1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/* patchAndGoMPI.c */
#include "../spoolesMPI.h"
#include "../../timings.h"
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
------------------------------------------------------------
all-in-one MPI program for each process
order, factor and solve A X = Y
We use a patch-and-go strategy
for the factorization without pivoting
( 1) read in matrix entries and form InpMtx object for A
( 2) order the system using minimum degree
( 3) permute the front tree
( 4) create the owners map IV object
( 5) permute the matrix A and redistribute
( 6) compute the symbolic factorization
( 7) compute the numeric factorization
( 8) split the factors into submatrices
( 9) create the submatrix map and redistribute
(10) read in right hand side entries
and form dense matrix DenseMtx object for Y
(11) permute and redistribute Y
(12) solve the linear system
(13) gather X on processor 0
created -- 98jun13, cca
------------------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char buffer[20] ;
Chv *rootchv ;
ChvManager *chvmanager ;
DenseMtx *mtxX, *mtxY ;
double fudge, toosmall ;
SubMtxManager *mtxmanager, *solvemanager ;
FrontMtx *frontmtx ;
InpMtx *keepmtx, *mtxA ;
double cutoff, imag, minops, real, tau = 100., value ;
double cpus[20] ;
double *opcounts ;
DV *cumopsDV ;
ETree *frontETree ;
FILE *inputFile, *msgFile ;
Graph *graph ;
int error, firsttag, ient, irow, jcol, msglvl, myid, nedges,
nent, neqns, nmycol, nproc, nrhs, nrow, patchAndGoFlag,
root, seed, storeids, storevalues, symmetryflag, type ;
int stats[20] ;
int *rowind ;
IV *oldToNewIV, *ownedColumnsIV, *ownersIV,
*newToOldIV, *vtxmapIV ;
IVL *adjIVL, *symbfacIVL ;
SolveMap *solvemap ;
/*--------------------------------------------------------------------*/
/*
---------------------------------------------------------------
find out the identity of this process and the number of process
---------------------------------------------------------------
*/
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &myid) ;
MPI_Comm_size(MPI_COMM_WORLD, &nproc) ;
fprintf(stdout, "\n proc %d, argc = %d", myid, argc) ;
fflush(stdout) ;
/*--------------------------------------------------------------------*/
/*
--------------------
get input parameters
--------------------
*/
if ( argc != 11 ) {
fprintf(stdout,
"\n usage: %s msglvl msgFile type symmetryflag patchAndGoFlag"
"\n fudge toosmall storeids storevalues seed"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n symmetryflag -- type of matrix"
"\n 0 (SPOOLES_SYMMETRIC) -- symmetric entries"
"\n 1 (SPOOLES_HERMITIAN) -- Hermitian entries"
"\n 2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
"\n patchAndGoFlag -- flag for the patch-and-go strategy"
"\n 0 -- none, stop factorization"
"\n 1 -- optimization strategy"
"\n 2 -- structural analysis strategy"
"\n fudge -- perturbation parameter"
"\n toosmall -- upper bound on a small pivot"
"\n storeids -- flag to store ids of small pivots"
"\n storevalues -- flag to store perturbations"
"\n seed -- random number seed"
"\n "
"\n note: matrix entries are read in from patchMatrix.k.input"
"\n where k is the process number"
"\n note: rhs entries are read in from patchRhs.k.input"
"\n where k is the process number"
"\n", argv[0]) ;
return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else {
sprintf(buffer, "res.%d", myid) ;
if ( (msgFile = fopen(buffer, "w")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], buffer) ;
return(-1) ;
}
}
type = atoi(argv[3]) ;
symmetryflag = atoi(argv[4]) ;
patchAndGoFlag = atoi(argv[5]) ;
fudge = atof(argv[6]) ;
toosmall = atof(argv[7]) ;
storeids = atoi(argv[8]) ;
storevalues = atoi(argv[9]) ;
seed = atoi(argv[10]) ;
IVzero(20, stats) ;
DVzero(20, cpus) ;
/*--------------------------------------------------------------------*/
/*
--------------------------------------------
STEP 1: read the entries from the input file
and create the InpMtx object
--------------------------------------------
*/
sprintf(buffer, "patchMatrix.%d.input", myid) ;
inputFile = fopen(buffer, "r") ;
fscanf(inputFile, "%d %d %d", &neqns, &neqns, &nent) ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if ( type == SPOOLES_REAL ) {
for ( ient = 0 ; ient < nent ; ient++ ) {
fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else if ( type == SPOOLES_COMPLEX ) {
for ( ient = 0 ; ient < nent ; ient++ ) {
fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
InpMtx_sortAndCompress(mtxA) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------------
STEP 2 : find a low-fill ordering
(1) create the Graph object
(2) order the graph using multiple minimum degree
(3) find out who has the best ordering w.r.t. op count,
and broadcast that front tree object
-------------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_MPI_fullAdjacency(mtxA, stats,
msglvl, msgFile, MPI_COMM_WORLD) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n graph of the input matrix") ;
Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed + myid, msglvl, msgFile) ;
Graph_free(graph) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fflush(msgFile) ;
}
opcounts = DVinit(nproc, 0.0) ;
opcounts[myid] = ETree_nFactorOps(frontETree, type, symmetryflag) ;
MPI_Allgather((void *) &opcounts[myid], 1, MPI_DOUBLE,
(void *) opcounts, 1, MPI_DOUBLE, MPI_COMM_WORLD) ;
minops = DVmin(nproc, opcounts, &root) ;
DVfree(opcounts) ;
frontETree = ETree_MPI_Bcast(frontETree, root,
msglvl, msgFile, MPI_COMM_WORLD) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n best front tree") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------------
STEP 3: get the permutations and permute the front tree
-------------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
/*--------------------------------------------------------------------*/
/*
-------------------------------------------
STEP 4: generate the owners map IV object
and the map from vertices to owners
-------------------------------------------
*/
cutoff = 1./(2*nproc) ;
cumopsDV = DV_new() ;
DV_init(cumopsDV, nproc, NULL) ;
ownersIV = ETree_ddMap(frontETree,
type, symmetryflag, cumopsDV, cutoff) ;
DV_free(cumopsDV) ;
vtxmapIV = IV_new() ;
IV_init(vtxmapIV, neqns, NULL) ;
IVgather(neqns, IV_entries(vtxmapIV),
IV_entries(ownersIV), ETree_vtxToFront(frontETree)) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n map from fronts to owning processes") ;
IV_writeForHumanEye(ownersIV, msgFile) ;
fprintf(msgFile, "\n\n map from vertices to owning processes") ;
IV_writeForHumanEye(vtxmapIV, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------
STEP 5: permute the matrix and redistribute
-------------------------------------------
*/
InpMtx_permute(mtxA, IV_entries(oldToNewIV), IV_entries(oldToNewIV)) ;
if ( symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN ) {
InpMtx_mapToUpperTriangle(mtxA) ;
}
InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
firsttag = 0 ;
keepmtx = InpMtx_MPI_split(mtxA, vtxmapIV, stats,
msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
InpMtx_free(mtxA) ;
mtxA = keepmtx ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n permuted and split InpMtx") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------------------------
STEP 6: compute the symbolic factorization
------------------------------------------
*/
symbfacIVL = SymbFac_MPI_initFromInpMtx(frontETree, ownersIV, mtxA,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n local symbolic factorization") ;
IVL_writeForHumanEye(symbfacIVL, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
--------------------------------------------------
STEP 7: initialize the front matrix object and the
PatchAndGoInfo object to handle small pivots
--------------------------------------------------
*/
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
frontmtx = FrontMtx_new() ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, NO_LOCK, myid,
ownersIV, mtxmanager, msglvl, msgFile) ;
if ( patchAndGoFlag == 1 ) {
frontmtx->patchinfo = PatchAndGoInfo_new() ;
PatchAndGoInfo_init(frontmtx->patchinfo, 1, toosmall, fudge,
storeids, storevalues) ;
} else if ( patchAndGoFlag == 2 ) {
frontmtx->patchinfo = PatchAndGoInfo_new() ;
PatchAndGoInfo_init(frontmtx->patchinfo, 2, toosmall, fudge,
storeids, storevalues) ;
}
/*--------------------------------------------------------------------*/
/*
---------------------------------
STEP 8: compute the factorization
---------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 0) ;
rootchv = FrontMtx_MPI_factorInpMtx(frontmtx, mtxA, tau, 0.0 ,
chvmanager, ownersIV, 0, &error, cpus,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
ChvManager_free(chvmanager) ;
if ( patchAndGoFlag == 1 ) {
if ( frontmtx->patchinfo->fudgeIV != NULL ) {
fprintf(msgFile, "\n small pivots found at these locations") ;
IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ;
}
PatchAndGoInfo_free(frontmtx->patchinfo) ;
} else if ( patchAndGoFlag == 2 ) {
if ( frontmtx->patchinfo->fudgeIV != NULL ) {
fprintf(msgFile, "\n small pivots found at these locations") ;
IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ;
}
if ( frontmtx->patchinfo->fudgeDV != NULL ) {
fprintf(msgFile, "\n perturbations") ;
DV_writeForHumanEye(frontmtx->patchinfo->fudgeDV, msgFile) ;
}
PatchAndGoInfo_free(frontmtx->patchinfo) ;
}
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n numeric factorization") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
if ( error >= 0 ) {
fprintf(stderr,
"\n proc %d : factorization error at front %d", myid, error) ;
fprintf(msgFile,
"\n proc %d : factorization error at front %d", myid, error) ;
MPI_Barrier(MPI_COMM_WORLD) ;
fprintf(stderr,
"\n proc %d : calling MPI_Finalize()", myid) ;
fprintf(msgFile,
"\n proc %d : calling MPI_Finalize()", myid) ;
MPI_Finalize() ;
return(-1) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------------------------------
STEP 9: post-process the factorization and split
the factor matrices into submatrices
------------------------------------------------
*/
FrontMtx_MPI_postProcess(frontmtx, ownersIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n numeric factorization after post-processing");
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-----------------------------------
STEP 10: create the solve map object
-----------------------------------
*/
solvemap = SolveMap_new() ;
SolveMap_ddMap(solvemap, frontmtx->symmetryflag,
FrontMtx_upperBlockIVL(frontmtx),
FrontMtx_lowerBlockIVL(frontmtx),
nproc, ownersIV, FrontMtx_frontTree(frontmtx),
seed, msglvl, msgFile);
if ( msglvl > 3 ) {
SolveMap_writeForHumanEye(solvemap, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
----------------------------------------------------
STEP 11: redistribute the submatrices of the factors
----------------------------------------------------
*/
FrontMtx_MPI_split(frontmtx, solvemap,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n numeric factorization after split") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------
STEP 12: read the entries from the rhs input file
and create the DenseMtx object for Y
-------------------------------------------------
*/
sprintf(buffer, "patchRhs.%d.input", myid) ;
inputFile = fopen(buffer, "r") ;
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxY = DenseMtx_new() ;
DenseMtx_init(mtxY, type, myid, -1, nrow, nrhs, 1, nrow) ;
DenseMtx_rowIndices(mtxY, &nrow, &rowind) ;
if ( type == SPOOLES_REAL ) {
for ( irow = 0 ; irow < nrow ; irow++ ) {
fscanf(inputFile, "%d", rowind + irow) ;
for ( jcol = 0 ; jcol < nrhs ; jcol++ ) {
fscanf(inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxY, irow, jcol, value) ;
}
}
} if ( type == SPOOLES_COMPLEX ) {
for ( irow = 0 ; irow < nrow ; irow++ ) {
fscanf(inputFile, "%d", rowind + irow) ;
for ( jcol = 0 ; jcol < nrhs ; jcol++ ) {
fscanf(inputFile, "%le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxY, irow, jcol, real, imag) ;
}
}
}
fclose(inputFile) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------------------------------
STEP 13: permute and redistribute Y if necessary
------------------------------------------------
*/
DenseMtx_permuteRows(mtxY, oldToNewIV) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n rhs matrix in new ordering") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fflush(msgFile) ;
}
if ( FRONTMTX_IS_PIVOTING(frontmtx) ) {
IV *rowmapIV ;
/*
----------------------------------------------------------
pivoting has taken place, redistribute the right hand side
to match the final rows and columns in the fronts
----------------------------------------------------------
*/
rowmapIV = FrontMtx_MPI_rowmapIV(frontmtx, ownersIV, msglvl,
msgFile, MPI_COMM_WORLD) ;
mtxY = DenseMtx_MPI_splitByRows(mtxY, rowmapIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;
IV_free(rowmapIV) ;
} else {
/*
--------------------------------------------------------------
pivoting has not taken place, redistribute the right hand side
using the vertex map used to redistribute the matrix A
--------------------------------------------------------------
*/
mtxY = DenseMtx_MPI_splitByRows(mtxY, vtxmapIV, stats, msglvl,
msgFile, firsttag, MPI_COMM_WORLD) ;
}
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n rhs matrix after split") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------------------------
STEP 14: create a solution DenseMtx object
and solve the linear system
------------------------------------------
*/
ownedColumnsIV = FrontMtx_ownedColumnsIV(frontmtx, myid, ownersIV,
msglvl, msgFile) ;
nmycol = IV_size(ownedColumnsIV) ;
mtxX = DenseMtx_new() ;
if ( nmycol > 0 ) {
DenseMtx_init(mtxX, type, myid, -1, nmycol, nrhs, 1, nmycol) ;
DenseMtx_rowIndices(mtxX, &nrow, &rowind) ;
IVcopy(nmycol, rowind, IV_entries(ownedColumnsIV)) ;
}
solvemanager = SubMtxManager_new() ;
SubMtxManager_init(solvemanager, NO_LOCK, 0) ;
FrontMtx_MPI_solve(frontmtx, mtxX, mtxY, solvemanager, solvemap, cpus,
stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ;
SubMtxManager_free(solvemanager) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n solution in new ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
--------------------------------------------------------
STEP 15: permute the solution into the original ordering
and assemble the solution onto processor zero
--------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n solution in old ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;
}
IV_fill(vtxmapIV, 0) ;
firsttag++ ;
mtxX = DenseMtx_MPI_splitByRows(mtxX, vtxmapIV, stats, msglvl, msgFile,
firsttag, MPI_COMM_WORLD) ;
if ( myid == 0 && msglvl > 0 ) {
fprintf(msgFile, "\n\n complete solution in old ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
MPI_Finalize() ;
return(1) ; }
/*--------------------------------------------------------------------*/
|