1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/* QRallInOne.c */
#include "../../misc.h"
#include "../../FrontMtx.h"
#include "../../SymbFac.h"
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
--------------------------------------------------
QR all-in-one program
(1) read in matrix entries and form InpMtx object
of A and A^TA
(2) form Graph object of A^TA
(3) order matrix and form front tree
(4) get the permutation, permute the matrix and
front tree and get the symbolic factorization
(5) compute the numeric factorization
(6) read in right hand side entries
(7) compute the solution
created -- 98jun11, cca
--------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char *matrixFileName, *rhsFileName ;
ChvManager *chvmanager ;
DenseMtx *mtxB, *mtxX ;
double facops, imag, real, value ;
double cpus[10] ;
ETree *frontETree ;
FILE *inputFile, *msgFile ;
FrontMtx *frontmtx ;
Graph *graph ;
int ient, irow, jcol, jrhs, jrow, msglvl, neqns,
nedges, nent, nrhs, nrow, seed, type ;
InpMtx *mtxA ;
IV *newToOldIV, *oldToNewIV ;
IVL *adjIVL, *symbfacIVL ;
SubMtxManager *mtxmanager ;
/*--------------------------------------------------------------------*/
/*
--------------------
get input parameters
--------------------
*/
if ( argc != 7 ) {
fprintf(stdout,
"\n usage: %s msglvl msgFile type matrixFileName rhsFileName seed"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n matrixFileName -- matrix file name, format"
"\n nrow ncol nent"
"\n irow jcol entry"
"\n ..."
"\n note: indices are zero based"
"\n rhsFileName -- right hand side file name, format"
"\n nrow "
"\n entry[0]"
"\n ..."
"\n entry[nrow-1]"
"\n seed -- random number seed, used for ordering"
"\n", argv[0]) ;
return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
return(-1) ;
}
type = atoi(argv[3]) ;
matrixFileName = argv[4] ;
rhsFileName = argv[5] ;
seed = atoi(argv[6]) ;
/*--------------------------------------------------------------------*/
/*
--------------------------------------------
STEP 1: read the entries from the input file
and create the InpMtx object of A
--------------------------------------------
*/
inputFile = fopen(matrixFileName, "r") ;
fscanf(inputFile, "%d %d %d", &nrow, &neqns, &nent) ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if ( type == SPOOLES_REAL ) {
for ( ient = 0 ; ient < nent ; ient++ ) {
fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else {
for ( ient = 0 ; ient < nent ; ient++ ) {
fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
----------------------------------------
STEP 2: read the right hand side entries
----------------------------------------
*/
inputFile = fopen(rhsFileName, "r") ;
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init(mtxB, type, 0, 0, nrow, nrhs, 1, nrow) ;
DenseMtx_zero(mtxB) ;
if ( type == SPOOLES_REAL ) {
for ( irow = 0 ; irow < nrow ; irow++ ) {
fscanf(inputFile, "%d", &jrow) ;
for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
fscanf(inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;
}
}
} else {
for ( irow = 0 ; irow < nrow ; irow++ ) {
fscanf(inputFile, "%d", &jrow) ;
for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
fscanf(inputFile, "%le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;
}
}
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxB, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------
STEP 3 : find a low-fill ordering
(1) create the Graph object for A^TA or A^HA
(2) order the graph using multiple minimum degree
-------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_adjForATA(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n graph of A^T A") ;
Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-----------------------------------------------------
STEP 4: get the permutation, permute the matrix and
front tree and get the symbolic factorization
-----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
InpMtx_permute(mtxA, NULL, IV_entries(oldToNewIV)) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
IVL_overwrite(symbfacIVL, oldToNewIV) ;
IVL_sortUp(symbfacIVL) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n old-to-new permutation vector") ;
IV_writeForHumanEye(oldToNewIV, msgFile) ;
fprintf(msgFile, "\n\n new-to-old permutation vector") ;
IV_writeForHumanEye(newToOldIV, msgFile) ;
fprintf(msgFile, "\n\n front tree after permutation") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fprintf(msgFile, "\n\n input matrix after permutation") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fprintf(msgFile, "\n\n symbolic factorization") ;
IVL_writeForHumanEye(symbfacIVL, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------------------------
STEP 5: initialize the front matrix object
------------------------------------------
*/
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
if ( type == SPOOLES_REAL ) {
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type,
SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;
} else {
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type,
SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS,
SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-----------------------------------------
STEP 6: compute the numeric factorization
-----------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
DVzero(10, cpus) ;
facops = 0.0 ;
FrontMtx_QR_factor(frontmtx, mtxA, chvmanager,
cpus, &facops, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n factor matrix") ;
fprintf(msgFile, "\n facops = %9.2f", facops) ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
--------------------------------------
STEP 7: post-process the factorization
--------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n factor matrix after post-processing") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------
STEP 8: solve the linear system
-------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
FrontMtx_QR_solve(frontmtx, mtxA, mtxX, mtxB, mtxmanager,
cpus, msglvl, msgFile) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n solution matrix in new ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------------
STEP 9: permute the solution into the original ordering
-------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
fprintf(msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------
free the working storage
------------------------
*/
InpMtx_free(mtxA) ;
FrontMtx_free(frontmtx) ;
Graph_free(graph) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
ETree_free(frontETree) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
/*--------------------------------------------------------------------*/
return(1) ; }
/*--------------------------------------------------------------------*/
|