1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
%
% main TeX file
%
\documentstyle[leqno,11pt,twoside]{report}
\textwidth 6.5 in
\textheight 8.5 in
\oddsidemargin 0.0 in
\evensidemargin 0.0 in
\topmargin 0.0 in
\baselineskip 20 pt
\parskip 3 pt plus 1 pt minus 1 pt
\newcommand{\bnd}{{\partial}}
\renewcommand{\Re}{{\mbox{Re}}}
\renewcommand{\Im}{{\mbox{Im}}}
\input psfig
\makeindex
\begin{document}
$$
\left \lbrack \begin{array}{cc}
x & y \\
\overline{y} & z
\end{array} \right \rbrack
\left \lbrack \begin{array}{c}
u_{1,j} \\
u_{2,j}
\end{array} \right \rbrack
=
\left \lbrack \begin{array}{c}
a_{1,j} \\
a_{2,j}
\end{array} \right \rbrack
$$
Multiply on the left by the inverse of the pivot block.
$$
\left \lbrack \begin{array}{c}
u_{1,j} \\
u_{2,j}
\end{array} \right \rbrack
=
\frac{1}{xz - y\overline{y}}
\left \lbrack \begin{array}{cc}
z & -y \\
-\overline{y} & x
\end{array} \right \rbrack
\left \lbrack \begin{array}{c}
a_{1,j} \\
a_{2,j}
\end{array} \right \rbrack
=
\frac{1}{xz - y\overline{y}}
\left \lbrack \begin{array}{c}
z a_{1,j} - y a_{2,j} \\
- \overline{y} a_{1,j} + x a_{2,j}
\end{array} \right \rbrack
$$
Look at each of the two entries in the rightmost vector.
\begin{eqnarray*}
z a_{1,j} - y a_{2,j}
& = &
\Re(z) ( \Re(a_{1,j}) + i\ \Im(a_{1,j}) )
- ( \Re(y) + i\ \Im(y) )( \Re(a_{2,j}) + i\ \Im(a_{2,I}) )
\\
& = &
(
\Re(z) \Re(a_{1,j}) - \Re(y) \Re(a_{2,j}) + \Im(y) \Im(a_{2,I})
) \\
& &
\qquad +\ i(
\Re(z) \Im(a_{1,j}) - \Re(y) \Im(a_{2,I}) - \Im(y) \Re(a_{2,j})
)
\\
- \overline{y} a_{1,j} + x a_{2,j}
& = &
-( \Re(y) - i \Im(y) ) ( \Re(a_{1,j}) + i \Im(a_{1,j}) )
+ \Re(x) ( \Re(a_{2,j}) + i \Im(a_{2,I}) )
\\
& = &
(
-\Re(y) \Re(a_{1,j}) - \Im(y) \Im(a_{1,j}) + x \Re(a_{2,j})
) \\
& &
\qquad + i\ (
-\Re(y) \Im(a_{1,j}) + \Im(y) \Re(a_{1,j}) + x \Im(a_{2,I})
)
\end{eqnarray*}
\begin{eqnarray*}
\Re(u_{1,j})
& = &
\frac{ \Re(z) \Re(a_{1,j}) - \Re(y) \Re(a_{2,j})
+ \Im(y) \Im(a_{2,j}) }
{ xz - y\overline{y} }
\\
\Im(u_{1,j})
& = &
\frac{ \Re(z) \Im(a_{1,j}) - \Re(y) \Im(a_{2,I}) - \Im(y) \Re(a_{2,j}) }
{ xz - y\overline{y} }
\end{eqnarray*}
Taking absolute values and use the triangle inequality.
\begin{eqnarray*}
\Re(u_{1,j})
& = &
\left |
\frac{ \Re(z) \Re(a_{1,j}) - \Re(y) \Re(a_{2,j})
+ \Im(y) \Im(a_{2,j}) }
{ xz - y\overline{y} }
\right |
\\
& \le &
\frac{
|\Re(z)|\ |\Re(a_{1,j})| + |\Re(y)|\ |\Re(a_{2,j})|
+ |\Im(y)|\ |\Im(a_{2,j})|
} {
\left | xz - y\overline{y} \right |
}
\\
\max_{j} |\Re(u_{1,j})|
& \le &
\frac{
|\Re(z)|\ \max_j|\Re(a_{1,j})| + |\Re(y)|\ \max_j|\Re(a_{2,j})|
+ |\Im(y)|\ \max_j|\Im(a_{2,j})|
} {
\left | xz - y\overline{y} \right |
}
\\
\end{eqnarray*}
\end{document}
|