}
a_{0,0} & a_{0,1} & a_{0,2} \\
a_{1,0} & a_{1,1} & a_{1,2} \\
a_{2,0} & a_{2,1} & a_{2,2}
\end{array} \right \rbrack
 =
\left \lbrack \begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
a_{1,2} & a_{1,0} & a_{1,1} \\
a_{0,2} & a_{0,0} & a_{0,1} \\
a_{2,2} & a_{2,0} & a_{2,1}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array} \right \rbrack \\
& = &
\left \lbrack \begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
l_{0,2} & 1 & 0 \\
l_{2,2} & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & {\hat a}_{0,0} & {\hat a}_{0,1} \\
0 & {\hat a}_{2,0} & {\hat a}_{2,1}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
d_{1,2} & u_{1,0} & u_{1,1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array} \right \rbrack \\
& = &
{\tilde L}_0 \ A_1 \ {\tilde U}_0
=
\left \lbrack \begin{array}{ccc}
l_{0,2} & 1 & 0 \\
1 & 0 & 0 \\
l_{2,2} & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & {\hat a}_{0,0} & {\hat a}_{0,1} \\
0 & {\hat a}_{2,0} & {\hat a}_{2,1}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
u_{1,0} & u_{1,1} & d_{1,2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array} \right \rbrack
\end{eqnarray*}
We then do the same for $A_1$, using ${\hat a}_{2,1}$ as the pivot.
\begin{eqnarray*}
A_1 & = & 
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & {\hat a}_{0,0} & {\hat a}_{0,1} \\
0 & {\hat a}_{2,0} & {\hat a}_{2,1}
\end{array} \right \rbrack
 =
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & {\hat a}_{2,1} & {\hat a}_{2,0} \\
0 & {\hat a}_{0,1} & {\hat a}_{0,0}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right \rbrack \\
& = &
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & l_{0,1} & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & {\hat a}_{2,1} & {\hat a}_{2,0} \\
0 & {\hat a}_{0,1} & {\hat a}_{0,0}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & d_{2,1} & u_{2,0} \\
0 & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right \rbrack \\
& = &
{\tilde L}_1 \ A_2 \ {\tilde U}_1
=
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & l_{0,1} & 1 \\
0 & 1 & 0
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & {\tilde a}_{0,0}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & u_{2,0} & d_{2,1} \\
0 & 1 & 0
\end{array} \right \rbrack
\end{eqnarray*}
Finally, we have the factorization of $A_2$.
$$
A_2 
= 
P_2 \ L_2 \ U_2 \ Q_2
=
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & d_{0,0}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right \rbrack
$$
Written on one line we have the factorization of $A$ given below
where ${\tilde L}_2 = I$ is omitted.
\begin{eqnarray*}
A 
& = & 
{\tilde L}_0 \ 
{\tilde L}_1 \ 
{\tilde U}_2 \ 
{\tilde U}_1 \ 
{\tilde U}_0 \\
& = &
\left \lbrack \begin{array}{ccc}
l_{0,2} & 1 & 0 \\
1 & 0 & 0 \\
l_{2,2} & 0 & 1
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & l_{0,1} & 1 \\
0 & 1 & 0
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & d_{0,0}
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
1 & 0 & 0 \\
0 & u_{2,0} & d_{2,1} \\
0 & 1 & 0
\end{array} \right \rbrack
\left \lbrack \begin{array}{ccc}
u_{1,0} & u_{1,1} & d_{1,2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array} \right \rbrack
\end{eqnarray*}
At best this equation looks awkward, but take heart, it really
doesn't describe how we store the entries or use them to solve a
linear system.
The entries can be logically grouped in terms of chevrons.
$$
A^0 = 
\left \lbrack \begin{array}{ccc}
d_{1,2} & u_{1,0} & u_{1,1} \\
l_{0,2} & 0 & 0 \\
l_{2,2} & 0 & 0
\end{array} \right \rbrack,
\qquad
A^1 = 
\left \lbrack \begin{array}{ccc}
0 & 0 & 0 \\
0 & d_{2,1} & u_{2,0} \\
0 & l_{0,1} & 0
\end{array} \right \rbrack,
\qquad
A^2 = 
\left \lbrack \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & d_{0,0}
\end{array} \right \rbrack,
\qquad
$$
For each chevron we store 
the indices of the rows and columns that are nonzero,
and the entries in the diagonal, lower triangular and
upper triangular block.
Note, the row indices and the column indices need not be the same.
\par
Let us show how we solve a linear system.
To solve $A x = b$ we first solve $L y = b$ and then solve $U x = y$
where $L = {\tilde L}_0 {\tilde L}_1 {\tilde L}_2$
and $U = {\tilde U}_2 {\tilde U}_1 {\tilde U}_0$.
Note that there are no permutation matrices anywhere.
\begin{itemize}
\item 
To solve with ${\tilde L}_0$ we set $y_1 = b_1$, 
$b_0 := b_0 - l_{0,2} y_1$ and
$b_2 := b_2 - l_{2,2} y_1$.
\item 
To solve with ${\tilde L}_1$ we set $y_2 = b_2$ and
$b_0 := b_0 - l_{0,1} y_2$.
\item 
To solve with ${\tilde L}_2$ we set $y_0 = b_0$.
\item 
To solve with ${\tilde U}_2$ we set $x_0 = y_0/d_{0,0}$.
\item 
To solve with ${\tilde U}_1$ we set $x_1 = (y_2 - u_{2,0}x_0)/d_{2,1}$.
\item 
To solve with ${\tilde U}_0$ 
we set $x_2 = (y_1 - u_{1,0}x_0 - u_{1,1} x_1)/d_{1,2}$.
\end{itemize}

In general, let us write the $k$-th chevron as
$$
A^2 = 
\left \lbrack \begin{array}{cc}
D_{\alpha_k,\beta_k} & U_{\alpha_k,\delta_k} \\
L_{\gamma_k,\beta_k} & 0
\end{array} \right \rbrack
$$
where $\alpha_k$ and $\gamma_k$ form the row index set
and $\beta_k$ and $\delta_k$ form the column index set.
Since the pivots partition the rows and columns, we have
$$
\gamma_k \cap \bigcup_{i < k} \alpha_i = \emptyset
\quad \mbox{and} \quad
\delta_k \cap \bigcup_{i < k} \beta_i = \emptyset.
$$
The forward solve and backward solve are executed by
\begin{center}
\begin{minipage}{3 in}
\begin{tabbing}
XXX\=XXX\=XXX\=\kill
for $k = 1, \ldots, \mbox{\# of pivots}$ \\
\> $y_{\alpha_k} = b_{\alpha_k}$ \\
\> $b_{\gamma_k} := b_{\gamma_k} 
                 - L_{\gamma_k, \beta_k} y_{\alpha_k}$ \\
end for \\
for $k = \mbox{\# of pivots}, \ldots, 1$ \\
\> $y_{\alpha_k} = b_{\alpha_k}$ \\
\> $x_{\beta_k} := D_{\alpha_k, \beta_k}^{-1}
(y_{\alpha_k} - U_{\alpha_k, \delta_k} x_{\delta_k})$ 
end for
\end{tabbing}
\end{minipage}
\end{center}