File: proto.tex.bak

package info (click to toggle)
spooles 2.2-16
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,760 kB
  • sloc: ansic: 146,836; sh: 7,571; csh: 3,615; makefile: 1,970; perl: 74
file content (572 lines) | stat: -rw-r--r-- 23,479 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
\par
\subsection{Prototypes and descriptions of {\tt Tree} methods}
\label{subsection:Tree:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt Tree} object.
\par
\subsubsection{Basic methods}
\label{subsubsection:Tree:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * Tree_new ( void ) ;
\end{verbatim}
\index{Tree_new@{\tt Tree\_new()}}
This method simply allocates storage for the {\tt Tree} structure 
and then sets the default fields by a call to 
{\tt Tree\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setDefaultFields ( Tree *tree ) ;
\end{verbatim}
\index{Tree_setDefaultFields@{\tt Tree\_setDefaultFields()}}
This method checks to see whether {\tt tree} is {\tt NULL}.
If so, an error message is printed and the program exits.
Otherwise, the structure's fields are set to default values:
{\tt n} is zero, {\tt root} is {\tt -1}, and {\tt par}, {\tt fch}
and {\tt sib} are all {\tt NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_clearData ( Tree *tree ) ;
\end{verbatim}
\index{Tree_clearData@{\tt Tree\_clearData()}}
This method checks to see whether {\tt tree} is {\tt NULL}.
If so, an error message is printed and the program exits.
Otherwise, it releases any storage held by the parent, first child
and sibling vectors, then sets the structure's default fields 
with a call to {\tt Tree\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_free ( Tree *tree ) ;
\end{verbatim}
\index{Tree_free@{\tt Tree\_free()}}
This method checks to see whether {\tt tree} is {\tt NULL}.
If so, an error message is printed and the program exits.
Otherwise, it releases any storage by a call to 
{\tt Tree\_clearData()} then free's the storage for the 
structure with a call to {\tt free()}.
%-----------------------------------------------------------------------
\end{enumerate}
\subsubsection{IO methods}
\label{subsubsection:Tree:proto:IO}
\par
There are the usual eight IO routines.
The file structure of a tree object is simple:
{\tt size},
{\tt root},
{\tt par[size]},
{\tt fch[size]} and
{\tt sib[size]}.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_readFromFile ( Tree *tree, char *fn ) ;
\end{verbatim}
\index{Tree_readFromFile@{\tt Tree\_readFromFile()}}
\par
If {\tt tree} or {\tt fn} are {\tt NULL}, 
or if {\tt fn} is not of the form
{\tt *.treef} (for a formatted file) 
or {\tt *.treeb} (for a binary file),
an error message is printed and the method returns zero.
Otherwise, it tries to open the file and if it is successful, 
it then calls {\tt Tree\_readFromFormattedFile()} or
{\tt Tree\_readFromBinaryFile()}, 
closes the file
and returns the value returned from the called routine.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_readFormattedFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_readFormattedFile@{\tt Tree\_readFormattedFile()}}
\par
If {\tt tree} or {\tt fp} are {\tt NULL} an error message is printed and
zero is returned.
Otherwise, the data is read in from the file.
If there are no errors in reading the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fscanf}, zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_readBinaryFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_readBinaryFile@{\tt Tree\_readBinaryFile()}}
\par
If {\tt tree} or {\tt fp} are {\tt NULL} an error message 
is printed and zero is returned.
Otherwise, the data is read in from the file.
If there are no errors in reading the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fread}, zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeToFile ( Tree *tree, char *fn ) ;
\end{verbatim}
\index{Tree_writeToFile@{\tt Tree\_writeToFile()}}
\par
If {\tt tree} or {\tt fn} are {\tt NULL}, 
or if {\tt fn} is not of the form
{\tt *.treef} (for a formatted file) 
or {\tt *.treeb} (for a binary file),
an error message is printed and the method returns zero.
Otherwise, it tries to open the file and if it is successful, 
it then calls {\tt Tree\_writeFromFormattedFile()} or
{\tt Tree\_writeFromBinaryFile()},
closes the file
and returns the value returned from the called routine.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeFormattedFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeFormattedFile@{\tt Tree\_writeFormattedFile()}}
\par
If {\tt tree} or {\tt fp} are {\tt NULL} an error message is printed and
zero is returned.
Otherwise, the data is written to the file.
If there are no errors in writing the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fprintf}, zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeBinaryFile ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeBinaryFile@{\tt Tree\_writeBinaryFile()}}
\par
If {\tt tree} or {\tt fp} are {\tt NULL} an error message 
is printed and zero is returned.
Otherwise, the data is written to the file.
If there are no errors in writing the data, 
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fwrite}, zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeForHumanEye ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeForHumanEye@{\tt Tree\_writeForHumanEye()}}
\par
If {\tt tree} or {\tt fp} are {\tt NULL} an error message 
is printed and zero is returned.
Otherwise, the method {\tt Tree\_writeStats()} 
is called to write out the
header and statistics. 
Then the parent, first child and sibling
values are printed out in three columns.
The value {\tt 1} is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_writeStats ( Tree *tree, FILE *fp ) ;
\end{verbatim}
\index{Tree_writeStats@{\tt Tree\_writeStats()}}
\par
If {\tt tree} or {\tt fp} are {\tt NULL} an error message 
is printed and zero is returned.
Otherwise, the header and statistics are written.
The value {\tt 1} is returned.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsubsection{Initializer methods}
\label{subsubsection:Tree:proto:initializers}
\par
There are three initializers and two helper functions to set the
dimensions of the tree, allocate the three vectors, and fill the
information.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_init1 ( Tree *tree, int size ) ;
\end{verbatim}
\index{Tree_init1@{\tt Tree\_init1()}}
If {\tt tree} is {\tt NULL} or {\tt size} is negative, 
an error message is printed and the program exits.
It then clears any previous data with a call to 
{\tt Tree\_clearData()}, sets the size and allocates storage for
the three tree vectors using {\tt IVinit()}.
All entries in the three vectors are set to {\tt -1}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_init2 ( Tree *tree, int size, int par[] ) ;
\end{verbatim}
\index{Tree_init2@{\tt Tree\_init2()}}
If {\tt tree} is {\tt NULL} or {\tt size} is negative, 
an error message is printed and the program exits.
Otherwise, the simple initializer {\tt Tree\_init1()} is called
and the entries in {\tt par[]} are copied into the parent vector.
The helper method {\tt Tree\_setFchSibRoot()} is then called to set
the other fields.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_init3 ( Tree *tree, int size, int par[], int fch[], int sib[] ) ;
\end{verbatim}
\index{Tree_init3@{\tt Tree\_init3()}}
If {\tt tree} is {\tt NULL} or {\tt size} is negative, 
an error message is printed and the program exits.
Otherwise, the simple initializer {\tt Tree\_init1()} is called
and the entries in {\tt par[]}, {\tt fch[]} and {\tt sib[]} 
are copied into their respective vectors.
The helper method {\tt Tree\_setRoot()} is then called to set
the root field.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setFchSibRoot ( Tree *tree ) ;
\end{verbatim}
\index{Tree_setFchSibRoot@{\tt Tree\_setFchSibRoot()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1},
an error message is printed and the program exits.
Otherwise, the root and the entries in the {\tt fch[]} and {\tt sib[]} 
vectors are set using the entries in the {\tt par[]} vector.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setRoot ( Tree *tree ) ;
\end{verbatim}
\index{Tree_setRoot@{\tt Tree\_setRoot()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1},
an error message is printed and the program exits.
Otherwise, the vertices that are roots in the tree are linked by
their {\tt sib[]} field and the root of the tree is set to the head
of the list.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsubsection{Utility methods}
\label{subsubsection:Tree:proto:utilities}
\par
The utility methods return the number of bytes taken by the object,
aid in performing pre-order and post-order traversals, and return
statistics about the tree (e.g.,
the number of roots or leaves in the tree, or the number of
children of a node in the tree).
This functionality can be easily had by direct manipulation or
inquiry of the object, but these methods insulate the user from the
internals and allow us to change and improve the internals if
necessary.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_sizeOf ( Tree *tree ) ;
\end{verbatim}
\index{Tree_sizeOf@{\tt Tree\_sizeOf()}}
If {\tt tree} is {\tt NULL},
an error message is printed and the program exits.
Otherwise, the number of bytes taken by this object is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_postOTfirst ( Tree *tree ) ;
\end{verbatim}
\index{Tree_postOTfirst@{\tt Tree\_postOTfirst()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the first node in a post-order traversal is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_postOTnext ( Tree *tree, int v ) ;
\end{verbatim}
\index{Tree_postOTnext@{\tt Tree\_postOTnext()}}
If {\tt tree} is {\tt NULL}, {\tt tree->n < 1} 
or {\tt v} is not in {\tt [0,tree->n-1]},
an error message is printed and the program exits.
Otherwise, the node that follows {\tt v}
in a post-order traversal is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_preOTfirst ( Tree *tree ) ;
\end{verbatim}
\index{Tree_preOTfirst@{\tt Tree\_preOTfirst()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the first node in a pre-order traversal is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_preOTnext ( Tree *tree, int v ) ;
\end{verbatim}
\index{Tree_preOTnext@{\tt Tree\_preOTnext()}}
If {\tt tree} is {\tt NULL}, {\tt tree->n < 1} 
or {\tt v} is not in {\tt [0,tree->n-1]},
an error message is printed and the program exits.
Otherwise, the node that follows {\tt v}
in a pre-order traversal is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nleaves ( Tree *tree ) ;
\end{verbatim}
\index{Tree_nleaves@{\tt Tree\_nleaves()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the number of leaves of the tree is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nroots ( Tree *tree ) ;
\end{verbatim}
\index{Tree_nroots@{\tt Tree\_nroots()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the number of roots of the tree (really a forest)
is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_nchild ( Tree *tree, int v ) ;
\end{verbatim}
\index{Tree_nchild@{\tt Tree\_nchild()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the number of children of {\tt v} is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_maxNchild ( Tree *tree ) ;
\end{verbatim}
\index{Tree_maxNchild@{\tt Tree\_maxNchild()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the maximum number of children of any vertex is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_height ( Tree *tree ) ;
\end{verbatim}
\index{Tree_height@{\tt Tree\_height()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1}, 
an error message is printed and the program exits.
Otherwise, the height of the tree is returned.
%-----------------------------------------------------------------------
\end{enumerate}
\subsubsection{Metrics methods}
\label{subsubsection:Tree:proto:metrics}
\par
Many operations need to know some {\it metric} defined on the nodes
in a tree.
Here are three examples: 
the height of a node (the minimum distance from a descendant leaf),
the depth of a node (the distance from its root ancestor), or
the weight associated with a subtree rooted at a node.
Of course, a weight could be associated with each node, so the
height or depth becomes the weight of the nodes on the path.
\par
Metrics can be {\tt int}, {\tt float} or {\tt double}.
Because of the limitations of C, we need three separate methods for
each of the height, depth and subtree functions.
Each trio of methods differs only in the type of the vector
argument.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setSubtreeImetric ( Tree *tree, int vmetric[], int tmetric[] ) ;
void Tree_setSubtreeFmetric ( Tree *tree, float vmetric[], float tmetric[] ) ;
void Tree_setSubtreeDmetric ( Tree *tree, double vmetric[], double tmetric[] ) ;
\end{verbatim}
\index{Tree_setSubtreeImetric@{\tt Tree\_setSubtreeImetric()}}
\index{Tree_setSubtreeFmetric@{\tt Tree\_setSubtreeFmetric()}}
\index{Tree_setSubtreeDmetric@{\tt Tree\_setSubtreeDmetric()}}
If {\tt tree}, {\tt vmetric} or {\tt tmetric} are {\tt NULL}
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
The vector {\tt vmetric[]} contains weights for each node.
On return, {\tt tmetric[v]} contains the weight of the subtree
rooted at {\tt v}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setDepthImetric ( Tree *tree, int vmetric[], int dmetric[] ) ;
void Tree_setDepthFmetric ( Tree *tree, float vmetric[], float dmetric[] ) ;
void Tree_setDepthDmetric ( Tree *tree, double vmetric[], double dmetric[] ) ;
\end{verbatim}
\index{Tree_setDepthImetric@{\tt Tree\_setDepthImetric()}}
\index{Tree_setDepthFmetric@{\tt Tree\_setDepthFmetric()}}
\index{Tree_setDepthDmetric@{\tt Tree\_setDepthDmetric()}}
If {\tt tree}, {\tt vmetric} or {\tt dmetric} are {\tt NULL}
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
The vector {\tt vmetric[]} contains weights for each node.
On return, {\tt dmetric[v]} contains the depth of {\tt v} measured
as the weight of nodes on the path from {\tt v} to its root.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_setHeightImetric ( Tree *tree, int vmetric[], int hmetric[] ) ;
void Tree_setHeightFmetric ( Tree *tree, float vmetric[], float hmetric[] ) ;
void Tree_setHeightDmetric ( Tree *tree, double vmetric[], double hmetric[] ) ;
\end{verbatim}
\index{Tree_setHeightImetric@{\tt Tree\_setHeightImetric()}}
\index{Tree_setHeightFmetric@{\tt Tree\_setHeightFmetric()}}
\index{Tree_setHeightDmetric@{\tt Tree\_setHeightDmetric()}}
If {\tt tree}, {\tt vmetric} or {\tt hmetric} are {\tt NULL}
or if {\tt tree->n < 1}, 
an error message is printed and the program exits.
The vector {\tt vmetric[]} contains weights for each node.
On return, {\tt hmetric[v]} contains the height of {\tt v} measured
as the minimum path weight from {\tt v} to one of its descendant
leaves.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsubsection{Compression methods}
\label{subsubsection:Tree:proto:compression}
\par
Frequently a tree will need to be compressed in some manner.
Elimination trees usually have long chains of nodes at the higher
levels, where each chain of nodes corresponds to a supernode.
Liu's generalized row envelope methods partition the vertices by
longest chains \cite{liu91-generalizedEnvelope}.
In both cases, we can construct a map from each node to a set of 
nodes to define a smaller, more compact tree.
Given such a map, we construct the smaller tree.
\par
A fundamental chain is a set of nodes $v_1, \ldots, v_m$ such that
(1) $v_1$ is a leaf or has two or more children,
(2) $v_{i+1}$ is the parent of $v_i$ for $1 \le i < m$,
and 
(3) $v_m$ is either a root or has a sibling.
The set of fundamental chains is uniquely defined.
In the context of elimination trees, a fundamental chain is very
close to a fundamental supernode, and in many cases, 
fundamental chains can be used to contruct the fronts with little 
added fill and factor operations.
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Tree_fundChainMap ( Tree *tree, int map[] ) ;
\end{verbatim}
\index{Tree_fundChainMap@{\tt Tree\_fundChainMap()}}
If {\tt tree} is {\tt NULL}, {\tt tree->n < 1} or if {\tt map} is
{\tt NULL}, an error message is printed and the program exits.
On return, {\tt map[v]} contains the id of the fundamental chain
that contains {\tt v}.
If {\tt u} is a descendant of {\tt v}, then {\tt map[u] <=
map[v]}.
The number of fundamental chains is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * Tree_compress ( Tree *tree, int map[] ) ;
\end{verbatim}
\index{Tree_compress@{\tt Tree\_compress()}}
If {\tt tree} is {\tt NULL}, {\tt tree->n < 1} or if {\tt map} is
{\tt NULL}, an error message is printed and the program exits.
The compressed tree is constructed and returned.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsubsection{Justification methods}
\label{subsubsection:Tree:proto:justify}
\par
Given a tree, how should the children of a node be ordered?
This ``justification'' can have a large impact in the working
storage for the front tree in the multifrontal algorithm.
Justification also is useful when displaying trees.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_leftJustify ( Tree *tree ) ;
\end{verbatim}
\index{Tree_leftJustify@{\tt Tree\_leftJustify()}}
If {\tt tree} is {\tt NULL} or {\tt tree->n < 1},
an error message is printed and the program exits.
Otherwise, if {\tt u} and {\tt v} are siblings, and {\tt u} comes
before {\tt v} in a post-order traversal, then the size of the
subtree rooted at {\tt u} is as large or larger than the size of
the subtree rooted at {\tt v}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_leftJustifyI ( Tree *tree, int metric[] ) ;
void Tree_leftJustifyF ( Tree *tree, float metric[] ) ;
void Tree_leftJustifyD ( Tree *tree, double metric[] ) ;
\end{verbatim}
\index{Tree_leftJustifyI@{\tt Tree\_leftJustifyI()}}
\index{Tree_leftJustifyF@{\tt Tree\_leftJustifyF()}}
\index{Tree_leftJustifyD@{\tt Tree\_leftJustifyD()}}
If {\tt tree} is {\tt NULL}, {\tt tree->n < 1} 
or {\tt metric} is {\tt NULL},
an error message is printed and the program exits.
Otherwise, if {\tt u} and {\tt v} are siblings, and {\tt u} comes
before {\tt v} in a post-order traversal, then the weight of the
subtree rooted at {\tt u} is as large or larger than the weight of
the subtree rooted at {\tt v}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsubsection{Permutation methods}
\label{subsubsection:Tree:proto:permutation}
\par
Often we need to extract a permutation from a tree, e.g., a
post-order traversal of an elimination tree gives an ordering for a
sparse matrix.
On other occasions, we need to permute a tree, i.e. re-label
the nodes.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Tree_fillNewToOldPerm ( Tree *tree, int newToOld[] ) ;
void Tree_fillOldToNewPerm ( Tree *tree, int oldToNew[] ) ;
void Tree_fillBothPerms ( Tree *tree, int newToOld[], int oldToNew[] ) ;
\end{verbatim}
\index{Tree_fillNewToOldPerm@{\tt Tree\_fillNewToOldPerm()}}
\index{Tree_fillOldToNewPerm@{\tt Tree\_fillOldToNewPerm()}}
\index{Tree_fillBothPerms@{\tt Tree\_fillBothPerms()}}
If {\tt tree} is {\tt NULL}, 
{\tt tree->n < 1} or a permutation vector is {\tt NULL},
an error message is printed and the program exits.
Otherwise, the permutation vector(s) is (are) filled with the
ordering of the nodes in a post-order traversal.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Tree * Tree_permute ( Tree *tree, int newToOld[], int oldToNew[] ) ;
\end{verbatim}
\index{Tree_permute@{\tt Tree\_permute()}}
If {\tt tree} is {\tt NULL}, 
{\tt tree->n < 1} or a permutation vector is {\tt NULL},
an error message is printed and the program exits.
Otherwise, a new tree is created with the same connectivity as the
old but the nodes are relabeled.
%-----------------------------------------------------------------------
\end{enumerate}