File: temp.tex

package info (click to toggle)
spooles 2.2-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 18,824 kB
  • ctags: 3,665
  • sloc: ansic: 146,828; csh: 3,615; makefile: 2,045; perl: 70
file content (133 lines) | stat: -rw-r--r-- 2,645 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
%
%  main TeX file
%
\documentstyle[leqno,11pt,twoside]{report}

\textwidth      6.5 in
\textheight     8.5 in
\oddsidemargin  0.0 in
\evensidemargin 0.0 in
\topmargin      0.0 in
\baselineskip   20 pt
\parskip        3 pt plus 1 pt minus 1 pt

\newcommand{\bnd}{{\partial}}
\renewcommand{\Re}{{\mbox{Re}}}
\renewcommand{\Im}{{\mbox{Im}}}

\input psfig

\makeindex

\begin{document}

$$
\left \lbrack \begin{array}{cc}
x & y \\
\overline{y} & z
\end{array} \right \rbrack
\left \lbrack \begin{array}{c}
u_{1,j} \\
u_{2,j}
\end{array} \right \rbrack
=
\left \lbrack \begin{array}{c}
a_{1,j} \\
a_{2,j}
\end{array} \right \rbrack
$$
Multiply on the left by the inverse of the pivot block.
$$
\left \lbrack \begin{array}{c}
u_{1,j} \\
u_{2,j}
\end{array} \right \rbrack
=
\frac{1}{xz - y\overline{y}}
\left \lbrack \begin{array}{cc}
z & -y \\
-\overline{y} & x
\end{array} \right \rbrack
\left \lbrack \begin{array}{c}
a_{1,j} \\
a_{2,j}
\end{array} \right \rbrack
=
\frac{1}{xz - y\overline{y}}
\left \lbrack \begin{array}{c}
z a_{1,j} - y a_{2,j} \\
- \overline{y} a_{1,j} + x a_{2,j}
\end{array} \right \rbrack
$$
Look at each of the two entries in the rightmost vector.
\begin{eqnarray*}
z a_{1,j} - y a_{2,j} 
& = & 
\Re(z) ( \Re(a_{1,j}) + i\  \Im(a_{1,j}) )
- ( \Re(y) + i\  \Im(y) )( \Re(a_{2,j}) + i\  \Im(a_{2,I}) )
\\
& = & 
( 
\Re(z) \Re(a_{1,j}) - \Re(y) \Re(a_{2,j}) + \Im(y) \Im(a_{2,I}) 
) \\
& & 
\qquad +\  i( 
\Re(z) \Im(a_{1,j}) - \Re(y) \Im(a_{2,I}) - \Im(y) \Re(a_{2,j})
)
\\
- \overline{y} a_{1,j} + x a_{2,j} 
& = &
-( \Re(y) - i \Im(y) ) ( \Re(a_{1,j}) + i \Im(a_{1,j}) )
+ \Re(x) ( \Re(a_{2,j}) + i \Im(a_{2,I}) )
\\
& = & 
(
-\Re(y) \Re(a_{1,j}) - \Im(y) \Im(a_{1,j}) + x \Re(a_{2,j})
) \\
& & 
\qquad + i\  (
-\Re(y) \Im(a_{1,j}) + \Im(y) \Re(a_{1,j}) + x \Im(a_{2,I})
)
\end{eqnarray*}
\begin{eqnarray*}
\Re(u_{1,j}) 
& = &
\frac{ \Re(z) \Re(a_{1,j}) - \Re(y) \Re(a_{2,j}) 
+ \Im(y) \Im(a_{2,j}) }
{ xz - y\overline{y} }
\\
\Im(u_{1,j}) 
& = &
\frac{ \Re(z) \Im(a_{1,j}) - \Re(y) \Im(a_{2,I}) - \Im(y) \Re(a_{2,j}) }
{ xz - y\overline{y} }
\end{eqnarray*}
Taking absolute values and use the triangle inequality.
\begin{eqnarray*}
\Re(u_{1,j}) 
& = &
\left |
\frac{ \Re(z) \Re(a_{1,j}) - \Re(y) \Re(a_{2,j}) 
+ \Im(y) \Im(a_{2,j}) }
{ xz - y\overline{y} }
\right |
\\
& \le &
\frac{
|\Re(z)|\ |\Re(a_{1,j})| + |\Re(y)|\ |\Re(a_{2,j})|
+ |\Im(y)|\ |\Im(a_{2,j})|
} {
\left | xz - y\overline{y} \right |
}
\\
\max_{j} |\Re(u_{1,j})|
& \le &
\frac{
|\Re(z)|\ \max_j|\Re(a_{1,j})| + |\Re(y)|\ \max_j|\Re(a_{2,j})|
+ |\Im(y)|\ \max_j|\Im(a_{2,j})|
} {
\left | xz - y\overline{y} \right |
}
\\
\end{eqnarray*}

\end{document}