File: proto.tex

package info (click to toggle)
spooles 2.2-16
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,760 kB
  • sloc: ansic: 146,836; sh: 7,571; csh: 3,615; makefile: 1,970; perl: 74
file content (853 lines) | stat: -rw-r--r-- 33,226 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
\par
\section{Prototypes and descriptions of {\tt Tree} methods}
\label{section:Tree:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt Tree} object.
\par
\subsection{Basic methods}
\label{subsection:Tree:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * Tree_new ( void ) ;
\end{verbatim}
\index{Tree_new@{\tt Tree\_new()}}
This method simply allocates storage for the {\tt Tree} structure 
and then sets the default fields by a call to 
{\tt Tree\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setDefaultFields ( Tree *tree ) ;
\end{verbatim}
\index{Tree_setDefaultFields@{\tt Tree\_setDefaultFields()}}
This method sets the structure's fields to default values:
{\tt n} is zero, {\tt root} is {\tt -1}, and {\tt par}, {\tt fch}
and {\tt sib} are all {\tt NULL}.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_clearData ( Tree *tree ) ;
\end{verbatim}
\index{Tree_clearData@{\tt Tree\_clearData()}}
This method releases any storage held by the parent, first child
and sibling vectors, then sets the structure's default fields 
with a call to {\tt Tree\_setDefaultFields()}.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_free ( Tree *tree ) ;
\end{verbatim}
\index{Tree_free@{\tt Tree\_free()}}
This method releases any storage by a call to 
{\tt Tree\_clearData()} then free's the storage for the 
structure with a call to {\tt free()}.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Instance methods}
\label{subsection:Tree:proto:instance}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nnodes ( Tree *tree ) ;
\end{verbatim}
\index{Tree_nnodes@{\tt Tree\_nnodes()}}
This method returns the number of nodes in the tree.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_root ( Tree *tree ) ;
\end{verbatim}
\index{Tree_root@{\tt Tree\_root()}}
This method returns the root of the tree.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int * Tree_par ( Tree *tree ) ;
\end{verbatim}
\index{Tree_par@{\tt Tree\_par()}}
This method returns a pointer to the parent vector.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int * Tree_fch ( Tree *tree ) ;
\end{verbatim}
\index{Tree_fch@{\tt Tree\_fch()}}
This method returns a pointer to the first child vector.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int * Tree_sib ( Tree *tree ) ;
\end{verbatim}
\index{Tree_sib@{\tt Tree\_sib()}}
This method returns a pointer to the sibling vector.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Initializer methods}
\label{subsection:Tree:proto:initializers}
\par
There are three initializers and two helper functions to set the
dimensions of the tree, allocate the three vectors, and fill the
information.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_init1 ( Tree *tree, int size ) ;
\end{verbatim}
\index{Tree_init1@{\tt Tree\_init1()}}
This is the basic initializer method.
Any previous data is cleared with a call to {\tt Tree\_clearData()}. 
The size is set and storage allocated for
the three tree vectors using {\tt IVinit()}.
All entries in the three vectors are set to {\tt -1}.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL} or {\tt size} is negative, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_init2 ( Tree *tree, int size, int par[] ) ;
\end{verbatim}
\index{Tree_init2@{\tt Tree\_init2()}}
The simple initializer {\tt Tree\_init1()} is called
and the entries in {\tt par[]} are copied into the parent vector.
The helper method {\tt Tree\_setFchSibRoot()} is then called to set
the other fields.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt par} is {\tt NULL},
or if {\tt size} is negative, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_init3 ( Tree *tree, int size, int par[], int fch[], int sib[] ) ;
\end{verbatim}
\index{Tree_init3@{\tt Tree\_init3()}}
The simple initializer {\tt Tree\_init1()} is called
and the entries in {\tt par[]}, {\tt fch[]} and {\tt sib[]} 
are copied into their respective vectors.
The helper method {\tt Tree\_setRoot()} is then called to set
the root field.
\par \noindent {\it Error checking:}
If {\tt tree}, {\tt par}, {\tt fch} or {\tt sib} is {\tt NULL},
or if {\tt size} is negative, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_initFromSubtree ( Tree *subtree, IV *nodeidsIV, Tree *tree ) ;
\end{verbatim}
\index{Tree_initFromSubtree@{\tt Tree\_initFromSubtree()}}
The {\tt subtree} object is initialized from the {\tt tree} object,
the nodes that are included are those found in {\tt nodeidsIV}.
A parent-child link in the subtree means that the two nodes have a
parent-child link in the tree.
\par \noindent {\it Return codes:}
\begin{center}
\begin{tabular}{rl}
 1 & normal return \\
-1 & {\tt subtree} is {\tt NULL} \\
-2 & {\tt nodeidsIV} is {\tt NULL} \\
\end{tabular}
\quad
\begin{tabular}{rl}
-3 & {\tt tree} is {\tt NULL} \\
-4 & {\tt nodeidsIV} is invalid
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setFchSibRoot ( Tree *tree ) ;
\end{verbatim}
\index{Tree_setFchSibRoot@{\tt Tree\_setFchSibRoot()}}
The root and the entries in the {\tt fch[]} and {\tt sib[]} 
vectors are set using the entries in the {\tt par[]} vector.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setRoot ( Tree *tree ) ;
\end{verbatim}
\index{Tree_setRoot@{\tt Tree\_setRoot()}}
The vertices that are roots in the tree are linked by
their {\tt sib[]} field and the root of the tree is set to the head
of the list.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Utility methods}
\label{subsection:Tree:proto:utilities}
\par
The utility methods return the number of bytes taken by the object,
aid in performing pre-order and post-order traversals, and return
statistics about the tree (e.g.,
the number of roots or leaves in the tree, or the number of
children of a node in the tree).
This functionality can be easily had by direct manipulation or
inquiry of the object, but these methods insulate the user from the
internals and allow us to change and improve the internals if
necessary.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_sizeOf ( Tree *tree ) ;
\end{verbatim}
\index{Tree_sizeOf@{\tt Tree\_sizeOf()}}
This method returns the number of bytes taken by this object.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_postOTfirst ( Tree *tree ) ;
\end{verbatim}
\index{Tree_postOTfirst@{\tt Tree\_postOTfirst()}}
This method returns the first node in a post-order traversal.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_postOTnext ( Tree *tree, int v ) ;
\end{verbatim}
\index{Tree_postOTnext@{\tt Tree\_postOTnext()}}
This method returns the node that follows {\tt v}
in a post-order traversal.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1} 
or {\tt v} is not in {\tt [0,tree->n-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_preOTfirst ( Tree *tree ) ;
\end{verbatim}
\index{Tree_preOTfirst@{\tt Tree\_preOTfirst()}}
This method returns the first node in a pre-order traversal.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_preOTnext ( Tree *tree, int v ) ;
\end{verbatim}
\index{Tree_preOTnext@{\tt Tree\_preOTnext()}}
This method returns the node that follows {\tt v}
in a pre-order traversal.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1},
or {\tt v} is not in {\tt [0,tree->n-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nleaves ( Tree *tree ) ;
\end{verbatim}
\index{Tree_nleaves@{\tt Tree\_nleaves()}}
This method returns the number of leaves of the tree.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nroots ( Tree *tree ) ;
\end{verbatim}
\index{Tree_nroots@{\tt Tree\_nroots()}}
This method returns the number of roots of the tree (really a forest).
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nchild ( Tree *tree, int v ) ;
\end{verbatim}
\index{Tree_nchild@{\tt Tree\_nchild()}}
This method returns the number of children of {\tt v}.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt tree->n < 1},
or {\tt v} is not in {\tt [0,tree->n-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Tree_nchildIV ( Tree *tree ) ;
\end{verbatim}
\index{Tree_nchildIV@{\tt Tree\_nchildIV()}}
This method creates an {\tt IV} object that holds the number of
children for each of the nodes, i.e., entry {\tt v} of the returned
{\tt IV} object contains the number of children of node {\tt v}.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_maxNchild ( Tree *tree ) ;
\end{verbatim}
\index{Tree_maxNchild@{\tt Tree\_maxNchild()}}
This method returns the maximum number of children of any vertex.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_height ( Tree *tree ) ;
\end{verbatim}
\index{Tree_height@{\tt Tree\_height()}}
This method returns the height of the tree.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL},
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Tree_maximizeGainIV ( Tree *tree, IV *gainIV, int *ptotalgain,
                           int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{Tree_maximizeGainIV@{\tt Tree\_maximizeGainIV()}}
Given a gain value assigned to each node, 
find a set of nodes, no two in a child-ancestor relationship,
that maximizes the total gain.
This problem arises in finding the optimal domain/Schur
complement partition for a semi-implicit factorization.
\par \noindent {\it Error checking:}
If {\tt tree}, {\tt gainIV} or {\tt ptotalgain} is {\tt NULL}, 
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\subsection{Metrics methods}
\label{subsection:Tree:proto:metrics}
\par
Many operations need to know some {\it metric} defined on the nodes
in a tree.
Here are three examples: 
the height of a node (the minimum distance from a descendant leaf),
the depth of a node (the distance from its root ancestor), or
the weight associated with a subtree rooted at a node.
Of course, a weight could be associated with each node, so the
height or depth becomes the weight of the nodes on the path.
\par
Metrics can be {\tt int} or {\tt double}.
Because of the limitations of C, we need two separate methods for
each of the height, depth and subtree functions.
Each pair of methods differs only in the type of the vector object
argument.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Tree_setSubtreeImetric ( Tree *tree, IV *vmetricIV ) ;
DV * Tree_setSubtreeDmetric ( Tree *tree, DV *vmetricDV ) ;
\end{verbatim}
\index{Tree_setSubtreeImetric@{\tt Tree\_setSubtreeImetric()}}
\index{Tree_setSubtreeDmetric@{\tt Tree\_setSubtreeDmetric()}}
These methods create and return {\tt IV} or {\tt DV} objects 
that contain subtree metrics using as input an {\tt IV} or {\tt DV}
object that contains the metric for each of the nodes.
If {\tt tmetric[]} is the vector in the returned {\tt IV} or {\tt
DV} object, then
\begin{verbatim}
tmetric[v] = vmetric[v] + sum_{par[u] = v} tmetric[u].
\end{verbatim}
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt vmetric\{I,D\}V} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Tree_setDepthImetric ( Tree *tree, IV * vmetricIV ) ;
DV * Tree_setDepthDmetric ( Tree *tree, DV * vmetricDV ) ;
\end{verbatim}
\index{Tree_setDepthImetric@{\tt Tree\_setDepthImetric()}}
\index{Tree_setDepthDmetric@{\tt Tree\_setDepthDmetric()}}
These methods create and return {\tt IV} or {\tt DV} objects 
that contain depth metrics using as input an {\tt IV} or {\tt DV}
object that contains the metric for each of the nodes.
If {\tt dmetric[]} is the vector in the returned {\tt IV} or {\tt
DV} object, then
\begin{verbatim}
dmetric[v] = vmetric[v] if par[v] == -1
           = vmetric[v] + dmetric[par[v]] if par[v] != -1
\end{verbatim}
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt vmetric\{I,D\}V} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Tree_setHeightImetric ( Tree *tree, IV * vmetricIV ) ;
DV * Tree_setHeightDmetric ( Tree *tree, DV * vmetricDV ) ;
\end{verbatim}
\index{Tree_setHeightImetric@{\tt Tree\_setHeightImetric()}}
\index{Tree_setHeightDmetric@{\tt Tree\_setHeightDmetric()}}
These methods create and return {\tt IV} or {\tt DV} objects 
that contain height metrics using as input an {\tt IV} or {\tt DV}
object that contains the metric for each of the nodes.
If {\tt hmetric[]} is the vector in the returned {\tt IV} or {\tt
DV} object, then
\begin{verbatim}
hmetric[v] = vmetric[v] if fch[v] == -1
           = vmetric[v] + max_{par[u] = v} hmetric[par[v]] 
\end{verbatim}
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt vmetric\{I,D\}V} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Compression methods}
\label{subsection:Tree:proto:compression}
\par
Frequently a tree will need to be compressed in some manner.
Elimination trees usually have long chains of nodes at the higher
levels, where each chain of nodes corresponds to a supernode.
Liu's generalized row envelope methods partition the vertices by
longest chains \cite{liu91-generalizedEnvelope}.
In both cases, we can construct a map from each node to a set of 
nodes to define a smaller, more compact tree.
Given such a map, we construct the smaller tree.
\par
A fundamental chain is a set of nodes $v_1, \ldots, v_m$ such that
(1) $v_1$ is a leaf or has two or more children,
(2) $v_{i+1}$ is the parent of $v_i$ for $1 \le i < m$,
and 
(3) $v_m$ is either a root or has a sibling.
The set of fundamental chains is uniquely defined.
In the context of elimination trees, a fundamental chain is very
close to a fundamental supernode, and in many cases, 
fundamental chains can be used to contruct the fronts with little 
added fill and factor operations.
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Tree_fundChainMap ( Tree *tree ) ;
\end{verbatim}
\index{Tree_fundChainMap@{\tt Tree\_fundChainMap()}}
This method creates and returns an {\tt IV} object that contains
the map a vertex to the fundamental chain to which it belongs,
i.e., {\tt map[v]} contains the id of the fundamental chain
that contains {\tt v}.
If {\tt u} is a descendant of {\tt v}, then {\tt map[u] <=
map[v]}.
The number of fundamental chains is returned.
\par \noindent {\it Error checking:}
If {\tt tree} is {\tt NULL}, 
or if {\tt n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * Tree_compress ( Tree *tree, IV  *mapIV ) ;
\end{verbatim}
\index{Tree_compress@{\tt Tree\_compress()}}
This method creates and returns a new {\tt Tree} object
formed by compressing {\tt tree} using the {\tt mapIV} object.
The compressed tree is constructed and returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt mapIV} is {\tt NULL}, 
or if {\tt n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Justification methods}
\label{subsection:Tree:proto:justify}
\par
Given a tree, how should the children of a node be ordered?
This ``justification'' can have a large impact in the working
storage for the front tree in the multifrontal algorithm.
Justification also is useful when displaying trees.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_leftJustify ( Tree *tree ) ;
\end{verbatim}
\index{Tree_leftJustify@{\tt Tree\_leftJustify()}}
This method justifies the tree, reordering the children of each
node as necessary.
If {\tt u} and {\tt v} are siblings, and {\tt u} comes
before {\tt v} in a post-order traversal, then the size of the
subtree rooted at {\tt u} is as large or larger than the size of
the subtree rooted at {\tt v}.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt map} is {\tt NULL}, 
or if {\tt n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_leftJustifyI ( Tree *tree, IV *metricIV ) ;
void Tree_leftJustifyD ( Tree *tree, DV *metricIV ) ;
\end{verbatim}
\index{Tree_leftJustifyI@{\tt Tree\_leftJustifyI()}}
\index{Tree_leftJustifyD@{\tt Tree\_leftJustifyD()}}
This method justifies the tree, reordering the children of each
node as necessary.
If {\tt u} and {\tt v} are siblings, and {\tt u} comes
before {\tt v} in a post-order traversal, then the weight of the
subtree rooted at {\tt u} is as large or larger than the weight of
the subtree rooted at {\tt v}.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt metricIV} is {\tt NULL}, 
or if {\tt n < 1},
or if {\tt n} is not the size of {\tt metricIV},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Permutation methods}
\label{subsection:Tree:proto:permutation}
\par
Often we need to extract a permutation from a tree, e.g., a
post-order traversal of an elimination tree gives an ordering for a
sparse matrix.
On other occasions, we need to permute a tree, i.e. re-label
the nodes.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_fillNewToOldPerm ( Tree *tree, int newToOld[] ) ;
void Tree_fillOldToNewPerm ( Tree *tree, int oldToNew[] ) ;
void Tree_fillBothPerms ( Tree *tree, int newToOld[], int oldToNew[] ) ;
\end{verbatim}
\index{Tree_fillNewToOldPerm@{\tt Tree\_fillNewToOldPerm()}}
\index{Tree_fillOldToNewPerm@{\tt Tree\_fillOldToNewPerm()}}
\index{Tree_fillBothPerms@{\tt Tree\_fillBothPerms()}}
If {\tt tree} is {\tt NULL}, 
{\tt tree->n < 1} or a permutation vector is {\tt NULL},
an error message is printed and the program exits.
Otherwise, the permutation vector(s) is (are) filled with the
ordering of the nodes in a post-order traversal.
\par \noindent {\it Error checking:}
If {\tt tree} or a permutation vector is {\tt NULL}, 
or if {\tt n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * Tree_permute ( Tree *tree, int newToOld[], int oldToNew[] ) ;
\end{verbatim}
\index{Tree_permute@{\tt Tree\_permute()}}
A new tree is created with the same connectivity as the
old but the nodes are relabeled.
\par \noindent {\it Error checking:}
If {\tt tree}, {\tt newToOld} or {\tt oldToNew} is {\tt NULL}, 
or if {\tt tree->n < 1},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Drawing method}
\label{subsection:Tree:proto:drawing}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_getSimpleCoords ( Tree *tree, char heightflag, int coordflag, 
                           DV *xDV, DV *yDV) ;
\end{verbatim}
\index{Tree_getSimpleCoords@{\tt Tree\_getSimpleCoords()}}
This method fills the {\tt xDV} and {\tt yDV} vector objects with
coordinates of the nodes in the tree.
When {\tt coordflag = 'C'}, we create Cartesian coordinates,
where the leaves are at the bottom and the root(s) at the top.
When {\tt coordflag = 'P'}, we create polar coordinates, where
the leaves are found on the outside and the root(s) in the center.
The height of a node 
is the distance from the bottom for Cartesian coordinates,
and the distance from the outermost circle for polar coordinates.
When {\tt heightflag = 'H'}, the height of a node 
is one unit more than that of its highest child.
When {\tt heightflag = 'D'}, the height of a node 
is one unit less than that of its parent.
\par \noindent {\tt Return codes:}
\begin{center}
\begin{tabular}{rl}
 1 & normal return \\
-1 & {\tt tree} is {\tt NULL} \\
-2 & {\tt heightflag} is invalid 
\end{tabular}
\quad
\begin{tabular}{rl}
-3 & {\tt coordflag} is invalid \\
-3 & {\tt xDV} is {\tt NULL} \\
-4 & {\tt yDV} is {\tt NULL}
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_drawToEPS ( Tree *tree, FILE *filename, DV *xDV, DV *yDV, 
                     double rscale, DV *radiusDV, int labelflag, 
                     double fontscale, IV *labelsIV, double bbox[], 
                     double frame[], double bounds[] ) ;
\end{verbatim}
\index{Tree_drawToEPS@{\tt Tree\_drawToEPS()}}
This method draws a tree.
The coordinates of the nodes are found in the {\tt xDV} 
and {\tt yDV} vectors.
\par
The nodes will have circles of constant radius 
(if {\tt radiusDV} is {\tt NULL}) 
or each circle can have a different radius found in {\tt radiusDV}
when {\tt radiusDV} is not {\tt NULL}.
The value {\tt rscale} is used to scale all the radii.
(If {\tt radiusDV} is {\tt NULL}, then all radii are equal to one
point --- there are 72 points to the inch.)
\par
If {\tt labelflag = 1}, the nodes will have a numeric label.
If {\tt labelsIV} is {\tt NULL}, then the label will be the node id.
Otherwise, the labels are taken from the {\tt labelsIV} vector.
The size of the fonts for the labels is found in {\tt fontscale},
e.g., {\tt fontscale = 10} implies using a 10 point font.
{\tt bbox[4]} and {\tt frame[4]} define the bounding box and frame,
respectively.
\par
If {\tt bounds[]} is {\tt NULL}, the tree is sized to fit inside
the frame. Note, when the radii of the nodes are non-constant,
determining the local coordinates is a non-linear process that
may not converge for a large radius with respect to the frame.
If this occurs, an error message is printed and the program exits.
If {\tt bounds[]} is not {\tt NULL}, then the nodes are mapped
to local coordinates within the frame.
This is useful when we have two or more trees that need a common
reference frame.
(See the {\tt testFS} driver program in the {\tt ETree/drivers}
directory.)
\par
See the {\tt drawTree} driver program in the next section.
\par \noindent {\tt Return codes:}
\begin{center}
\begin{tabular}{rl}
 1 & normal return \\
-1 & {\tt tree} is {\tt NULL} \\
-2 & {\tt filename} is {\tt NULL} \\
-3 & {\tt xDV} is {\tt NULL} \\
-4 & {\tt yDV} is {\tt NULL}
\end{tabular}
\quad
\begin{tabular}{rl}
-5 & {\tt rscale} is negative \\
-6 & {\tt fontscale} is negative \\
-7 & {\tt bbox} is {\tt NULL} \\
-8 & {\tt frame} is {\tt NULL}
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{IO methods}
\label{subsection:Tree:proto:IO}
\par
There are the usual eight IO routines.
The file structure of a tree object is simple:
{\tt size},
{\tt root},
{\tt par[size]},
{\tt fch[size]} and
{\tt sib[size]}.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_readFromFile ( Tree *tree, char *fn ) ;
\end{verbatim}
\index{Tree_readFromFile@{\tt Tree\_readFromFile()}}
\par
This method reads in a {\tt Perm} object from a file.
It tries to open the file and if it is successful, 
it then calls {\tt Tree\_readFromFormattedFile()} or
{\tt Tree\_readFromBinaryFile()}, 
closes the file
and returns the value returned from the called routine.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fn} are {\tt NULL}, 
or if {\tt fn} is not of the form
{\tt *.treef} (for a formatted file) 
or {\tt *.treeb} (for a binary file),
an error message is printed and the method returns zero.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_readFromFormattedFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_readFromFormattedFile@{\tt Tree\_readFromFormattedFile()}}
\par
This method reads in a {\tt Perm} object from a formatted file.
If there are no errors in reading the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fscanf}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fp} are {\tt NULL}, 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_readFromBinaryFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_readFromBinaryFile@{\tt Tree\_readFromBinaryFile()}}
\par
This method reads in a {\tt Perm} object from a binary file.
If there are no errors in reading the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fread}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fp} are {\tt NULL}, 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeToFile ( Tree *tree, char *fn ) ;
\end{verbatim}
\index{Tree_writeToFile@{\tt Tree\_writeToFile()}}
\par
This method writes a {\tt Perm} object to a file.
It tries to open the file and if it is successful, 
it then calls {\tt Tree\_writeFromFormattedFile()} or
{\tt Tree\_writeFromBinaryFile()},
closes the file
and returns the value returned from the called routine.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fn} are {\tt NULL}, 
or if {\tt fn} is not of the form
{\tt *.treef} (for a formatted file) 
or {\tt *.treeb} (for a binary file),
an error message is printed and the method returns zero.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeToFormattedFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeToFormattedFile@{\tt Tree\_writeToFormattedFile()}}
\par
This method writes a {\tt Perm} object to a formatted file.
If there are no errors in writing the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fprintf}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fp} are {\tt NULL}, 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeToBinaryFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeToBinaryFile@{\tt Tree\_writeToBinaryFile()}}
\par
This method writes a {\tt Perm} object to a binary file.
If there are no errors in writing the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fwrite}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fp} are {\tt NULL}, 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeForHumanEye ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeForHumanEye@{\tt Tree\_writeForHumanEye()}}
\par
This method writes a {\tt Perm} object to a file in a human
readable format.
The method {\tt Tree\_writeStats()} is called to write out the
header and statistics. 
Then the parent, first child and sibling
values are printed out in three columns.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fp} are {\tt NULL}, 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeStats ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeStats@{\tt Tree\_writeStats()}}
\par
This method writes the header and statistics to a file.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt tree} or {\tt fp} are {\tt NULL}, 
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\end{enumerate}